Articles | Volume 23, issue 6
https://doi.org/10.5194/nhess-23-2365-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-2365-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Propagation from meteorological to hydrological drought in the Horn of Africa using both standardized and threshold-based indices
Rhoda A. Odongo
CORRESPONDING AUTHOR
Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Hans De Moel
Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Anne F. Van Loon
Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Related authors
Ileen N. Streefkerk, Jeroen C. J. H. Aerts, Jens de Bruijn, Khalid Hassaballah, Rhoda Odongo, Teun Schrieks, Oliver Wasonga, and Anne F. Van Loon
EGUsphere, https://doi.org/10.5194/egusphere-2024-2382, https://doi.org/10.5194/egusphere-2024-2382, 2024
Short summary
Short summary
In East Africa are conflict over water and vegetation prominent. On top of that, water abstraction of commercial farms are increasing the competition of water. Therefore, this study has developed a model which can investigate what the influence is of these farming activities on the water balance of the region and people's livelihood activities in times of dry periods. We do that by ‘replacing’ the farms in the model, and see what the effect would be if there were communities or forests instead.
Marleen R. Lam, Alessia Matanó, Anne F. Van Loon, Rhoda A. Odongo, Aklilu D. Teklesadik, Charles N. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, and Adriaan J. Teuling
Nat. Hazards Earth Syst. Sci., 23, 2915–2936, https://doi.org/10.5194/nhess-23-2915-2023, https://doi.org/10.5194/nhess-23-2915-2023, 2023
Short summary
Short summary
There is still no full understanding of the relation between drought impacts and drought indices in the Horn of Africa where water scarcity and arid regions are also present. This study assesses their relation in Kenya. A random forest model reveals that each region, aggregated by aridity, has its own set of predictors for every impact category. Water scarcity was not found to be related to aridity. Understanding these relations contributes to the development of drought early warning systems.
Alessia Matanó, Raed Hamed, Manuela I. Brunner, Marlies H. Barendrecht, and Anne F. Van Loon
Hydrol. Earth Syst. Sci., 29, 2749–2764, https://doi.org/10.5194/hess-29-2749-2025, https://doi.org/10.5194/hess-29-2749-2025, 2025
Short summary
Short summary
Persistent droughts change how rivers respond to rainfall. Our study of over 5000 catchments worldwide found that hydrological and soil moisture droughts decrease river-flow response to rain, especially in arid regions, while vegetation decline slightly increases it. Snow-covered areas are more resilient due to stored water buffering changes. Droughts can also cause long-lasting changes, with short and intense droughts reducing river response to rainfall and prolonged droughts increasing it.
Maurice W. M. L. Kalthof, Jens de Bruijn, Hans de Moel, Heidi Kreibich, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 25, 1013–1035, https://doi.org/10.5194/nhess-25-1013-2025, https://doi.org/10.5194/nhess-25-1013-2025, 2025
Short summary
Short summary
Our study explores how farmers in India's Bhima basin respond to consecutive droughts. We simulated farmers' individual choices – like changing crops or digging wells – and their effects on profits, yields, and water resources. Results show these adaptations, while improving incomes, ultimately increase drought vulnerability and damage. Such insights emphasize the need for alternative adaptations and highlight the value of socio-hydrological models in shaping policies to lessen drought impacts.
Kushagra Pandey, Jens A. de Bruijn, Hans de Moel, W. J. Wouter Botzen, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 24, 4409–4429, https://doi.org/10.5194/nhess-24-4409-2024, https://doi.org/10.5194/nhess-24-4409-2024, 2024
Short summary
Short summary
As sea levels rise, coastal areas will experience more frequent flooding, and salt water will start seeping into the soil, which is a serious issue for farmers who rely on good soil quality for their crops. Here, we studied coastal Mozambique to understand the risks from sea level rise and flooding by looking at how salt intrusion affects farming and how floods damage buildings. We find that 15 %–21 % of coastal households will adapt and 13 %–20 % will migrate to inland areas in the future.
Ileen N. Streefkerk, Jeroen C. J. H. Aerts, Jens de Bruijn, Khalid Hassaballah, Rhoda Odongo, Teun Schrieks, Oliver Wasonga, and Anne F. Van Loon
EGUsphere, https://doi.org/10.5194/egusphere-2024-2382, https://doi.org/10.5194/egusphere-2024-2382, 2024
Short summary
Short summary
In East Africa are conflict over water and vegetation prominent. On top of that, water abstraction of commercial farms are increasing the competition of water. Therefore, this study has developed a model which can investigate what the influence is of these farming activities on the water balance of the region and people's livelihood activities in times of dry periods. We do that by ‘replacing’ the farms in the model, and see what the effect would be if there were communities or forests instead.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Marleen R. Lam, Alessia Matanó, Anne F. Van Loon, Rhoda A. Odongo, Aklilu D. Teklesadik, Charles N. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, and Adriaan J. Teuling
Nat. Hazards Earth Syst. Sci., 23, 2915–2936, https://doi.org/10.5194/nhess-23-2915-2023, https://doi.org/10.5194/nhess-23-2915-2023, 2023
Short summary
Short summary
There is still no full understanding of the relation between drought impacts and drought indices in the Horn of Africa where water scarcity and arid regions are also present. This study assesses their relation in Kenya. A random forest model reveals that each region, aggregated by aridity, has its own set of predictors for every impact category. Water scarcity was not found to be related to aridity. Understanding these relations contributes to the development of drought early warning systems.
Job C. M. Dullaart, Sanne Muis, Hans de Moel, Philip J. Ward, Dirk Eilander, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 23, 1847–1862, https://doi.org/10.5194/nhess-23-1847-2023, https://doi.org/10.5194/nhess-23-1847-2023, 2023
Short summary
Short summary
Coastal flooding is driven by storm surges and high tides and can be devastating. To gain an understanding of the threat posed by coastal flooding and to identify areas that are especially at risk, now and in the future, it is crucial to accurately model coastal inundation and assess the coastal flood hazard. Here, we present a global dataset with hydrographs that represent the typical evolution of an extreme sea level. These can be used to model coastal inundation more accurately.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Colin Manning, Martin Widmann, Douglas Maraun, Anne F. Van Loon, and Emanuele Bevacqua
Weather Clim. Dynam., 4, 309–329, https://doi.org/10.5194/wcd-4-309-2023, https://doi.org/10.5194/wcd-4-309-2023, 2023
Short summary
Short summary
Climate models differ in their representation of dry spells and high temperatures, linked to errors in the simulation of persistent large-scale anticyclones. Models that simulate more persistent anticyclones simulate longer and hotter dry spells, and vice versa. This information is important to consider when assessing the likelihood of such events in current and future climate simulations so that we can assess the plausibility of their future projections.
Raed Hamed, Sem Vijverberg, Anne F. Van Loon, Jeroen Aerts, and Dim Coumou
Earth Syst. Dynam., 14, 255–272, https://doi.org/10.5194/esd-14-255-2023, https://doi.org/10.5194/esd-14-255-2023, 2023
Short summary
Short summary
Spatially compounding soy harvest failures can have important global impacts. Using causal networks, we show that soy yields are predominately driven by summer soil moisture conditions in North and South America. Summer soil moisture is affected by antecedent soil moisture and by remote extra-tropical SST patterns in both hemispheres. Both of these soil moisture drivers are again influenced by ENSO. Our results highlight physical pathways by which ENSO can drive spatially compounding impacts.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
Marthe L. K. Wens, Anne F. van Loon, Ted I. E. Veldkamp, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 22, 1201–1232, https://doi.org/10.5194/nhess-22-1201-2022, https://doi.org/10.5194/nhess-22-1201-2022, 2022
Short summary
Short summary
In this paper, we present an application of the empirically calibrated drought risk adaptation model ADOPT for the case of smallholder farmers in the Kenyan drylands. ADOPT is used to evaluate the effect of various top-down drought risk reduction interventions (extension services, early warning systems, ex ante cash transfers, and low credit rates) on individual and community drought risk (adaptation levels, food insecurity, poverty, emergency aid) under different climate change scenarios.
Raed Hamed, Anne F. Van Loon, Jeroen Aerts, and Dim Coumou
Earth Syst. Dynam., 12, 1371–1391, https://doi.org/10.5194/esd-12-1371-2021, https://doi.org/10.5194/esd-12-1371-2021, 2021
Short summary
Short summary
Soy yields in the US are affected by climate variability. We identify the main within-season climate drivers and highlight potential compound events and associated agricultural impacts. Our results show that soy yields are most negatively influenced by the combination of high temperature and low soil moisture during the summer crop reproductive period. Furthermore, we highlight the role of temperature and moisture coupling across the year in generating these hot–dry extremes and linked impacts.
Lucas Wouters, Anaïs Couasnon, Marleen C. de Ruiter, Marc J. C. van den Homberg, Aklilu Teklesadik, and Hans de Moel
Nat. Hazards Earth Syst. Sci., 21, 3199–3218, https://doi.org/10.5194/nhess-21-3199-2021, https://doi.org/10.5194/nhess-21-3199-2021, 2021
Short summary
Short summary
This research introduces a novel approach to estimate flood damage in Malawi by applying a machine learning model to UAV imagery. We think that the development of such a model is an essential step to enable the swift allocation of resources for recovery by humanitarian decision-makers. By comparing this method (EUR 10 140) to a conventional land-use-based approach (EUR 15 782) for a specific flood event, recommendations are made for future assessments.
Doris E. Wendt, John P. Bloomfield, Anne F. Van Loon, Margaret Garcia, Benedikt Heudorfer, Joshua Larsen, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021, https://doi.org/10.5194/nhess-21-3113-2021, 2021
Short summary
Short summary
Managing water demand and supply during droughts is complex, as highly pressured human–water systems can overuse water sources to maintain water supply. We evaluated the impact of drought policies on water resources using a socio-hydrological model. For a range of hydrogeological conditions, we found that integrated drought policies reduce baseflow and groundwater droughts most if extra surface water is imported, reducing the pressure on water resources during droughts.
Marit Van Tiel, Anne F. Van Loon, Jan Seibert, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 3245–3265, https://doi.org/10.5194/hess-25-3245-2021, https://doi.org/10.5194/hess-25-3245-2021, 2021
Short summary
Short summary
Glaciers can buffer streamflow during dry and warm periods, but under which circumstances can melt compensate precipitation deficits? Streamflow responses to warm and dry events were analyzed using
long-term observations of 50 glacierized catchments in Norway, Canada, and the European Alps. Region, timing of the event, relative glacier cover, and antecedent event conditions all affect the level of compensation during these events. This implies that glaciers do not compensate straightforwardly.
Anne F. Van Loon, Imogen Lester-Moseley, Melanie Rohse, Phil Jones, and Rosie Day
Geosci. Commun., 3, 453–474, https://doi.org/10.5194/gc-3-453-2020, https://doi.org/10.5194/gc-3-453-2020, 2020
Short summary
Short summary
The Global South is vulnerable to natural hazards like floods and droughts, but creativity could support community preparedness. We mapped 267 papers that use a variety of art forms. They aim to raise the public's awareness or instigate adaptation by participants. In our pilot in South Africa, community members developed stories about preparing for future drought. This led to an imagination of future events, conversations about adaptation, intergenerational exchange, and increased awareness.
Doris E. Wendt, Anne F. Van Loon, John P. Bloomfield, and David M. Hannah
Hydrol. Earth Syst. Sci., 24, 4853–4868, https://doi.org/10.5194/hess-24-4853-2020, https://doi.org/10.5194/hess-24-4853-2020, 2020
Short summary
Short summary
Groundwater use changes the availability of groundwater, especially during droughts. This study investigates the impact of groundwater use on groundwater droughts. A methodological framework is presented that was developed and applied to the UK. We identified an asymmetric impact of groundwater use on droughts, which highlights the relation between short-term and long-term strategies for sustainable groundwater use.
Jens A. de Bruijn, James E. Daniell, Antonios Pomonis, Rashmin Gunasekera, Joshua Macabuag, Marleen C. de Ruiter, Siem Jan Koopman, Nadia Bloemendaal, Hans de Moel, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-282, https://doi.org/10.5194/nhess-2020-282, 2020
Revised manuscript not accepted
Short summary
Short summary
Following hurricanes and other natural hazards, it is important to quickly estimate the damage caused by the hazard such that recovery aid can be granted from organizations such as the European Union and the World Bank. To do so, it is important to estimate the vulnerability of buildings to the hazards. In this research, we use post-disaster observations from social media to improve these vulnerability assessments and show its application in the Bahamas following Hurricane Dorian.
Bentje Brauns, Daniela Cuba, John P. Bloomfield, David M. Hannah, Christopher Jackson, Ben P. Marchant, Benedikt Heudorfer, Anne F. Van Loon, Hélène Bessière, Bo Thunholm, and Gerhard Schubert
Proc. IAHS, 383, 297–305, https://doi.org/10.5194/piahs-383-297-2020, https://doi.org/10.5194/piahs-383-297-2020, 2020
Short summary
Short summary
In Europe, ca. 65% of drinking water is groundwater. Its replenishment depends on rainfall, but droughts may cause groundwater levels to fall below normal. These
groundwater droughtscan limit supply, making it crucial to understand their regional connection. The Groundwater Drought Initiative (GDI) assesses spatial patterns in historic—recent groundwater droughts across Europe for the first time. Using an example dataset, we describe the background to the GDI and its methodological approach.
Cited articles
Adloff, M., Singer, M. B., MacLeod, D. A., Michaelides, K., Mehrnegar, N.,
Hansford, E., Funk, C., and Mitchell, D.: Sustained Water Storage in Horn of
Africa Drylands Dominated by Seasonal Rainfall Extremes, Geophys. Res.
Lett., 49, e2022GL099299, https://doi.org/10.1029/2022GL099299, 2022.
Agutu, N. O., Awange, J. L., Zerihun, A., Ndehedehe, C. E., Kuhn, M., and
Fukuda, Y.: Assessing multi-satellite remote sensing, reanalysis, and land
surface models' products in characterizing agricultural drought in East
Africa, Remote Sens. Environ., 194, 287–302,
https://doi.org/10.1016/j.rse.2017.03.041, 2017.
Agutu, N. O., Awange, J. L., Ndehedehe, C., and Mwaniki, M.: Consistency of
agricultural drought characterization over Upper Greater Horn of Africa
(1982–2013): Topographical, gauge density, and model forcing influence,
Sci. Total Environ., 709, 135149, https://doi.org/10.1016/j.scitotenv.2019.135149,
2020.
Apurv, T., Sivapalan, M., and Cai, X.: Understanding the Role of Climate
Characteristics in Drought Propagation, Water Resour. Res., 53, 9304–9329,
https://doi.org/10.1002/2017WR021445, 2017.
Awange, J. L., Khandu, Schumacher, M., Forootan, E., and Heck, B.: Exploring
hydro-meteorological drought patterns over the Greater Horn of Africa
(1979–2014) using remote sensing and reanalysis products, Adv. Water
Resour., 94, 45–59, https://doi.org/10.1016/j.advwatres.2016.04.005, 2016.
Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., Hurk, B. van den,
Hirschi, M., and Betts, A. K.: A Revised Hydrology for the ECMWF Model:
Verification from Field Site to Terrestrial Water Storage and Impact in the
Integrated Forecast System, J. Hydrometeorol., 10, 623–643,
https://doi.org/10.1175/2008JHM1068.1, 2009.
Barker, L. J., Hannaford, J., Chiverton, A., and Svensson, C.: From meteorological to hydrological drought using standardised indicators, Hydrol. Earth Syst. Sci., 20, 2483–2505, https://doi.org/10.5194/hess-20-2483-2016, 2016.
Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J., and Wood, E. F.: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling, Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, 2017a.
Beck, H. E., van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B., and de Roo, A.: MSWEP: 3-hourly 0.25∘ global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data, Hydrol. Earth Syst. Sci., 21, 589–615, https://doi.org/10.5194/hess-21-589-2017, 2017b.
Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., Dijk, A.
I. J. M. van, McVicar, T. R., and Adler, R. F.: MSWEP V2 Global 3-Hourly
0.1∘ Precipitation: Methodology and Quantitative Assessment, B.
Am. Meteorol. Soc., 100, 473–500, https://doi.org/10.1175/BAMS-D-17-0138.1, 2019.
Belal, A. A., El-Ramady, H. R., Mohamed, E. S., and Saleh, A. M.: Drought
risk assessment using remote sensing and GIS techniques, Arab. J. Geosci.,
7, 35–53, https://doi.org/10.1007/s12517-012-0707-2, 2014.
Beyene, B. S., Van Loon, A. F., Van Lanen, H. A. J., and Torfs, P. J. J. F.: Investigation of variable threshold level approaches for hydrological drought identification, Hydrol. Earth Syst. Sci. Discuss., 11, 12765–12797, https://doi.org/10.5194/hessd-11-12765-2014, 2014.
British Geological Survey: Africa Groundwater Atlas, Africa Groundwater Atlas part of the UPGro (Unlocking the Potential of Groundwater for the Poor), British Geological Survey [data set],
https://www2.bgs.ac.uk/africagroundwateratlas/downloadGIS.html, last access: 17 October 2022.
Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.
E., Herold, M., and Fritz, S.: Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2019: Globe (V3.0.1), Zenodo [data set], https://doi.org/10.5281/zenodo.3939050, 2020.
Cattani, E., Ferguglia, O., Merino, A., and Levizzani, V.: Precipitation
Products' Inter–Comparison over East and Southern Africa 1983–2017, Remote
Sens., 13, 4419, https://doi.org/10.3390/rs13214419, 2021.
Copernicus Climate Change Service (C3S): River discharge and related forecasted data from the Global Flood Awareness System, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.ff1aef77, 2020.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dinku, T., Ceccato, P., Grover-Kopec, E., Lemma, M., Connor, S. J., and
Ropelewski, C. F.: Validation of satellite rainfall products over East
Africa's complex topography, Int. J. Remote Sens., 28, 1503–1526,
https://doi.org/10.1080/01431160600954688, 2007.
Dutra, E., Magnusson, L., Wetterhall, F., Cloke, H. L., Balsamo, G.,
Boussetta, S., and Pappenberger, F.: The 2010–2011 drought in the Horn of
Africa in ECMWF reanalysis and seasonal forecast products, Int. J.
Climatol., 33, 1720–1729, https://doi.org/10.1002/joc.3545, 2013.
Edossa, D. C., Babel, M. S., and Gupta, A. D.: Drought analysis in the Awash
River Basin, Ethiopia, Water Resour. Manag., 24, 1441–1460,
https://doi.org/10.1007/s11269-009-9508-0, 2010.
Farr, T. G. and Kobrick, M.: Shuttle Radar Topography Mission produces a
wealth of data, Eos Trans. Amer. Geophys. Union, 81, 503–503, https://doi.org/10.1029/EO081i048p00583, 2000.
Fessehaye, M., Franke, J., and Brönnimann, S.: Evaluation of
satellite-based (CHIRPS and GPM) and reanalysis (ERA5-Land) precipitation
estimates over Eritrea, Meteorol. Z., 31, 401–413,
https://doi.org/10.1127/metz/2022/1111, 2022.
Gebrechorkos, S. H., Hülsmann, S., and Bernhofer, C.: Analysis of
climate variability and droughts in East Africa using high-resolution
climate data products, Glob. Planet. Change, 186, 103130,
https://doi.org/10.1016/j.gloplacha.2020.103130, 2020.
Gleixner, S., Demissie, T., and Diro, G. T.: Did ERA5 Improve Temperature
and Precipitation Reanalysis over East Africa?, Atmosphere, 11, 996,
https://doi.org/10.3390/atmos11090996, 2020.
Haile, G. G., Tang, Q., Sun, S., Huang, Z., Zhang, X., and Liu, X.: Droughts
in East Africa: Causes, impacts and resilience, Earth-Sci. Rev., 193,
146–161, https://doi.org/10.1016/j.earscirev.2019.04.015, 2019.
Haile, G. G., Tang, Q., Leng, G., Jia, G., Wang, J., Cai, D., Sun, S.,
Baniya, B., and Zhang, Q.: Long-term spatiotemporal variation of drought
patterns over the Greater Horn of Africa, Sci. Total Environ., 704, 135299,
https://doi.org/10.1016/j.scitotenv.2019.135299, 2020.
Hao, Z. and Aghakouchak, A.: A Nonparametric Multivariate Multi-Index
Drought Monitoring Framework, J. Hydrometeorol., 15, 89–101,
https://doi.org/10.1175/JHM-D-12-0160.1, 2014.
Harrigan, S., Zsoter, E., Alfieri, L., Prudhomme, C., Salamon, P., Wetterhall, F., Barnard, C., Cloke, H., and Pappenberger, F.: GloFAS-ERA5 operational global river discharge reanalysis 1979–present, Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020, 2020.
Haslinger, K., Koffler, D., Schöner, W., and Laaha, G.: Exploring the
link between meteorological drought and streamflow: Effects of
climate-catchment interaction, Water Resour. Res., 50, 2468–2487,
https://doi.org/10.1002/2013WR015051, 2014.
Hayes, M. J., Svoboda, M. D., Wiihite, D. A., and Vanyarkho, O. V.:
Monitoring the 1996 Drought Using the Standardized Precipitation Index,
B. Am. Meteorol. Soc., 80, 429–438,
https://doi.org/10.1175/1520-0477(1999)080<0429:MTDUTS>2.0.CO;2, 1999.
He, B., Wu, J., Lü, A., Cui, X., Zhou, L., Liu, M., and Zhao, L.:
Quantitative assessment and spatial characteristic analysis of agricultural
drought risk in China, Nat. Hazards, 66, 155–166,
https://doi.org/10.1007/s11069-012-0398-8, 2013.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Heudorfer, B. and Stahl, K.: Comparison of different threshold level methods
for drought propagation analysis in Germany, Hydrol. Res., 1311–1326,
https://doi.org/10.2166/nh.2016.258, 2017.
Hirpa, F. A., Salamon, P., Beck, H. E., Lorini, V., Alfieri, L., Zsoter, E.,
and Dadson, S. J.: Calibration of the Global Flood Awareness System (GloFAS)
using daily streamflow data, J. Hydrol., 566, 595–606,
https://doi.org/10.1016/j.jhydrol.2018.09.052, 2018.
Huang, S., Li, P., Huang, Q., Leng, G., Hou, B., and Ma, L.: The propagation
from meteorological to hydrological drought and its potential influence
factors, J. Hydrol., 547, 184–195, https://doi.org/10.1016/j.jhydrol.2017.01.041, 2017.
IGAD and WFP: Greater Horn of Africa Climate Risk and Food Security Atlas, IGAD Climate Prediction & Application Centre (ICPAC) and World Food
Programme (WFP) Regional Bureau for East and Central Africa, Nairobi, https://reliefweb.int/report/world/greater-horn-africa-climate-risk-and-food-security-atlas?gclid=EAIaIQobChMI3KiIkZ3U_wIVlMF3Ch3b6AXSEAAYASAAEgJda_D_BwE (last access: 13 October 2020), 2017.
Javadinejad, S., Hannah, D., Ostad-Ali-Askari, K., Krause, S., Zalewski, M.,
and Boogaard, F.: The Impact of Future Climate Change and Human Activities
on Hydro-climatological Drought, Analysis and Projections: Using CMIP5
Climate Model Simulations, Water Conserv. Sci. Eng., 4, 71–88,
https://doi.org/10.1007/s41101-019-00069-2, 2019.
Jiang, S., Wang, M., Ren, L., Xu, C., Yuan, F., Liu, Y., Lu, Y., and Shen,
H.: A framework for quantifying the impacts of climate change and human
activities on hydrological drought in a semiarid basin of Northern China,
Hydrol. Process., 33, 1075–1088, https://doi.org/10.1002/hyp.13386, 2019.
Kalisa, W., Zhang, J., Igbawua, T., Ujoh, F., Ebohon, O. J., Namugize, J.
N., and Yao, F.: Spatio-temporal analysis of drought and return periods over
the East African region using Standardized Precipitation Index from 1920 to
2016, Agr. Water Manage., 237, 106195, https://doi.org/10.1016/j.agwat.2020.106195, 2020.
Kurnik, B., Barbosa, P., and Vogt, J.: Testing two different precipitation
datasets to compute the standardized precipitation index over the horn of
Africa, Int. J. Remote Sens., 32, 5947–5964,
https://doi.org/10.1080/01431161.2010.499380, 2011.
Laizé, C. L. R. and Hannah, D. M.: Modification of climate–river flow associations by basin properties, J. Hydrol., 389, 186–204, https://doi.org/10.1016/j.jhydrol.2010.05.048, 2010.
Lehner, B. and Grill, G.: Global river hydrography and network routing:
baseline data and new approaches to study the world's large river systems,
Hydrol. Process., 27, 2171–2186, https://doi.org/10.1002/hyp.9740, 2013.
Li, Q., He, P., He, Y., Han, X., Zeng, T., Lu, G., and Wang, H.:
Investigation to the relation between meteorological drought and
hydrological drought in the upper Shaying River Basin using wavelet
analysis, Atmos. Res., 234, 104743, https://doi.org/10.1016/j.atmosres.2019.104743, 2019.
Linke, S., Lehner, B., Ouellet Dallaire, C., Ariwi, J., Grill, G., Anand,
M., Beames, P., Burchard-Levine, V., Maxwell, S., Moidu, H., Tan, F., and
Thieme, M.: Global hydro-environmental sub-basin and river reach
characteristics at high spatial resolution, Sci. Data, 6, 283,
https://doi.org/10.1038/s41597-019-0300-6, 2019.
Liu, Y. Y., de Jeu, R. A. M., McCabe, M. F., Evans, J. P., and van Dijk, A.
I. J. M.: Global long-term passive microwave satellite-based retrievals of
vegetation optical depth, Geophys. Res. Lett., 38, L18402,
https://doi.org/10.1029/2011GL048684, 2011.
Lyon, B.: Seasonal drought in the Greater Horn of Africa and its recent
increase during the March-May long rains, J. Climate, 27, 7953–7975,
https://doi.org/10.1175/JCLI-D-13-00459.1, 2014.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
Mckee, T. B., Doesken, N. J., and Kleist, J.: The Relationship Of Drought
Frequency And Duration To Time Scales, in: Eighth Conference on Applied Climatology, 17–22 January 1993, Anaheim, California, USA, Environmental Science, Corpus ID: 129950974, 179–183, 1993.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011.
Musie, M., Sen, S., and Srivastava, P.: Comparison and evaluation of gridded
precipitation datasets for streamflow simulation in data scarce watersheds
of Ethiopia, J. Hydrol., 579, 124168, https://doi.org/10.1016/j.jhydrol.2019.124168, 2019.
Nicholson, S. E.: A detailed look at the recent drought situation in the
Greater Horn of Africa, J. Arid Environ., 103, 71–79,
https://doi.org/10.1016/j.jaridenv.2013.12.003, 2014.
Nicolai-Shaw, N., Zscheischler, J., Hirschi, M., Gudmundsson, L., and
Seneviratne, S. I.: A drought event composite analysis using satellite
remote-sensing based soil moisture, Remote Sens. Environ., 203, 216–225,
https://doi.org/10.1016/j.rse.2017.06.014, 2017.
Nyabeze, W. R.: Estimating and interpreting hydrological drought indices
using a selected catchment in Zimbabwe, Phys. Chem. Earth Parts ABC, 29,
1173–1180, https://doi.org/10.1016/j.pce.2004.09.018, 2004.
Odongo, R. A.: Rhoda91/Propagation-of-drought: On Propagation of Drought in the Horn of Africa (Version 1), Zenodo [code], https://doi.org/10.5281/zenodo.8086057, 2023.
Okal, H. A., Ngetich, F. K., and Okeyo, J. M.: Spatio-temporal
characterisation of droughts using selected indices in Upper Tana River
watershed, Kenya, Sci. Afr., 7, e00275,
https://doi.org/10.1016/j.sciaf.2020.e00275, 2020.
Peng, J., Dadson, S., Hirpa, F., Dyer, E., Lees, T., Miralles, D. G., Vicente-Serrano, S. M., and Funk, C.: A pan-African high-resolution drought index dataset, Earth Syst. Sci. Data, 12, 753–769, https://doi.org/10.5194/essd-12-753-2020, 2020.
Priestley, C. H. B. and Taylor, R. J.: On the Assessment of Surface Heat
Flux and Evaporation Using Large-Scale Parameters, Mon. Weather Rev., 100,
81–92, https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2, 1972.
Quichimbo, E. A., Singer, M. B., Michaelides, K., Hobley, D. E. J., Rosolem, R., and Cuthbert, M. O.: DRYP 1.0: a parsimonious hydrological model of DRYland Partitioning of the water balance, Geosci. Model Dev., 14, 6893–6917, https://doi.org/10.5194/gmd-14-6893-2021, 2021.
Rulinda, C. M., Dilo, A., Bijker, W., and Stein, A.: Characterising and
quantifying vegetative drought in East Africa using fuzzy modelling and NDVI
data, J. Arid Environ., 78, 169–178, https://doi.org/10.1016/j.jaridenv.2011.11.016, 2012.
Ryu, D. and Famiglietti, J. S.: Characterization of footprint-scale surface
soil moisture variability using Gaussian and beta distribution functions
during the Southern Great Plains 1997 (SGP97) hydrology experiment, Water
Resour. Res., 41, W12433, https://doi.org/10.1029/2004WR003835, 2005.
Safavi, H. R., Raghibi, V., Mazdiyasni, O., and Mortazavi-Naeini, M.: A new
hybrid drought-monitoring framework based on nonparametric standardized
indicators, Hydrol. Res., 49, 222–236, https://doi.org/10.2166/nh.2017.266,
2018.
Sehler, R., Li, J., Reager, J., and Ye, H.: Investigating Relationship
Between Soil Moisture and Precipitation Globally Using Remote Sensing
Observations, J. Contemp. Water Res. Educ., 168, 106–118,
https://doi.org/10.1111/j.1936-704x.2019.03324.x, 2019.
Shukla, S. and Wood, A. W.: Use of a standardized runoff index for
characterizing hydrologic drought, Geophys. Res. Lett., 35, 1–7,
https://doi.org/10.1029/2007GL032487, 2008.
Stagge, J. H., Kohn, I., Tallaksen, L. M., and Stahl, K.: Modeling drought
impact occurrence based on meteorological drought indices in Europe, J.
Hydrol., 530, 37–50, https://doi.org/10.1016/j.jhydrol.2015.09.039, 2015.
Tallaksen, L. M., Hisdal, H., and Van Lanen, H. A. J.: Space-time modelling
of catchment scale drought characteristics, J. Hydrol., 375, 363–372,
https://doi.org/10.1016/j.jhydrol.2009.06.032, 2009.
Tonini, F., Lasinio, G. J., and Hochmair, H. H.: Mapping return levels of
absolute NDVI variations for the assessment of drought risk in Ethiopia,
Int. J. Appl. Earth Obs. Geoinformation, 18, 564–572,
https://doi.org/10.1016/j.jag.2012.03.018, 2012.
van Huijgevoort, M. H. J., Hazenberg, P., van Lanen, H. A. J., and Uijlenhoet, R.: A generic method for hydrological drought identification across different climate regions, Hydrol. Earth Syst. Sci., 16, 2437–2451, https://doi.org/10.5194/hess-16-2437-2012, 2012.
Van Huijgevoort, M. V.: Hydrological drought: characterisation and
representation in large-scale models, PhD Thesis, Wageningen University and Research, ISBN 9789461739414, 2014.
Van Lanen, H. A. J., Wanders, N., Tallaksen, L. M., and Van Loon, A. F.: Hydrological drought across the world: impact of climate and physical catchment structure, Hydrol. Earth Syst. Sci., 17, 1715–1732, https://doi.org/10.5194/hess-17-1715-2013, 2013.
Van Loon, A. F.: How climate and catchment characteristics influence
hydrological drought development and recovery, PhD Thesis, Wageningen University and Research, ISBN 9789461735010, 2013.
Van Loon, A. F.: Hydrological drought explained, Wiley Interdiscip. Rev.
Water, 2, 359–392, https://doi.org/10.1002/wat2.1085, 2015.
Van Loon, A. F. and Laaha, G.: Hydrological drought severity explained by
climate and catchment characteristics, J. Hydrol., 526, 3–14,
https://doi.org/10.1016/J.JHYDROL.2014.10.059, 2015.
Van Loon, A. F. and Van Lanen, H. A. J.: A process-based typology of hydrological drought, Hydrol. Earth Syst. Sci., 16, 1915–1946, https://doi.org/10.5194/hess-16-1915-2012, 2012.
Van Loon, A. F., Tijdeman, E., Wanders, N., Van Lanen, H. A. J., Teuling, A.
J., and Uijlenhoet, R.: How climate seasonality modifies drought duration
and deficit, J. Geophys. Res.-Atmos., 119, 4640–4656,
https://doi.org/10.1002/2013JD020383, 2014.
Van Loon, A. F., Gleeson, T., Clark, J., Van Dijk, A. I. J. M., Stahl, K.,
Hannaford, J., Di Baldassarre, G., Teuling, A. J., Tallaksen, L. M.,
Uijlenhoet, R., Hannah, D. M., Sheffield, J., Svoboda, M., Verbeiren, B.,
Wagener, T., Rangecroft, S., Wanders, N., and Van Lanen, H. A. J.: Drought
in the Anthropocene, Nat. Geosci., 9, 89–91, https://doi.org/10.1038/ngeo2646, 2016a.
Van Loon, A. F., Stahl, K., Di Baldassarre, G., Clark, J., Rangecroft, S., Wanders, N., Gleeson, T., Van Dijk, A. I. J. M., Tallaksen, L. M., Hannaford, J., Uijlenhoet, R., Teuling, A. J., Hannah, D. M., Sheffield, J., Svoboda, M., Verbeiren, B., Wagener, T., and Van Lanen, H. A. J.: Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches, Hydrol. Earth Syst. Sci., 20, 3631–3650, https://doi.org/10.5194/hess-20-3631-2016, 2016b.
Vicente-Serrano, S. M. and López-Moreno, J. I.: Hydrological response to different time scales of climatological drought: an evaluation of the Standardized Precipitation Index in a mountainous Mediterranean basin, Hydrol. Earth Syst. Sci., 9, 523–533, https://doi.org/10.5194/hess-9-523-2005, 2005.
Vicente-Serrano, S. M. and Lopez-Moreno, J. I.: The Influence Of Atmospheric
Circulation At Different Spatial Scales On Winter Drought Variability
Through A Semi-Arid Climatic Gradient In Northeast Spain, Int. J. Climatol.,
26, 1427–1453, https://doi.org/10.1002/joc.1387, 2006.
Vicente-Serrano, S. M., López-Moreno, J. I., Beguería, S.,
Lorenzo-Lacruz, J., Azorin-Molina, C., and Morán-Tejeda, E.: Accurate
Computation of a Streamflow Drought Index, J. Hydrol. Eng., 17, 318–332,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000433, 2012.
Vidal, J.-P., Martin, E., Franchistéguy, L., Habets, F., Soubeyroux, J.-M., Blanchard, M., and Baillon, M.: Multilevel and multiscale drought reanalysis over France with the Safran-Isba-Modcou hydrometeorological suite, Hydrol. Earth Syst. Sci., 14, 459–478, https://doi.org/10.5194/hess-14-459-2010, 2010.
Viste, E., Korecha, D., and Sorteberg, A.: Recent drought and precipitation
tendencies in Ethiopia, Theor. Appl. Climatol., 112, 535–551,
https://doi.org/10.1007/s00704-012-0746-3, 2013.
Xu, Y., Zhang, X., Wang, X., Hao, Z., Singh, V. P., and Hao, F.: Propagation
from meteorological drought to hydrological drought under the impact of
human activities: A case study in northern China, J. Hydrol., 579, 124147,
https://doi.org/10.1016/j.jhydrol.2019.124147, 2019.
Xu, Z., Wu, Z., He, H., Wu, X., Zhou, J., Zhang, Y., and Guo, X.: Evaluating
the accuracy of MSWEP V2.1 and its performance for drought monitoring over
mainland China, Atmos. Res., 226, 17–31,
https://doi.org/10.1016/j.atmosres.2019.04.008, 2019.
Short summary
We characterize meteorological (P), soil moisture (SM) and hydrological (Q) droughts and the propagation from one to the other for 318 catchments in the Horn of Africa. We find that propagation from P to SM is influenced by soil properties and vegetation, while propagation from P to Q is from catchment-scale hydrogeological properties (i.e. geology, slope). We provide precipitation accumulation periods at the subbasin level that can be used as a proxy in drought forecasting in dryland regions.
We characterize meteorological (P), soil moisture (SM) and hydrological (Q) droughts and the...
Altmetrics
Final-revised paper
Preprint