Articles | Volume 23, issue 6
https://doi.org/10.5194/nhess-23-2251-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-23-2251-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling compound flood risk and risk reduction using a globally applicable framework: a pilot in the Sofala province of Mozambique
Institute for Environmental Studies (IVM), Vrije Universiteit
Amsterdam, Amsterdam, the Netherlands
Deltares, Delft, the Netherlands
Anaïs Couasnon
Institute for Environmental Studies (IVM), Vrije Universiteit
Amsterdam, Amsterdam, the Netherlands
Deltares, Delft, the Netherlands
Frederiek C. Sperna Weiland
Deltares, Delft, the Netherlands
Willem Ligtvoet
Department of Water, Agriculture and Food, PBL Netherlands Environmental Assessment Agency (PBL), The Hague, the Netherlands
Arno Bouwman
Department of Water, Agriculture and Food, PBL Netherlands Environmental Assessment Agency (PBL), The Hague, the Netherlands
Hessel C. Winsemius
Deltares, Delft, the Netherlands
Philip J. Ward
Institute for Environmental Studies (IVM), Vrije Universiteit
Amsterdam, Amsterdam, the Netherlands
Related authors
Irene Benito, Jeroen C. J. H. Aerts, Philip J. Ward, Dirk Eilander, and Sanne Muis
Nat. Hazards Earth Syst. Sci., 25, 2287–2315, https://doi.org/10.5194/nhess-25-2287-2025, https://doi.org/10.5194/nhess-25-2287-2025, 2025
Short summary
Short summary
Global flood models are key to the mitigation of coastal flooding impacts, yet they still have limitations when providing actionable insights locally. We present a multiscale framework that couples dynamic water level and flood models and bridges the fully global and local modelling approaches. We apply it to three historical storms. Our findings reveal that the importance of model refinements varies based on the study area characteristics and the storm’s nature.
Huazhi Li, Robert A. Jane, Dirk Eilander, Alejandra R. Enríquez, Toon Haer, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-2993, https://doi.org/10.5194/egusphere-2025-2993, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We assess the likelihood of widespread compound flooding along the U.S. coastline. Using a large set of generated plausible events preserving observed dependence, we find that nearly half of compound floods on the West coast affect multiple sites. Such events are rarer on the East coast while most compound events affect single sites on the Gulf coast. Our results underscore the importance of including spatial dependence in compound flood risk assessment and can help in better risk management.
Lucas Terlinden-Ruhl, Anaïs Couasnon, Dirk Eilander, Gijs G. Hendrickx, Patricia Mares-Nasarre, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 25, 1353–1375, https://doi.org/10.5194/nhess-25-1353-2025, https://doi.org/10.5194/nhess-25-1353-2025, 2025
Short summary
Short summary
This study develops a conceptual framework that uses active learning to accelerate compound flood risk assessments. A case study of Charleston County shows that the framework achieves faster and more accurate risk quantification compared to the state-of-the-art. This win–win allows for an increase in the number of flooding parameters, which results in an 11.6 % difference in the expected annual damages. Therefore, this framework allows for more comprehensive compound flood risk assessments.
Joshua Green, Ivan D. Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
Nat. Hazards Earth Syst. Sci., 25, 747–816, https://doi.org/10.5194/nhess-25-747-2025, https://doi.org/10.5194/nhess-25-747-2025, 2025
Short summary
Short summary
Compound flooding, involving the combination or successive occurrence of two or more flood drivers, can amplify flood impacts in coastal/estuarine regions. This paper reviews the practices, trends, methodologies, applications, and findings of coastal compound flooding literature at regional to global scales. We explore the types of compound flood events, their mechanistic processes, and the range of terminology. Lastly, this review highlights knowledge gaps and implications for future practices.
Willem J. van Verseveld, Albrecht H. Weerts, Martijn Visser, Joost Buitink, Ruben O. Imhoff, Hélène Boisgontier, Laurène Bouaziz, Dirk Eilander, Mark Hegnauer, Corine ten Velden, and Bobby Russell
Geosci. Model Dev., 17, 3199–3234, https://doi.org/10.5194/gmd-17-3199-2024, https://doi.org/10.5194/gmd-17-3199-2024, 2024
Short summary
Short summary
We present the wflow_sbm distributed hydrological model, recently released by Deltares, as part of the Wflow.jl open-source modelling framework in the programming language Julia. Wflow_sbm has a fast runtime, making it suitable for large-scale modelling. Wflow_sbm models can be set a priori for any catchment with the Python tool HydroMT-Wflow based on globally available datasets, which results in satisfactory to good performance (without much tuning). We show this for a number of specific cases.
Eric Mortensen, Timothy Tiggeloven, Toon Haer, Bas van Bemmel, Dewi Le Bars, Sanne Muis, Dirk Eilander, Frederiek Sperna Weiland, Arno Bouwman, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 24, 1381–1400, https://doi.org/10.5194/nhess-24-1381-2024, https://doi.org/10.5194/nhess-24-1381-2024, 2024
Short summary
Short summary
Current levels of coastal flood risk are projected to increase in coming decades due to various reasons, e.g. sea-level rise, land subsidence, and coastal urbanization: action is needed to minimize this future risk. We evaluate dykes and coastal levees, foreshore vegetation, zoning restrictions, and dry-proofing on a global scale to estimate what levels of risk reductions are possible. We demonstrate that there are several potential adaptation pathways forward for certain areas of the world.
Job C. M. Dullaart, Sanne Muis, Hans de Moel, Philip J. Ward, Dirk Eilander, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 23, 1847–1862, https://doi.org/10.5194/nhess-23-1847-2023, https://doi.org/10.5194/nhess-23-1847-2023, 2023
Short summary
Short summary
Coastal flooding is driven by storm surges and high tides and can be devastating. To gain an understanding of the threat posed by coastal flooding and to identify areas that are especially at risk, now and in the future, it is crucial to accurately model coastal inundation and assess the coastal flood hazard. Here, we present a global dataset with hydrographs that represent the typical evolution of an extreme sea level. These can be used to model coastal inundation more accurately.
Dirk Eilander, Anaïs Couasnon, Tim Leijnse, Hiroaki Ikeuchi, Dai Yamazaki, Sanne Muis, Job Dullaart, Arjen Haag, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 823–846, https://doi.org/10.5194/nhess-23-823-2023, https://doi.org/10.5194/nhess-23-823-2023, 2023
Short summary
Short summary
In coastal deltas, flooding can occur from interactions between coastal, riverine, and pluvial drivers, so-called compound flooding. Global models however ignore these interactions. We present a framework for automated and reproducible compound flood modeling anywhere globally and validate it for two historical events in Mozambique with good results. The analysis reveals differences in compound flood dynamics between both events related to the magnitude of and time lag between drivers.
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021, https://doi.org/10.5194/hess-25-5287-2021, 2021
Short summary
Short summary
Digital elevation models and derived flow directions are crucial to distributed hydrological modeling. As the spatial resolution of models is typically coarser than these data, we need methods to upscale flow direction data while preserving the river structure. We propose the Iterative Hydrography Upscaling (IHU) method and show it outperforms other often-applied methods. We publish the multi-resolution MERIT Hydro IHU hydrography dataset and the algorithm as part of the pyflwdir Python package.
Jerom P. M. Aerts, Steffi Uhlemann-Elmer, Dirk Eilander, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 3245–3260, https://doi.org/10.5194/nhess-20-3245-2020, https://doi.org/10.5194/nhess-20-3245-2020, 2020
Short summary
Short summary
We compare and analyse flood hazard maps from eight global flood models that represent the current state of the global flood modelling community. We apply our comparison to China as a case study, and for the first time, we include industry models, pluvial flooding, and flood protection standards. We find substantial variability between the flood hazard maps in the modelled inundated area and exposed gross domestic product (GDP) across multiple return periods and in expected annual exposed GDP.
Wiebke S. Jäger, Marleen C. de Ruiter, Timothy Tiggeloven, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 25, 2751–2769, https://doi.org/10.5194/nhess-25-2751-2025, https://doi.org/10.5194/nhess-25-2751-2025, 2025
Short summary
Short summary
Multiple hazards, occurring simultaneously or consecutively, can have more extreme impacts than single hazards. We examined the disaster records in the global emergency events database EM-DAT to better understand this phenomenon. We developed a method to identify such multi-hazards and analysed their reported impacts using statistics. Multi-hazards have accounted for a disproportionate number of the impacts, but there appear to be different archetypal patterns in which the impacts compound.
Lou Brett, Christopher J. White, Daniela I. V. Domeisen, Bart van den Hurk, Philip Ward, and Jakob Zscheischler
Nat. Hazards Earth Syst. Sci., 25, 2591–2611, https://doi.org/10.5194/nhess-25-2591-2025, https://doi.org/10.5194/nhess-25-2591-2025, 2025
Short summary
Short summary
Compound events, where multiple weather or climate hazards occur together, pose significant risks to both society and the environment. These events, like simultaneous wind and rain, can have more severe impacts than single hazards. Our review of compound event research from 2012–2022 reveals a rise in studies, especially on events that occur concurrently, hot and dry events, and compounding flooding. The review also highlights opportunities for research in the coming years.
Timothy Tiggeloven, Colin Raymond, Marleen C. de Ruiter, Jana Sillmann, Annegret H. Thieken, Sophie L. Buijs, Roxana Ciurean, Emma Cordier, Julia M. Crummy, Lydia Cumiskey, Kelley De Polt, Melanie Duncan, Davide M. Ferrario, Wiebke S. Jäger, Elco E. Koks, Nicole van Maanen, Heather J. Murdock, Jaroslav Mysiak, Sadhana Nirandjan, Benjamin Poschlod, Peter Priesmeier, Nivedita Sairam, Pia-Johanna Schweizer, Tristian R. Stolte, Marie-Luise Zenker, James E. Daniell, Alexander Fekete, Christian M. Geiß, Marc J. C. van den Homberg, Sirkku K. Juhola, Christian Kuhlicke, Karen Lebek, Robert Šakić Trogrlić, Stefan Schneiderbauer, Silvia Torresan, Cees J. van Westen, Judith N. Claassen, Bijan Khazai, Virginia Murray, Julius Schlumberger, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-2771, https://doi.org/10.5194/egusphere-2025-2771, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
Natural hazards like floods, earthquakes, and landslides are often interconnected which may create bigger problems than when they occur alone. We studied expert discussions from an international conference to understand how scientists and policymakers can better prepare for these multi-hazards and use new technologies to protect its communities while contributing to dialogues about future international agreements beyond the Sendai Framework and supporting global sustainability goals.
Nicole van Maanen, Marleen de Ruiter, Wiebke Jäger, Veronica Casartelli, Roxana Ciurean, Noemi Padron, Anne Sophie Daloz, David Geurts, Stefania Gottardo, Stefan Hochrainer-Stigler, Abel López Diez, Jaime Díaz Pacheco, Pedro Dorta Antequera, Tamara Febles Arévalo, Sara García González, Raúl Hernández-Martín, Carmen Alvarez-Albelo, Juan José Diaz-Hernandez, Lin Ma, Letizia Monteleone, Karina Reiter, Tristian Stolte, Robert Šakić Trogrlić, Silvia Torresan, Sharon Tatman, David Romero Manrique de Lara, Yeray Hernández González, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-3075, https://doi.org/10.5194/egusphere-2025-3075, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Disaster risk management faces growing challenges from multiple, changing hazards. Interviews with stakeholders in five European regions reveal that climate change, urban growth, and socio-economic shifts increase vulnerability and exposure. Measures to reduce one risk can worsen others, highlighting the need for better coordination. The study calls for flexible, context-specific strategies that connect scientific risk assessments with real-world decision-making.
Irene Benito, Jeroen C. J. H. Aerts, Philip J. Ward, Dirk Eilander, and Sanne Muis
Nat. Hazards Earth Syst. Sci., 25, 2287–2315, https://doi.org/10.5194/nhess-25-2287-2025, https://doi.org/10.5194/nhess-25-2287-2025, 2025
Short summary
Short summary
Global flood models are key to the mitigation of coastal flooding impacts, yet they still have limitations when providing actionable insights locally. We present a multiscale framework that couples dynamic water level and flood models and bridges the fully global and local modelling approaches. We apply it to three historical storms. Our findings reveal that the importance of model refinements varies based on the study area characteristics and the storm’s nature.
Huazhi Li, Robert A. Jane, Dirk Eilander, Alejandra R. Enríquez, Toon Haer, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-2993, https://doi.org/10.5194/egusphere-2025-2993, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We assess the likelihood of widespread compound flooding along the U.S. coastline. Using a large set of generated plausible events preserving observed dependence, we find that nearly half of compound floods on the West coast affect multiple sites. Such events are rarer on the East coast while most compound events affect single sites on the Gulf coast. Our results underscore the importance of including spatial dependence in compound flood risk assessment and can help in better risk management.
Nicole van Maanen, Joël J.-F. G. De Plaen, Timothy Tiggeloven, Maria Luisa Colmenares, Philip J. Ward, Paolo Scussolini, and Elco Koks
Nat. Hazards Earth Syst. Sci., 25, 2075–2080, https://doi.org/10.5194/nhess-25-2075-2025, https://doi.org/10.5194/nhess-25-2075-2025, 2025
Short summary
Short summary
Understanding coastal flood protection is vital for assessing risks from natural disasters and climate change. However, current global data on coastal flood protection are limited and based on simplified assumptions, leading to potential uncertainties in risk estimates. As a step in this direction, we propose a comprehensive dataset, COASTtal flood PROtection Standards within EUrope (COASTPROS-EU), which compiles coastal flood protection standards in Europe.
Lucas Terlinden-Ruhl, Anaïs Couasnon, Dirk Eilander, Gijs G. Hendrickx, Patricia Mares-Nasarre, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 25, 1353–1375, https://doi.org/10.5194/nhess-25-1353-2025, https://doi.org/10.5194/nhess-25-1353-2025, 2025
Short summary
Short summary
This study develops a conceptual framework that uses active learning to accelerate compound flood risk assessments. A case study of Charleston County shows that the framework achieves faster and more accurate risk quantification compared to the state-of-the-art. This win–win allows for an increase in the number of flooding parameters, which results in an 11.6 % difference in the expected annual damages. Therefore, this framework allows for more comprehensive compound flood risk assessments.
Julius Schlumberger, Tristian Stolte, Helena Margaret Garcia, Antonia Sebastian, Wiebke Jäger, Philip Ward, Marleen de Ruiter, Robert Šakić Trogrlić, Annegien Tijssen, and Mariana Madruga de Brito
EGUsphere, https://doi.org/10.5194/egusphere-2025-850, https://doi.org/10.5194/egusphere-2025-850, 2025
Short summary
Short summary
The risk flood of flood impacts is dynamic as society continuously responds to specific events or ongoing developments. We analyzed 28 studies that assess such dynamics of vulnerability. Most research uses surveys and basic statistics data, while integrated, flexible models are seldom used. The studies struggle to link specific events or developments to the observed changes. Our findings highlight needs and possible directions towards a better assessment of vulnerability dynamics.
Joshua Green, Ivan D. Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
Nat. Hazards Earth Syst. Sci., 25, 747–816, https://doi.org/10.5194/nhess-25-747-2025, https://doi.org/10.5194/nhess-25-747-2025, 2025
Short summary
Short summary
Compound flooding, involving the combination or successive occurrence of two or more flood drivers, can amplify flood impacts in coastal/estuarine regions. This paper reviews the practices, trends, methodologies, applications, and findings of coastal compound flooding literature at regional to global scales. We explore the types of compound flood events, their mechanistic processes, and the range of terminology. Lastly, this review highlights knowledge gaps and implications for future practices.
Tim H. J. Hermans, Chiheb Ben Hammouda, Simon Treu, Timothy Tiggeloven, Anaïs Couasnon, Julius J. M. Busecke, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2025-196, https://doi.org/10.5194/egusphere-2025-196, 2025
Short summary
Short summary
We studied the performance of different types of neural networks at predicting extreme storm surges. We found that that performance improves when during model training, events with a lower density are given a higher weight. Additionally, we found that the performance of especially convolutional neural networks approaches that of a state-of-the-art hydrodynamic model. This is promising for the application of neural networks to climate model simulations.
Sadhana Nirandjan, Elco E. Koks, Mengqi Ye, Raghav Pant, Kees C. H. Van Ginkel, Jeroen C. J. H. Aerts, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 24, 4341–4368, https://doi.org/10.5194/nhess-24-4341-2024, https://doi.org/10.5194/nhess-24-4341-2024, 2024
Short summary
Short summary
Critical infrastructures (CIs) are exposed to natural hazards, which may result in significant damage and burden society. Vulnerability is a key determinant for reducing these risks, yet crucial information is scattered in the literature. Our study reviews over 1510 fragility and vulnerability curves for CI assets, creating a unique publicly available physical vulnerability database that can be directly used for hazard risk assessments, including floods, earthquakes, windstorms, and landslides.
Christopher J. White, Mohammed Sarfaraz Gani Adnan, Marcello Arosio, Stephanie Buller, YoungHwa Cha, Roxana Ciurean, Julia M. Crummy, Melanie Duncan, Joel Gill, Claire Kennedy, Elisa Nobile, Lara Smale, and Philip J. Ward
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-178, https://doi.org/10.5194/nhess-2024-178, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
Indicators contain observable and measurable characteristics to understand the state of a concept or phenomenon and/or monitor it over time. There have been limited efforts to understand how indicators are being used in multi-hazard and multi-risk contexts. We find most of existing indicators do not include the interactions between hazards or risks. We propose 12 recommendations to enable the development and uptake of multi-hazard and multi-risk indicators.
Willem J. van Verseveld, Albrecht H. Weerts, Martijn Visser, Joost Buitink, Ruben O. Imhoff, Hélène Boisgontier, Laurène Bouaziz, Dirk Eilander, Mark Hegnauer, Corine ten Velden, and Bobby Russell
Geosci. Model Dev., 17, 3199–3234, https://doi.org/10.5194/gmd-17-3199-2024, https://doi.org/10.5194/gmd-17-3199-2024, 2024
Short summary
Short summary
We present the wflow_sbm distributed hydrological model, recently released by Deltares, as part of the Wflow.jl open-source modelling framework in the programming language Julia. Wflow_sbm has a fast runtime, making it suitable for large-scale modelling. Wflow_sbm models can be set a priori for any catchment with the Python tool HydroMT-Wflow based on globally available datasets, which results in satisfactory to good performance (without much tuning). We show this for a number of specific cases.
Eric Mortensen, Timothy Tiggeloven, Toon Haer, Bas van Bemmel, Dewi Le Bars, Sanne Muis, Dirk Eilander, Frederiek Sperna Weiland, Arno Bouwman, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 24, 1381–1400, https://doi.org/10.5194/nhess-24-1381-2024, https://doi.org/10.5194/nhess-24-1381-2024, 2024
Short summary
Short summary
Current levels of coastal flood risk are projected to increase in coming decades due to various reasons, e.g. sea-level rise, land subsidence, and coastal urbanization: action is needed to minimize this future risk. We evaluate dykes and coastal levees, foreshore vegetation, zoning restrictions, and dry-proofing on a global scale to estimate what levels of risk reductions are possible. We demonstrate that there are several potential adaptation pathways forward for certain areas of the world.
Marjanne J. Zander, Pety J. Viguurs, Frederiek C. Sperna Weiland, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-274, https://doi.org/10.5194/hess-2023-274, 2023
Manuscript not accepted for further review
Short summary
Short summary
Flash floods are damaging natural hazard which often occur in the European Alps. High resolution climate model output is combined with high resolution distributed hydrological models to model changes in flash flood frequency and intensity. Results show a similar flash flood frequency for autumn in the future, but a decrease in summer. However, the future discharge simulations indicate an increase in the flash flood severity in both summer and autumn leading to more severe flash flood impacts.
Hubert T. Samboko, Sten Schurer, Hubert H. G. Savenije, Hodson Makurira, Kawawa Banda, and Hessel Winsemius
Geosci. Instrum. Method. Data Syst., 12, 155–169, https://doi.org/10.5194/gi-12-155-2023, https://doi.org/10.5194/gi-12-155-2023, 2023
Short summary
Short summary
The study investigates how low-cost technology can be applied in data-scarce catchments to improve water resource management. More specifically, we investigate how drone technology can be combined with low-cost real-time kinematic positioning (RTK) global navigation satellite system (GNSS) equipment and subsequently applied to a 3D hydraulic model so as to generate more physically based rating curves.
Job C. M. Dullaart, Sanne Muis, Hans de Moel, Philip J. Ward, Dirk Eilander, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 23, 1847–1862, https://doi.org/10.5194/nhess-23-1847-2023, https://doi.org/10.5194/nhess-23-1847-2023, 2023
Short summary
Short summary
Coastal flooding is driven by storm surges and high tides and can be devastating. To gain an understanding of the threat posed by coastal flooding and to identify areas that are especially at risk, now and in the future, it is crucial to accurately model coastal inundation and assess the coastal flood hazard. Here, we present a global dataset with hydrographs that represent the typical evolution of an extreme sea level. These can be used to model coastal inundation more accurately.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Dirk Eilander, Anaïs Couasnon, Tim Leijnse, Hiroaki Ikeuchi, Dai Yamazaki, Sanne Muis, Job Dullaart, Arjen Haag, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 823–846, https://doi.org/10.5194/nhess-23-823-2023, https://doi.org/10.5194/nhess-23-823-2023, 2023
Short summary
Short summary
In coastal deltas, flooding can occur from interactions between coastal, riverine, and pluvial drivers, so-called compound flooding. Global models however ignore these interactions. We present a framework for automated and reproducible compound flood modeling anywhere globally and validate it for two historical events in Mozambique with good results. The analysis reveals differences in compound flood dynamics between both events related to the magnitude of and time lag between drivers.
Paolo Scussolini, Job Dullaart, Sanne Muis, Alessio Rovere, Pepijn Bakker, Dim Coumou, Hans Renssen, Philip J. Ward, and Jeroen C. J. H. Aerts
Clim. Past, 19, 141–157, https://doi.org/10.5194/cp-19-141-2023, https://doi.org/10.5194/cp-19-141-2023, 2023
Short summary
Short summary
We reconstruct sea level extremes due to storm surges in a past warmer climate. We employ a novel combination of paleoclimate modeling and global ocean hydrodynamic modeling. We find that during the Last Interglacial, about 127 000 years ago, seasonal sea level extremes were indeed significantly different – higher or lower – on long stretches of the global coast. These changes are associated with different patterns of atmospheric storminess linked with meridional shifts in wind bands.
Judith Uwihirwe, Alessia Riveros, Hellen Wanjala, Jaap Schellekens, Frederiek Sperna Weiland, Markus Hrachowitz, and Thom A. Bogaard
Nat. Hazards Earth Syst. Sci., 22, 3641–3661, https://doi.org/10.5194/nhess-22-3641-2022, https://doi.org/10.5194/nhess-22-3641-2022, 2022
Short summary
Short summary
This study compared gauge-based and satellite-based precipitation products. Similarly, satellite- and hydrological model-derived soil moisture was compared to in situ soil moisture and used in landslide hazard assessment and warning. The results reveal the cumulative 3 d rainfall from the NASA-GPM to be the most effective landslide trigger. The modelled antecedent soil moisture in the root zone was the most informative hydrological variable for landslide hazard assessment and warning in Rwanda.
Mar J. Zander, Pety J. Viguurs, Frederiek C. Sperna Weiland, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-207, https://doi.org/10.5194/hess-2022-207, 2022
Manuscript not accepted for further review
Short summary
Short summary
We perform a modelling study to research potential future changes in flash flood occurrence in the European Alps. We use new high-resolution numerical climate simulations, which can simulate the type of local, intense rainstorms which trigger flash floods, combined with high-resolution hydrological modelling. We find that flash floods would become less frequent in summers in our future climate scenario, with little change in autumns. However, the maximal severity would increase in both seasons.
Weihua Zhu, Kai Liu, Ming Wang, Philip J. Ward, and Elco E. Koks
Nat. Hazards Earth Syst. Sci., 22, 1519–1540, https://doi.org/10.5194/nhess-22-1519-2022, https://doi.org/10.5194/nhess-22-1519-2022, 2022
Short summary
Short summary
We present a simulation framework to analyse the system vulnerability and risk of the Chinese railway system to floods. To do so, we develop a method for generating flood events at both the national and river basin scale. Results show flood system vulnerability and risk of the railway system are spatially heterogeneous. The event-based approach shows how we can identify critical hotspots, taking the first steps in developing climate-resilient infrastructure.
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
Hubert T. Samboko, Sten Schurer, Hubert H. G. Savenije, Hodson Makurira, Kawawa Banda, and Hessel Winsemius
Geosci. Instrum. Method. Data Syst., 11, 1–23, https://doi.org/10.5194/gi-11-1-2022, https://doi.org/10.5194/gi-11-1-2022, 2022
Short summary
Short summary
The study was conducted along the Luangwa River in Zambia. It combines low-cost instruments such as UAVs and GPS kits to collect data for the purposes of water management. A novel technique which seamlessly merges the dry and wet bathymetry before application in a hydraulic model was applied. Successful implementation resulted in water authorities with small budgets being able to monitor flows safely and efficiently without significant compromise on accuracy.
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021, https://doi.org/10.5194/hess-25-5287-2021, 2021
Short summary
Short summary
Digital elevation models and derived flow directions are crucial to distributed hydrological modeling. As the spatial resolution of models is typically coarser than these data, we need methods to upscale flow direction data while preserving the river structure. We propose the Iterative Hydrography Upscaling (IHU) method and show it outperforms other often-applied methods. We publish the multi-resolution MERIT Hydro IHU hydrography dataset and the algorithm as part of the pyflwdir Python package.
Marleen Carolijn de Ruiter, Anaïs Couasnon, and Philip James Ward
Geosci. Commun., 4, 383–397, https://doi.org/10.5194/gc-4-383-2021, https://doi.org/10.5194/gc-4-383-2021, 2021
Short summary
Short summary
Many countries can get hit by different hazards, such as earthquakes and floods. Generally, measures and policies are aimed at decreasing the potential damages of one particular hazard type despite their potential of having unwanted effects on other hazard types. We designed a serious game that helps professionals to improve their understanding of these potential negative effects of measures and policies that reduce the impacts of disasters across many different hazard types.
Jerom P. M. Aerts, Steffi Uhlemann-Elmer, Dirk Eilander, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 3245–3260, https://doi.org/10.5194/nhess-20-3245-2020, https://doi.org/10.5194/nhess-20-3245-2020, 2020
Short summary
Short summary
We compare and analyse flood hazard maps from eight global flood models that represent the current state of the global flood modelling community. We apply our comparison to China as a case study, and for the first time, we include industry models, pluvial flooding, and flood protection standards. We find substantial variability between the flood hazard maps in the modelled inundated area and exposed gross domestic product (GDP) across multiple return periods and in expected annual exposed GDP.
Cited articles
Aas, K., Czado, C., Frigessi, A., and Bakken, H.: Pair-copula constructions of multiple dependence, Insur. Math. Econ., 44, 182–198, https://doi.org/10.1016/j.insmatheco.2007.02.001, 2009.
Allen, G. H. and Pavelsky, T. M.: Global extent of rivers and streams,
Science, 361, 585–588, https://doi.org/10.1126/science.aat0636, 2018.
Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial
formulation of the shallow water equations for efficient two-dimensional
flood inundation modelling, J. Hydrol., 387, 33–45,
https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010.
Bates, P. D., Quinn, N., Sampson, C., Smith, A., Wing, O., Sosa, J., Savage,
J., Olcese, G., Neal, J., Schumann, G., Giustarini, L., Coxon, G., Porter,
J. R., Amodeo, M. F., Chu, Z., Lewis-Gruss, S., Freeman, N. B., Houser, T.,
Delgado, M., Hamidi, A., Bolliger, I., McCusker, K., Emanuel, K., Ferreira,
C. M., Khalid, A., Haigh, I. D., Couasnon, A., Kopp, R., Hsiang, S., and
Krajewski, W. F.: Combined modeling of US fluvial, pluvial, and coastal
flood hazard under current and future climates, Water Resour. Res., 57,
e2020WR028673, https://doi.org/10.1029/2020wr028673, 2021.
Bevacqua, E., Maraun, D., Hobæk Haff, I., Widmann, M., and Vrac, M.: Multivariate statistical modelling of compound events via pair-copula constructions: analysis of floods in Ravenna (Italy), Hydrol. Earth Syst. Sci., 21, 2701–2723, https://doi.org/10.5194/hess-21-2701-2017, 2017.
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M.,
Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from
precipitation and storm surge in Europe under anthropogenic climate change,
Science Advances, 5, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531, 2019.
Bidlot, J.-R.: Present status of wave forecasting at ECMWF, in: Workshop on
ocean waves, ECMWF Workshop on Ocean Waves, Shinfield Park, Reading, RG2
9AX, UK, 25–27 June 2012, ECMWF, https://www.ecmwf.int/sites/default/files/elibrary/2012/8234-present-status-wave-forecasting-ecmwf.pdf (last access: 14 June 2023), 2012.
Bilskie, M. V. and Hagen, S. C.: Defining flood zone transitions in
low-gradient coastal regions, Geophys. Res. Lett., 45, 2761–2770,
https://doi.org/10.1002/2018gl077524, 2018.
Bloemendaal, N., Haigh, I. D., Moel, H. D., Muis, S., Haarsma, R. J., and
Aerts, J. C. J. H.: Generation of a global synthetic tropical cyclone hazard
dataset using STORM, Scientific Data, 7, 40,
https://doi.org/10.1038/s41597-020-0381-2, 2020.
Bondarenko, M., Kerr, D., Sorichetta, A., and Tatem, A.: Census/projection-disaggregated gridded population datasets, adjusted to match the corresponding UNPD 2020 estimates, for 51 countries across sub-Saharan Africa using building footprints, University of Southampton [data set], https://doi.org/10.5258/SOTON/WP00683, 2020.
Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar,
N.-E., Herold, M., and Fritz, S.: Copernicus Global Land Service: Land Cover
100m: collection 3: epoch 2015: Globe, Zenodo [data set], https://doi.org/10.5281/zenodo.3939038, 2020.
Camus, P., Haigh, I. D., Nasr, A. A., Wahl, T., Darby, S. E., and Nicholls, R. J.: Regional analysis of multivariate compound coastal flooding potential around Europe and environs: sensitivity analysis and spatial patterns, Nat. Hazards Earth Syst. Sci., 21, 2021–2040, https://doi.org/10.5194/nhess-21-2021-2021, 2021.
Couasnon, A., Eilander, D., Muis, S., Veldkamp, T. I. E., Haigh, I. D., Wahl, T., Winsemius, H. C., and Ward, P. J.: Measuring compound flood potential from river discharge and storm surge extremes at the global scale, Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, 2020.
Couasnon, A., Scussolini, P., Tran, T. V. T., Eilander, D., Muis, S., Wang,
H., Keesom, J., Dullaart, J., Xuan, Y., Nguyen, H. Q., Winsemius, H. C., and
Ward, P. J.: A flood risk framework capturing the seasonality of and
dependence between rainfall and sea levels – an application to Ho Chi Minh
City, Vietnam, Water Resour. Res., 58, e2021WR030002, https://doi.org/10.1029/2021wr030002, 2022.
Dullaart, J. C. M., Muis, S., Bloemendaal, N., Chertova, M. V., Couasnon,
A., and Aerts, J. C. J. H.: Accounting for tropical cyclones more than
doubles the global population exposed to low-probability coastal flooding,
Communications Earth & Environment, 2, 1–11,
https://doi.org/10.1038/s43247-021-00204-9, 2021.
Eilander, D.: DirkEilander/compound_floodrisk: v1 (Version v1), Zenodo [data set and code], https://doi.org/10.5281/zenodo.7896388, 2023.
Eilander, D., Couasnon, A., Leijnse, T., Ikeuchi, H., Yamazaki, D., Muis, S., Dullaart, J., Haag, A., Winsemius, H. C., and Ward, P. J.: A globally applicable framework for compound flood hazard modeling, Nat. Hazards Earth Syst. Sci., 23, 823–846, https://doi.org/10.5194/nhess-23-823-2023, 2023a.
Eilander, D., Boisgontier, H., Bouaziz, L. J. E., Buitink, J., Couasnon, A.,
Dalmijn, B., Hegnauer, M., de Jong, T., Loos, S., Marth, I., and van
Verseveld, W.: HydroMT: Automated and reproducible model building and
analysis, J. Open Source Softw., 8, 4897, https://doi.org/10.21105/joss.04897, 2023b.
Emerton, R., Cloke, H., Ficchi, A., Hawker, L., de Wit, S., Speight, L.,
Prudhomme, C., Rundell, P., West, R., Neal, J., Cuna, J., Harrigan, S.,
Titley, H., Magnusson, L., Pappenberger, F., Klingaman, N., and Stephens,
E.: Emergency flood bulletins for Cyclones Idai and Kenneth: A critical
evaluation of the use of global flood forecasts for international
humanitarian preparedness and response, Int. J. Disast. Risk Re., 50, 101811, https://doi.org/10.1016/j.ijdrr.2020.101811, 2020.
Gericke, O. J. and Smithers, J. C.: Review of methods used to estimate
catchment response time for the purpose of peak discharge estimation,
Hydrol. Sci. J., 59, 1935–1971, https://doi.org/10.1080/02626667.2013.866712, 2014.
Gori, A., Lin, N., and Xi, D.: Tropical cyclone compound flood hazard
assessment: From investigating drivers to quantifying extreme water levels,
Earths Future, 8, e2020EF001660, https://doi.org/10.1029/2020ef001660, 2020.
Gori, A., Lin, N., Xi, D., and Emanuel, K.: Tropical cyclone climatology
change greatly exacerbates US extreme rainfall–surge hazard, Nat. Clim.
Chang., 12, 171–178, https://doi.org/10.1038/s41558-021-01272-7, 2022.
Harrison, L. M., Coulthard, T. J., Robins, P. E., and Lewis, M. J.:
Sensitivity of Estuaries to Compound Flooding, Estuaries Coasts, 45,
1250–1269, https://doi.org/10.1007/s12237-021-00996-1, 2022.
Hendry, A., Haigh, I. D., Nicholls, R. J., Winter, H., Neal, R., Wahl, T., Joly-Laugel, A., and Darby, S. E.: Assessing the characteristics and drivers of compound flooding events around the UK coast, Hydrol. Earth Syst. Sci., 23, 3117–3139, https://doi.org/10.5194/hess-23-3117-2019, 2019.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Huizinga, J., De Moel, H., and Szewczyk, W.: Global flood depth-damage functions: Methodology and the database with guidelines, Joint Research Centre, Luxembourg (Luxembourg), 108 pp., https://doi.org/10.2760/16510, 2017.
Jaafar, H. H., Ahmad, F. A., and El Beyrouthy, N.: GCN250, new global
gridded curve numbers for hydrologic modeling and design, Sci. Data, 6, 145,
https://doi.org/10.1038/s41597-019-0155-x, 2019.
Kernkamp, H. W. J., Van Dam, A., Stelling, G. S., and de Goede, E. D.:
Efficient scheme for the shallow water equations on unstructured grids with
application to the Continental Shelf, Ocean Dynam., 61, 1175–1188,
https://doi.org/10.1007/s10236-011-0423-6, 2011.
Koks, E. E., Bočkarjova, M., de Moel, H., and Aerts, J. C. J. H.:
Integrated Direct and Indirect Flood Risk Modeling: Development and
Sensitivity Analysis, Risk Anal., 35, 882–900,
https://doi.org/10.1111/risa.12300, 2015.
Kupfer, S., Santamaria-Aguilar, S., van Niekerk, L., Lück-Vogel, M., and Vafeidis, A. T.: Investigating the interaction of waves and river discharge during compound flooding at Breede Estuary, South Africa, Nat. Hazards Earth Syst. Sci., 22, 187–205, https://doi.org/10.5194/nhess-22-187-2022, 2022.
Lamb, R., Keef, C., Tawn, J., Laeger, S., Meadowcroft, I., Surendran, S.,
Dunning, P., and Batstone, C.: A new method to assess the risk of local and
widespread flooding on rivers and coasts, J. Flood Risk Manag.,
3, 323–336, https://doi.org/10.1111/j.1753-318X.2010.01081.x, 2010.
Leijnse, T., van Ormondt, M., Nederhoff, K., and van Dongeren, A.: Modeling
compound flooding in coastal systems using a computationally efficient
reduced-physics solver: Including fluvial, pluvial, tidal, wind- and
wave-driven processes, Coast. Eng., 163, 103796,
https://doi.org/10.1016/j.coastaleng.2020.103796, 2021.
Lian, J. J., Xu, K., and Ma, C.: Joint impact of rainfall and tidal level on flood risk in a coastal city with a complex river network: a case study of Fuzhou City, China, Hydrol. Earth Syst. Sci., 17, 679–689, https://doi.org/10.5194/hess-17-679-2013, 2013.
Lucey, J. T. D. and Gallien, T. W.: Characterizing multivariate coastal flooding events in a semi-arid region: the implications of copula choice, sampling, and infrastructure, Nat. Hazards Earth Syst. Sci., 22, 2145–2167, https://doi.org/10.5194/nhess-22-2145-2022, 2022.
Marcos, M., Rohmer, J., Vousdoukas, M. I., Mentaschi, L., Le Cozannet, G.,
and Amores, A.: Increased extreme coastal water levels due to the combined
action of storm surges and wind waves, Geophys. Res. Lett., 46, 4356–4364,
https://doi.org/10.1029/2019gl082599, 2019.
Moftakhari, H., Schubert, J. E., AghaKouchak, A., Matthew, R. A., and
Sanders, B. F.: Linking statistical and hydrodynamic modeling for compound
flood hazard assessment in tidal channels and estuaries, Adv. Water Resour.,
128, 28–38, https://doi.org/10.1016/j.advwatres.2019.04.009, 2019.
Muis, S., Apecechea, M. I., Dullaart, J., de Lima Rego, J., Madsen, K. S.,
Su, J., Yan, K., and Verlaan, M.: A high-resolution global dataset of
extreme sea levels, tides, and storm surges, including future projections,
Front. Mar. Sci., 7, 263, https://doi.org/10.3389/fmars.2020.00263, 2020.
Mutua, F. M.: The use of the Akaike Information Criterion in the
identification of an optimum flood frequency model, Hydrol. Sci. J., 39,
235–244, https://doi.org/10.1080/02626669409492740, 1994.
Nagler, T. and Vatter, T.: pyvinecopulib, Zenodo [code], https://doi.org/10.5281/zenodo.5097393, 2021.
Nasr, A. A., Wahl, T., Rashid, M. M., Camus, P., and Haigh, I. D.: Assessing the dependence structure between oceanographic, fluvial, and pluvial flooding drivers along the United States coastline, Hydrol. Earth Syst. Sci., 25, 6203–6222, https://doi.org/10.5194/hess-25-6203-2021, 2021.
Neal, J., Hawker, L., Savage, J., Durand, M., Bates, P., and Sampson, C.:
Estimating river channel bathymetry in large scale flood inundation models,
Water Resour. Res., 57, e2020WR028301, https://doi.org/10.1029/2020wr028301, 2021.
Neumann, B., Vafeidis, A. T., Zimmermann, J., and Nicholls, R. J.: Future
coastal population growth and exposure to sea-level rise and coastal
flooding – A global assessment, PLoS One, 10, e0118571, https://doi.org/10.1371/journal.pone.0118571, 2015.
Olbert, A. I., Comer, J., Nash, S., and Hartnett, M.: High-resolution
multi-scale modelling of coastal flooding due to tides, storm surges and
rivers inflows. A Cork City example, Coast. Eng., 121, 278–296,
https://doi.org/10.1016/j.coastaleng.2016.12.006, 2017.
Sadegh, M., Moftakhari, H., Gupta, H. V., Ragno, E., Mazdiyasni, O.,
Sanders, B., Matthew, R., and AghaKouchak, A.: Multihazard scenarios for
analysis of compound extreme events, Geophys. Res. Lett., 45, 5470–5480,
https://doi.org/10.1029/2018gl077317, 2018.
Scussolini, P., Aerts, J. C. J. H., Jongman, B., Bouwer, L. M., Winsemius, H. C., de Moel, H., and Ward, P. J.: FLOPROS: an evolving global database of flood protection standards, Nat. Hazards Earth Syst. Sci., 16, 1049–1061, https://doi.org/10.5194/nhess-16-1049-2016, 2016.
Sebastian, A., Bader, D. J., Nederhoff, C. M., Leijnse, T. W. B., Bricker,
J. D., and Aarninkhof, S. G. J.: Hindcast of pluvial, fluvial, and coastal
flood damage in Houston, Texas during Hurricane Harvey (2017) using SFINCS,
Nat. Hazards, 109, 2343–2362, https://doi.org/10.1007/s11069-021-04922-3, 2021.
Serafin, K. A., Ruggiero, P., Parker, K., and Hill, D. F.: What's streamflow got to do with it? A probabilistic simulation of the competing oceanographic and fluvial processes driving extreme along-river water levels, Nat. Hazards Earth Syst. Sci., 19, 1415–1431, https://doi.org/10.5194/nhess-19-1415-2019, 2019.
Sirko, W., Kashubin, S., Ritter, M., Annkah, A., Bouchareb, Y. S. E.,
Dauphin, Y., Keysers, D., Neumann, M., Cisse, M., and Quinn, J.:
Continental-Scale Building Detection from High Resolution Satellite Imagery, arXiv [preprint], https://doi.org/10.48550/arXiv.2107.12283, 26 July 2021.
Slager, K., Burzel, A., Bos, E., de Bruijn, K., D., W., Winsemius H, Bouwer,
L., and van der Doef, M.: User Manual Delft-FIAT, Deltares, https://publicwiki.deltares.nl/display/DFIAT/Delft-FIAT+Home (last
access: 22 September 2019), 2016.
Te Chow, V., Maidment, D. R., and Mays, L. W.: Applied Hydrology,
McGraw-Hill, New York, 572 pp., ISBN 9780070108103, 1988.
Torres, J. M., Bass, B., Irza, N., Fang, Z., Proft, J., Dawson, C., Kiani,
M., and Bedient, P.: Characterizing the hydraulic interactions of hurricane
storm surge and rainfall–runoff for the Houston–Galveston region, Coast.
Eng., 106, 7–19, https://doi.org/10.1016/j.coastaleng.2015.09.004, 2015.
UNDRR: The Sendai Framework for Disaster Risk Reduction 2015–2030, United
Nations Office for Disaster Risk Reduction, 32 pp., https://www.preventionweb.net/files/43291_sendaiframeworkfordrren.pdf (last access: 14 June 2023), 2015.
UNDRR: Global Assessment Report on Disaster Risk Reduction 2019, United
Nations, 469 pp., ISBN 9789211320503, 2019.
UNDRR: Human Cost of Disasters: An Overview of the last 20 years
(2000–2019), 30 pp., https://www.undrr.org/publication/human-cost-disasters-overview-last-20-years-2000-2019 (last access: 14 June 2023), 2020.
UN OCHA: Daily Noon Briefing Highlights: Mozambique – Sudan, UN OCHA,
https://www.unocha.org/story/daily-noon-briefing-highlights-mozambique-sudan (last access: 14 June 2023), 25 January 2021.
UN OCHA: Cyclones Idai and Kenneth, UN OCHA,
https://reliefweb.int/report/mozambique/mozambique-tropical-cyclones-idai-and-kenneth-emergency-appeal-ndeg-mdrmz014-final-report (last access: 14 June 2023), 24 November 2022.
US Army Corps of Engineers: Coastal engineering manual, US Army Corps of
Engineers Washington, DC, 477 pp., 2002.
US SCS: National engineering handbook, section 4: hydrology, US Soil
Conservation Service, USDA, Washington, DC, https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=18393.wba (last access: 14 June 2023), 1965.
van Berchum, E. C., van Ledden, M., Timmermans, J. S., Kwakkel, J. H., and Jonkman, S. N.: Rapid flood risk screening model for compound flood events in Beira, Mozambique, Nat. Hazards Earth Syst. Sci., 20, 2633–2646, https://doi.org/10.5194/nhess-20-2633-2020, 2020.
Vousdoukas, M. I., Voukouvalas, E., Mentaschi, L., Dottori, F., Giardino, A., Bouziotas, D., Bianchi, A., Salamon, P., and Feyen, L.: Developments in large-scale coastal flood hazard mapping, Nat. Hazards Earth Syst. Sci., 16, 1841–1853, https://doi.org/10.5194/nhess-16-1841-2016, 2016.
Wagenaar, D. J., Dahm, R. J., Diermanse, F. L. M., Dias, W. P. S.,
Dissanayake, D. M. S. S., Vajja, H. P., Gehrels, J. C., and Bouwer, L. M.:
Evaluating adaptation measures for reducing flood risk: A case study in the
city of Colombo, Sri Lanka, Int. J. Disast. Risk Re., 37, 101162, https://doi.org/10.1016/j.ijdrr.2019.101162, 2019.
Wahl, T., Jain, S., Bender, J., Meyers, S. D., and Luther, M. E.: Increasing
risk of compound flooding from storm surge and rainfall for major US cities,
Nat. Clim. Chang., 5, 1–6, https://doi.org/10.1038/nclimate2736, 2015.
Ward, P. J., de Moel, H., and Aerts, J. C. J. H.: How are flood risk estimates affected by the choice of return-periods?, Nat. Hazards Earth Syst. Sci., 11, 3181–3195, https://doi.org/10.5194/nhess-11-3181-2011, 2011.
Ward, P. J., Jongman, B., Salamon, P., Simpson, A., Bates, P. D., De Groeve,
T., Muis, S., de Perez, E. C., Rudari, R., Trigg, M. A., and Winsemius, H.
C.: Usefulness and limitations of global flood risk models, Nat. Clim.
Chang., 5, 712–715, https://doi.org/10.1038/nclimate2742, 2015.
Ward, P. J., Jongman, B., Aerts, J. C. J. H., Bates, P. D., Botzen, W. J.
W., Diaz Loaiza, A., Hallegatte, S., Kind, J. M., Kwadijk, J., Scussolini,
P., and Winsemius, H. C.: A global framework for future costs and benefits
of river-flood protection in urban areas, Nat. Clim. Chang., 7, 642–646,
https://doi.org/10.1038/nclimate3350, 2017.
Ward, P. J., Couasnon, A., Eilander, D., Haigh, I. D., Hendry, A., Muis, S.,
Veldkamp, T. I. E., Winsemius, H. C., and Wahl, T.: Dependence between high
sea-level and high river discharge increases flood hazard in global deltas
and estuaries, Environ. Res. Lett., 13, 084012,
https://doi.org/10.1088/1748-9326/aad400, 2018.
Wing, O. E. J., Bates, P. D., Sampson, C. C., Smith, A. M., Johnson, K. A.,
and Erickson, T. A.: Validation of a 30 m resolution flood hazard model of
the conterminous United States, Water Resour. Res., 53, 7968–7986,
https://doi.org/10.1002/2017WR020917, 2017.
Winsemius, H. C., Aerts, J. C. J. H., van Beek, L. P. H., Bierkens, M. F.
P., Bouwman, A., Jongman, B., Kwadijk, J. C. J., Ligtvoet, W., Lucas, P. L.,
van Vuuren, D. P., and Ward, P. J.: Global drivers of future river flood
risk, Nat. Clim. Chang., 6, 381–385, https://doi.org/10.1038/nclimate2893, 2015.
Winter, B., Schneeberger, K., Förster, K., and Vorogushyn, S.: Event generation for probabilistic flood risk modelling: multi-site peak flow dependence model vs. weather-generator-based approach, Nat. Hazards Earth Syst. Sci., 20, 1689–1703, https://doi.org/10.5194/nhess-20-1689-2020, 2020.
WMO: WMO Atlas of Mortality and Economic Losses from Weather, Climate and
Water Extremes (1970–2019), World Meteorological Organization, ISBN 9789263112675, 2021.
Wu, W., Westra, S., and Leonard, M.: Estimating the probability of compound floods in estuarine regions, Hydrol. Earth Syst. Sci., 25, 2821–2841, https://doi.org/10.5194/hess-25-2821-2021, 2021.
Yamazaki, D., Kanae, S., Kim, H., and Oki, T.: A physically based
description of floodplain inundation dynamics in a global river routing
model, Water Resour. Res., 47, 1–21, https://doi.org/10.1029/2010WR009726, 2011.
Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and
Pavelsky, T. M.: MERIT hydro: A high-resolution global hydrography map based
on latest topography dataset, Water Resour. Res., 55, 5053–5073,
https://doi.org/10.1029/2019wr024873, 2019.
Zhao, F., Veldkamp, T. I. E., Frieler, K., Schewe, J., Ostberg, S., Willner,
S., Schauberger, B., Gosling, S. N., Schmied, H. M., Portmann, F. T., Leng,
G., Huang, M., Liu, X., Tang, Q., Hanasaki, N., Biemans, H., Gerten, D.,
Satoh, Y., Pokhrel, Y., Stacke, T., Ciais, P., Chang, J., Ducharne, A.,
Guimberteau, M., Wada, Y., Kim, H., and Yamazaki, D.: The critical role of
the routing scheme in simulating peak river discharge in global hydrological
models, Environ. Res. Lett., 12, 075003, https://doi.org/10.1088/1748-9326/aa7250, 2017.
Zheng, F., Westra, S., and Sisson, S. A.: Quantifying the dependence between
extreme rainfall and storm surge in the coastal zone, J. Hydrol., 505,
172–187, https://doi.org/10.1016/j.jhydrol.2013.09.054, 2013.
Zheng, F., Westra, S., Leonard, M., and Sisson, S. A.: Modeling dependence
between extreme rainfall and storm surge to estimate coastal flooding risk,
Water Resour. Res., 50, 2050–2071, https://doi.org/10.1002/2013WR014616, 2014.
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C.,
Horton, R. M., van den Hurk, B., AghaKouchak, A., Jézéquel, A.,
Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W., and
Vignotto, E.: A typology of compound weather and climate events, Nature
Reviews Earth & Environment, 1, 333–347,
https://doi.org/10.1038/s43017-020-0060-z, 2020.
Short summary
This study presents a framework for assessing compound flood risk using hydrodynamic, impact, and statistical modeling. A pilot in Mozambique shows the importance of accounting for compound events in risk assessments. We also show how the framework can be used to assess the effectiveness of different risk reduction measures. As the framework is based on global datasets and is largely automated, it can easily be applied in other areas for first-order assessments of compound flood risk.
This study presents a framework for assessing compound flood risk using hydrodynamic, impact,...
Altmetrics
Final-revised paper
Preprint