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Abstract. In low-lying coastal areas floods occur from (com-
binations of) fluvial, pluvial, and coastal drivers. If these
flood drivers are statistically dependent, their joint prob-
ability might be misrepresented if dependence is not ac-
counted for. However, few studies have examined flood risk
and risk reduction measures while accounting for so-called
compound flooding. We present a globally applicable frame-
work for compound flood risk assessments using combined
hydrodynamic, impact, and statistical modeling and apply
it to a case study in the Sofala province of Mozambique.
The framework broadly consists of three steps. First, a large
stochastic event set is derived from reanalysis data, taking
into account co-occurrence of and dependence between all
annual maximum flood drivers. Then, both flood hazard and
impact are simulated for different combinations of drivers at
non-flood and flood conditions. Finally, the impact of each
stochastic event is interpolated from the simulated events to
derive a complete flood risk profile. Our case study results
show that from all drivers, coastal flooding causes the largest
risk in the region despite a more widespread fluvial and plu-
vial flood hazard. Events with return periods longer than
25 years are more damaging when considering the observed
statistical dependence compared to independence, e.g., 12 %
for the 100-year return period. However, the total compound
flood risk in terms of expected annual damage is only 0.55 %
larger. This is explained by the fact that for frequent events,
which contribute most to the risk, limited physical interaction
between flood drivers is simulated. We also assess the effec-
tiveness of three measures in terms of risk reduction. For our

case, zoning based on the 2-year return period flood plain is
as effective as levees with a 10-year return period protection
level, while dry proofing up to 1 m does not reach the same
effectiveness. As the framework is based on global datasets
and is largely automated, it can easily be repeated for other
regions for first-order assessments of compound flood risk.
While the quality of the assessment will depend on the ac-
curacy of the global models and data, it can readily include
higher-quality (local) datasets where available to further im-
prove the assessment.

1 Introduction

Floods are associated with the majority and costliest of
recorded climate-related hazards over the past 50 years,
and these disasters disproportionately affect lower-income
economies (WMO, 2021). To achieve a substantial reduction
in the impact of floods it is key to better understand their risk
and invest in risk reduction measures (UNDRR, 2015, 2019).
Structural measures such as levees and dams, land use plan-
ning, and/or early warning systems in combination with shel-
ters and/or evacuation have proven effective in reducing the
impacts of these hazards (UNDRR, 2020; Ward et al., 2017).

Low-lying coastal deltas are especially prone to floods as
these areas face flooding from fluvial (discharge), coastal
(surge and waves), and pluvial (rainfall) drivers. If these
drivers co-occur, they can cause or exacerbate flooding and
are referred to as compound flood events (Wahl et al., 2015;
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Zscheischler et al., 2020). If statistically dependent, the joint
probability of these drivers might be misrepresented if de-
pendence is not accounted for (e.g., Ward et al., 2018). Fur-
thermore, physical interactions between these drivers modu-
late flood levels and are often nonlinear (Bilskie and Hagen,
2018; Serafin et al., 2019). Flood risk assessments in coastal
deltas should therefore account for both physical interactions
and the statistical dependence between flood drivers (Mof-
takhari et al., 2019). While flood risk assessments for univari-
ate flood drivers are well established and embedded in engi-
neering practices, extending these to multiple flood drivers is
a complex undertaking, and no generic guidelines exist (Mof-
takhari et al., 2019; Wu et al., 2021).

Many compound flood studies have either investigated the
statistical dependence between drivers or used hydrodynamic
models to assess the physical interactions between drivers,
while few have combined both aspects to examine extreme
flood levels (Serafin et al., 2019; Moftakhari et al., 2019;
Gori et al., 2020; Wu et al., 2021). Statistical compound
flood studies mostly focus on bivariate driver combinations,
for instance surge and discharge (Ward et al., 2018; Couas-
non et al., 2020; Hendry et al., 2019), surge and precipita-
tion (Wahl et al., 2015; Bevacqua et al., 2019; Zheng et al.,
2013), or surge and waves (Marcos et al., 2019). Few studies
have looked at the dependence of fluvial, coastal (surge and
waves), and rainfall drivers (Nasr et al., 2021; Camus et al.,
2021). Hydrodynamic compound flood analyses have mostly
been used for a limited number of events at local scales.
These studies have focused on interactions between storm
surge and discharge (Torres et al., 2015; Olbert et al., 2017;
Harrison et al., 2022) or wave setup and discharge (Kupfer et
al., 2022), for example to identify where multiple drivers in-
fluence water levels, the so-called “transition” zone (Bilskie
and Hagen, 2018).

Only a few studies have performed a compound flood risk
assessment using combined hydrodynamic, statistical, and
impact modeling (e.g., Lamb et al., 2010; Bates et al., 2021;
Couasnon et al., 2022). Furthermore, compound flood studies
that measure the effectiveness of flood risk reduction mea-
sures often use simplified flood risk assessments. Torres et
al. (2015) performed a feasibility study for a storm surge
barrier based on historical scenarios rather than the full risk
curve. Lian et al. (2013) assessed the performance of pumps
for a large range of return periods based on flood hazard only
and did not consider exposure or vulnerability. Van Berchum
et al. (2020) assessed multiple flood risk reduction measures
based on a full risk assessment but with a simplified hazard
model and under the assumption of statistically independent
flood drivers.

The objective of this study is therefore to introduce a glob-
ally applicable framework for integrated compound flood
risk assessments using combined hydrodynamic, impact, and
statistical modeling and apply it to a case study to evaluate
the flood risk and effectiveness of different risk reduction
measures. Compared to earlier compound flood risk stud-

ies, this study provides three advancements. First, it goes be-
yond compound risk modeling and includes the effectiveness
of different adaptation measures. Second, it assesses com-
pound flood risk with a generic approach that is suitable
for more than two drivers. Third, the approach is based on
global datasets, methods, and models, building on the glob-
ally applicable framework for compound flood hazard mod-
eling from Eilander et al. (2023a), which makes it globally
applicable.

2 Methods

The globally applicable compound flood risk framework is
shown in Fig. 1, with each of the individual components
further discussed in this section as well as a brief introduc-
tion to the case study (Sect. 2.1). In order to model com-
pound flood risk, five main steps are performed: univariate
extreme value analysis to derive the marginal distributions
(Sect. 2.2); flood hazard modeling using a two-dimensional
hydrodynamic model for all combinations of one normal
(non-extreme) and six extreme univariate conditions (2-, 5-,
10-, 50-, 100-, and 500-year return values) for all drivers
(Sect. 2.3); flood impact modeling by combining the sim-
ulated flood hazard with exposure and vulnerability data
(Sect. 2.4); multivariate probabilistic modeling to derive a
large stochastic event set accounting for the joint magnitude
and temporal co-occurrence of extremes (Sect. 2.5); and fi-
nally flood risk modeling combining the stochastic event set
and simulated flood impacts for a base scenario and three risk
reduction scenarios (Sect. 2.6).

2.1 Case study

We selected the Sofala province of Mozambique as our case
study area. The area has recently seen two compound flood
events from tropical cyclones, namely Idai in March 2019
and Eloise in January 2021, which both had a large im-
pact on the area (UN OCHA, 2022, 2021). Furthermore, the
proposed flood hazard framework was previously validated
for this area for two historical flood events (Eilander et al.,
2023a). In the absence of better local data and models, global
models have been shown to be useful in supporting risk man-
agement in data-scarce areas (Ward et al., 2015), for instance
for post-disaster response in this area by providing bulletins
with flood impact forecasts from global models (Emerton et
al., 2020). The largest city in the Sofala province is Beira,
with more than 500 000 inhabitants and a large port connect-
ing the hinterland with the Indian Ocean. While the city it-
self is mainly threatened by coastal and pluvial flooding, the
deltas of the Pungwe and Buzi rivers are also susceptible to
fluvial flooding (Emerton et al., 2020; van Berchum et al.,
2020).
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Figure 1. Schematic of the globally applicable compound flood risk framework.

2.2 Univariate extreme value analysis

To simulate extreme flood events beyond what has been ob-
served in historical time series we obtain extreme value dis-
tributions for each driver independently. Unless stated dif-
ferently, marginal extreme values for each driver are based
on extreme values distributions fitted to annual maximum
events. Annual maxima are selected from a time series of
42 years based on the hydrological year commencing in Au-
gust with a minimal 14 d separation between two events to
ensure independent and identically distributed events. The
marginal extreme value distributions are derived by fitting
the Gumbel and general extreme value (GEV) distributions
to the sampled annual maximum peaks using the L-moment
method. The best fit is selected based on the minimum
Akaike information criterion (AIC) (Mutua, 1994). For each
flood driver, the time series is shown in Fig. A1, the fitted dis-
tribution is shown in Fig. A2, and the return values are listed
in Table A1. A detailed description of each flood driver and
its marginal extreme value distribution is provided in the fol-
lowing subsections.

2.2.1 Discharge

Daily river discharges are simulated with the hydrodynamic
CaMa-Flood river routing model version 4.0.1 (Yamazaki et
al., 2011). CaMa-Flood is selected as to our knowledge it is
the only global river routing model with an explicit repre-
sentation of floodplains, which is important for simulating
high-discharge events (Zhao et al., 2017). CaMa-Flood uses
a one-dimensional river schematization at a ∼ 10 km resolu-
tion to simulate the propagation of discharge based on the lo-
cal inertial equations (Bates et al., 2010). The model is forced
with runoff data from the ERA5 reanalysis (Hersbach et al.,

2020). Time series for the Pungwe and Buzi rivers are ex-
tracted at the boundary of the study region. Other tributaries
to the Pungwe at the boundary of the study region are rela-
tively small and ignored in this study.

2.2.2 Total sea levels

Total nearshore water levels consist of several components,
namely astronomical tide, storm surge, and wave setup. The
tide and surge components are obtained from the Coastal
Dataset for the Evaluation of Climate Impact (CoDEC)
(Muis et al., 2020). These components were simulated with
the Global Tide and Surge Model (GTSM) version 3.0 (Muis
et al., 2020), which is based on the Delft3D Flexible Mesh
hydrodynamic model software (Kernkamp et al., 2011).
Hourly time series of significant height of wind waves (Hs)
are extracted at GTSM output locations from the 30 arcmin
ERA5 dataset (Hersbach et al., 2020; Bidlot, 2012). The
wave setup component is estimated based on 0.2Hs, which
is an often used approximation for (large-scale) studies (US
Army Corps of Engineers, 2002; Vousdoukas et al., 2016;
Camus et al., 2021). Time series of total water level (Htwl)
are derived by combining the GTSM tide and storm surge
components (Hst) with the wave setup component: Htwl =

Hst+ 0.2Hs, where Hs is linearly interpolated to 10 min in-
tervals to match the GTSM temporal resolution.

To represent extreme values of tropical cyclone events, the
marginal distribution for storm surge is based on a combi-
nation of the CoDEC reanalysis data with the COAST-RP
dataset (Dullaart et al., 2021). The COAST-RP dataset is
based on GTSM storm surge simulations forced with wind
and pressure from a synthetic dataset of 3000 years of tropi-
cal cyclone activity (Bloemendaal et al., 2020). The marginal
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distribution of surge from non-tropical-cyclone events is fit-
ted to the annual maximum events from the CoDEC dataset
where we filter out tropical cyclones, whereas for surge from
tropical cyclone events we use the empirical marginal dis-
tribution based on the COAST-RP simulations. The distribu-
tions are combined by taking the inverse of the sum of the
yearly exceedance frequency of both distributions, similar to
Dullaart et al. (2021) but for storm surge instead of com-
bined storm surge and tide levels. The marginal distribution
of total sea levels is based on the empirical distribution of ex-
treme total sea level events from the stochastic event set (see
Sect. 2.3).

2.2.3 Rainfall

Hourly rainfall times series are derived by spatially averaging
ERA5 precipitation reanalysis data over the case study area.
We derive extreme values at different durations to construct
intensity–duration–frequency (IDF) curves. Annual maxi-
mum rainfall intensities are derived for durations of 1, 2, 3,
6, 12, and 24 h. For each duration the Gumbel extreme value
distribution is fitted using the L-moment method.

2.3 Flood hazard modeling

A two-dimensional hydrodynamic SFINCS (Super-Fast IN-
undation of CoastS) model is automatically set up with the
globally applicable compound flood hazard framework as
presented in Eilander et al. (2023a). SFINCS is selected as
it is designed to efficiently simulate overland flow from com-
pound flooding at limited computation costs and with good
accuracy (Leijnse et al., 2021; Sebastian et al., 2021) and has
been validated for two historical events for this case study
region (Eilander et al., 2023a). Using this setup, we derive a
maximum flood depth map for all combinations.

2.3.1 Static model layers

The SFINCS model schematization has three input maps: to-
pography, Manning’s roughness, and infiltration; the setup
of each map is briefly described below. The grid is set up at
100 m in the UTM zone 36S projection.

– The topography map is based on MERIT Hydro v1.0
(Yamazaki et al., 2019), which is reprojected using bi-
linear interpolation. As MERIT Hydro elevation data do
not represent the bed level of river channels, the riverbed
levels are computed per river segment of∼ 5 km using a
gradually varying flow (GVF) solver based on the com-
mon assumption that the river should convey a 2-year
return period discharge without flooding (Neal et al.,
2021). Besides discharge, the GVF requires a bankfull
water surface profile, river width, and Manning rough-
ness. We first create a mask of river cells based on a
combination of cells with an upstream area threshold of
25 km2 and the 30 m resolution permanent water mask

from the Global River Widths from Landsat (GRWL)
dataset (Allen and Pavelsky, 2018). Riverbank cells are
based on all cells adjacent to any river cell. Per segment
a low percentile of the height above the nearest drain
(HAND) of riverbank cells is used to derive the bank-
full elevation. This elevation is used to approximate the
bankfull water surface profile in the GVF. The segment
average width is measured as the area of the river cells
per segment divided by its length. A spatially uniform
Manning roughness value of 0.03 m−1/3 s is used. The
initial riverbed level is estimated using Manning’s equa-
tion, and the final bed level is computed by two itera-
tions where the riverbed level is updated based on the
difference between the GVF simulated and observed
water surface profile similar to Neal et al. (2021). The
river depth (relative to the bank-full height) is kept con-
stant for the estuarine part of the river, which is identi-
fied based on a minimum width convergence rate thresh-
old.

– The Manning roughness map is based on a spatially
uniform value for river cells (0.03 m−1/3 s) and spa-
tially varying values for land cells based on the Coper-
nicus Global Land Service (CGLS) dynamic global
Land Cover at 100 m spatial resolution (CGLS-LC100)
(Buchhorn et al., 2020), where the same river mask is
used as for the elevation map. These Manning rough-
ness values are based on Te Chow et al. (1988).

– The infiltration scheme implemented in SFINCS is
based on the soil conservation service curve number
(SCS-CN) method (US SCS, 1965). The method re-
quires a map of potential maximum soil moisture re-
tention to be initialized, which is empirically estimated
based on soil type, land cover, and antecedent moisture
conditions. This map is based on the 250 m spatial res-
olution Global Curve Number GCN250 dataset (Jaafar
et al., 2019).

2.3.2 Dynamic boundary conditions

To simulate a wide range of plausible compound flood
events, we construct model boundary conditions from com-
binations of (extreme) flood drivers based on the marginal
extreme value distribution (Sect. 2.2), a constant hydrograph
shape, and a constant lag time between flood drivers (see be-
low). Each event is defined by the following four boundary
conditions: discharge at the Pungwe River, discharge at the
Buzi River, rainfall over the model area, and total sea levels
(see Fig. 2). The latter represents the combined wind setup
and storm surge flood drivers, linearly combined with the
astronomical tide to obtain total sea levels. Dynamic water
level boundary conditions are set to all coastline cells, and
discharge boundary points are set at those locations where
the Buzi and Pungwe rivers enter the model domain, whereas
rainfall is applied to the entire model domain (see Fig. 2). For
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each driver, we derive one normal (non-extreme) condition
and six extreme univariate conditions (2-, 5-, 10-, 50-, 100-,
and 500-year return values). All combinations of normal and
extreme boundary conditions yield a set of 2401 events.

– The discharge hydrograph shape is derived by aligning
normalized annual maximum hydrographs with a dura-
tion of 14 d centered around the peak and subsequently
averaging them. For extreme conditions, the normal-
ized hydrograph is scaled with the return level as de-
rived from the extreme value distribution. For normal
(non-extreme) conditions, the normalized hydrograph is
scaled such that the mean discharge equals that of the
mean wet season (November to April) discharge (see
Fig. A3).

– The hydrograph shape for total sea levels is constructed
by superimposing a fixed tidal component based on the
mean high-water spring tide and a normalized non-tidal
(surge and wave setup) component, which is scaled such
that the total water level peak equals the extreme total
sea level. The non-tidal hydrograph component is based
on annual maximum peaks from superimposed storm
surge and wave setup time series with a duration of 14 d
centered around the peak. The peaks are normalized and
“horizontally averaged” such that the hydrograph rep-
resents the mean normalized storm magnitude for each
duration (see Fig. A3).

– The rainfall hyetographs are derived from the IDF
curves (Sect. 2.2.3) using the alternating block method.
Using this method, events with a 24 h duration and an
hourly temporal resolution were constructed such that
the extreme values at all durations are matched (see
Fig. A3). The duration is based on the approximate re-
sponse time of the small tributaries based on the Soil
Conservation Service (SCS) time to concentration ap-
proach (Gericke and Smithers, 2014). For non-extreme
rainfall conditions, the model is forced without rainfall.

– The lag time between flood drivers is calculated relative
to the discharge at the Buzi River since it is the main
flood driver in the area. For this purpose, the 10 min time
series of combined storm surge and hourly wave setup
are resampled to daily maxima and the hourly rainfall
to daily average rainfall. The relative lag time is found
based on the maximum cross correlation for lag times
between −10 and +10 d and are shown in Table 1. This
range is only chosen to calculate the cross-correlation
between the drivers and decreases as expected towards
the boundaries of the range. The rainfall, surge, and
wave setup daily maxima tend to occur a few days be-
fore high discharges on the Buzi River, while the dis-
charge peak on the Pungwe tends to occur 1 d after. We
also test the sensitivity of the framework to the observed
lag time by comparing the simulated risk with an addi-

Table 1. Relative lag time between the Buzi peak discharge and
other flood drivers based on maximum cross correlation.

Flood driver Relative lag time to Pearson
Buzi peak discharge (d) rho (–)

Discharge Pungwe +1 0.64
Rainfall −3 0.53
Storm surge −3 0.19
Wave setup −3 0.12

tional scenario where we assume zero lag time between
the peaks of all drivers.

2.4 Flood impact modeling

For each event in the model event set, flood impact is de-
rived using the Delft-FIAT flood impact model (Slager et
al., 2016). This step provides a response surface between the
magnitude of the flood drivers and the impact obtained for
each location of the case study area. This model combines
the hazard maps with socioeconomic data on exposure and
vulnerability to calculate distributed flood impacts per event.
Exposure is here defined by assets and people in the flood-
plain and the vulnerability as the susceptibility of these as-
sets and people to flooding. Hazard maps are derived as the
maximum flood depth from the hydrodynamic simulations.
As limited flooding is simulated in the simulation with only
non-extreme flood drivers, which does not occur in reality,
all hazard maps are bias-corrected with the flood depths of
this simulation. This model bias in the hazard maps is likely
due to inaccuracies in the absolute coastal elevation and river
bathymetry. Exposure maps are automatically prepared at the
same resolution as the hazard maps from global data sources
using HydroMT (Eilander et al., 2023b). This procedure and
the relevant datasets are described below.

We calculate impact in terms of damage and people af-
fected. The potential damage is estimated per building and
based on a country-specific potential damage per person mul-
tiplied by the number of residents per building. The country-
specific damage per person is based on residential damage
from Huizinga et al. (2017) and additionally accounts for
direct non-residential damage (× 2.0) and indirect damage
(× 1.2) using multiplication factors based on various stud-
ies (Wagenaar et al., 2019; Koks et al., 2015). The number of
residents per building is obtained by downscaling the gridded
population count dataset from WorldPop 2020 UN adjusted
data (Bondarenko et al., 2020) based on the Google Open
Buildings building footprints dataset (Sirko et al., 2021).
The latter is preprocessed by rasterizing objects with an ac-
curacy larger than 0.7 at a 10 m spatial resolution. The re-
sulting potential building damage and population counts are
shown in Fig. 3. The vulnerability is simulated based on a
depth–damage function that provides the percentual poten-
tial damage as a function of the water depth. Here we use
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Figure 2. SFINCS model elevation map with the locations of the discharge and water level boundary (bnd) conditions.

a depth–damage function based on a weighted average of
depth–damage functions for different types of buildings from
Huizinga et al. (2017). We assume no damage to buildings
for water depths smaller than 15 cm, similar to other flood
studies (e.g., Wing et al., 2017). The same threshold is used
to determine the number of affected people from an event.

2.5 Multivariate probabilistic modeling

Different multivariate statistical approaches have been ap-
plied for hydrodynamic flood risk assessments but typically
with only two flood drivers (Moftakhari et al., 2019; Bates
et al., 2021; Wu et al., 2021). In this case study, we con-
sider five flood drivers: discharge at the Buzi and Pungwe
rivers, rainfall, storm surge, and wind setup. We therefore use
the approach by Couasnon et al. (2022), in which the joint
magnitude and temporal co-occurrence of extremes are sim-
ulated separately. The approach consists of four steps. First,

we fit marginal distributions to annual maximum events of
each driver (Sect. 2.2). Second, we fit a vine copula to the
annual maxima of each driver to model their annual joint de-
pendence. Third, we define the rate at which different combi-
nations of annual maximum drivers co-occur within a given
time window. Finally, we sample from the copula model and
use the marginal distributions and the co-occurrence rate to
generate the equivalent of 30 000 years of events. For the de-
pendence and co-occurrence analysis, we extend the CoDEC
dataset of tide and surge levels with additional simulations
to cover the recent extreme events of Idai (2019) and Eloise
(2021) (Eilander et al., 2023a). All flood drivers are forced
with the same ERA5 meteorological reanalysis, hence pro-
viding a coherent dataset for this analysis.

– Joint dependence of annual maxima. We use pair cop-
ula constructions (PCCs), also called vine copulas, to
model the joint distribution of annual maxima of all
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Figure 3. Estimated population count (a) and building value (b) for the case study area.

drivers because they provide a highly flexible way
to model multivariate dependencies. Vine copulas use
the bivariate copula as building blocks to character-
ize the n-dimensional probability density function and
a given structure to define the order in which these
building blocks are assembled. More specifically, the
n-dimensional copula density is calculated as the prod-
uct of n(n−1)/2 bivariate (conditional) copulas (Bevac-
qua et al., 2017; Aas et al., 2009). From all the possible
mathematically valid decompositions, we select the di-
mensional vine structure that minimizes the AIC. Each
bivariate copula is selected from a set of 10 parametric
copula models from the elliptical (Gaussian, Student t),
Archimedean (Clayton, Gumbel, Frank, Joe), and BB
(BB1, BB6, BB7, BB8) families, as well as the inde-
pendence copula. This ensures that complex behavior,
including upper-tail dependence, are properly captured,
and modeled. We fitted a vine copula to the time se-
ries of annual maxima using the pyvinecopulib package
in Python (Nagler and Vatter, 2021). The selected vine
copula is shown in Table 2.

– Co-occurring annual maxima. The rate of co-occurring
annual maxima is obtained from the date of observed
annual maxima for all drivers. We assume that annual
maxima are co-occurring if they occur within 5 d for
discharge drivers and 2 d for rainfall and coastal drivers
to account for the different durations of the extreme
events. We calculate the number of days between sub-

sequent annual maxima of all drivers and group annual
maxima that are co-occurring. If annual maxima of two
drivers occur within the set maximum time lag, these are
grouped into one event. If the time between two subse-
quent annual maxima is larger than the set maximum
time lag, these are modeled as two independent events.
Hence, events with single and multiple annual maxima
are obtained. This defines the distribution of the differ-
ent combinations of co-occurring annual maxima in any
given year.

– Stochastic event set. To generate the equivalent of
30 000 years of events, we first use the fitted vine cop-
ula to simulate 30 000 realizations of joint annual max-
ima. We then combine this with the distribution of co-
occurring combinations of annual maxima to create a
stochastic event set. In years when all drivers co-occur
this leads to a single event, but in most years, we simu-
late multiple events for which at least one driver is ex-
treme. To derive total water levels, tide, surge, and wave
setup are linearly combined. Values of non-extreme
drivers are based on a random sample from daily max-
imum values below the expected annual return value
and a random sample of daily high-tide values. The
simulated pairs of annual maxima drivers are shown in
Fig. A4.
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Table 2. Representation of the fitted five-dimensional vine cop-
ula for p (rainfall), qb (Buzi discharge), qp (Pungwe discharge), s
(surge), and w (waves). Each edge represents a pair-copula density,
which is also shown in Fig. 4.

Tree Edge Copula model

1 p, qb Gaussian
qb, qp Frank
qp, s BB7
s, w Joe

2 p, qp | qb Joe 180◦

qb, s | qp Independence
qp, w | s Independence

3 p, s | qb, qp Independence
qb, w | qp, s Independence

4 p, w | qb, qp, s Student

2.6 Flood risk and risk reduction modeling

Flood risk is based on the product of exposure, vulnerabil-
ity, and hazard over a range of exceedance probabilities. The
risk is calculated from the empirical exceedance probability
for annual damage from the stochastic event set (Sect. 2.5).
For each event we derive the flood impact by linear inter-
polation of the simulated impacts based on its return values.
We calculate the risk in terms of expected annual damage
(EAD) and expected annual affected population (EAAP) as
the exceedance probability integral of the flood impact using
trapezoidal integration, i.e., the area under the flood impact
versus exceedance probability curve (e.g., Ward et al., 2011).

Flood risk is calculated for a base scenario and three sce-
narios with risk reduction measures: levees, spatial zoning,
and dry-proofing of buildings at three different protection
levels. All risk reduction measures are implemented in the
flood impact modeling as described below.

– Levees. Current flood protection standards are estimated
to be around a 2-year return level with the FLOPROS
modeling approach (Scussolini et al., 2016). In this sce-
nario we simulate levees with a protection standard at
a 5-, 10-, and 50-year return level. No flooding occurs
for fluvial or coastal drivers below this level, and above
this level we assume complete dike failure. The mea-
sure is implemented by correcting the flood levels for
scenarios below the protection level. In compound sce-
narios with rainfall, a minimum flood depth based on
the return level of the univariate scenario with the same
rainfall return level is maintained.

– Spatial Zoning. In this scenario exposure (building and
inhabitants) within a spatial zone is relocated to an area
that is not affected by flooding or made completely flood
proof. The spatial zone is defined as the area that is af-
fected (i.e., where the flood depth is larger than 15 cm)

in the base scenario at a 2-, 5-, and 10-year return pe-
riod. This is implemented by removing all exposure
from this area in the impact model.

– Dry-proofing buildings. In this scenario flood impact
starts at a flood depth larger than the dry proof height
of 50, 75, and 100 cm instead of the 15 cm in the base
scenario. This is implemented by setting the percentual
damage of the vulnerability (depth–damage) functions
to zero for flood depths smaller than the dry proof
height.

3 Results and discussion

3.1 Flood drivers

In this section we present the observed dependence and co-
occurrence between all flood drivers. Figure 4 shows the pair-
wise joint annual maxima, the conditional Kendall’s tau cor-
relation coefficient, and fitted copula. The joint annual max-
ima that co-occur with other extremes are highlighted in or-
ange. Each pair is conditioned based on the variables plotted
in the panels above as indicated in the top left of each panel.
For 6 out of the 10 pairs of drivers, a significant conditional
dependence is found. The strongest dependence is found be-
tween the discharge in both rivers and between discharge in
the Pungwe River and rainfall (τ = 0.43), followed by de-
pendence between surge and wave setup (τ = 0.39). Figure 5
shows the distribution of single and compound annual maxi-
mum events. In total 141 events are found in 42 years during
which at least one driver is extreme. From these events, 45
have more than one extreme flood driver, and these events
have a maximum duration of 7 d. During three events (1986,
1992, and 2019) all five drivers co-occurred, one of those
instances being during Tropical Cyclone Idai in 2019. The
number of events increases to 160 (36 compound) if we
decrease the maximum time lags between consecutive an-
nual maxima to 2 d for all drivers, while it decreases to 139
(46 compound) if we increase these time lags to 5 d for all
drivers.

3.2 Flood hazard

In this section we discuss the flood hazard based on the
100-year univariate and compound event under the assump-
tion of full statistical dependence (i.e., all 100-year flood
drivers co-occur). Figure 6 shows the pluvial, coastal (com-
bined surge and waves), and Buzi and Pungwe fluvial flood
maps. While the pluvial flooding is most widespread, the
flood depths are the smallest among the four univariate haz-
ards. Coastal flooding, on the other hand, is the most lim-
ited in space but does hit the city of Beira. The fluvial flood
maps for both rivers show large spatial extents and large wa-
ter depths; this is especially the case for the Buzi River flood
map where the discharge extremes are the largest. Similar
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Figure 4. Conditional dependence between pairs of annual maxima (AM) represented by a vine copula structure. The dots indicate single
(black) or co-occurring (orange) AM events. The background indicates the probability density based on a sample drawn from the vine copula
and is colored green for independent and blue for dependent flood driver pairs.

Figure 5. Distribution of single (black) and compound (orange)
events sorted based on occurrence frequency, where the dots indi-
cate the flood driver combinations.

patterns are observed for other return periods. In the left
panel of Fig. 7, a compound flood hazard map is shown
for the event where the 100-year conditions of all drivers
co-occur, i.e., the full dependence event. The difference in
flood depth between this full dependence compound 100-

year flood hazard map and the maximum of each univari-
ate 100-year flood hazard map shows where physical inter-
actions between the drivers modulate the flood depth (see
right panel in Fig. 7). In most places the interactions are rel-
atively small compared to the flood depth. In terms of ex-
tent, the largest interactions are between the pluvial and flu-
vial flood drivers. In terms of flood depth, the largest interac-
tions are between the coastal and fluvial drivers. The coastal
and fluvial drivers cause the largest increase in flood depths
around the upstream end of the Pungwe estuary. Interactions
between pluvial and coastal drivers also increase the flood
depth with ∼ 20 cm near Beira. Around the mouth of the
Buzi estuary we find that the interactions cause a decrease in
flood depth, while further upstream around the town of Buzi
they cause an increase in flood depths. The water levels in
the most downstream section of the Buzi River are higher in
the compound scenario compared to the 100-year discharge
scenario due to backwater effects. However, compared to the
100-year coastal scenario, water levels in the compound sce-
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nario are lower, as this river section changes from coastal-
dominated to discharge-dominated. During these high-river-
flow conditions, a lower volume of coastal water enters the
river mouth. Further upstream, the water levels are always
discharge-dominated and the water levels are larger in com-
pound scenarios compared to all single driver scenarios due
to backwater effects. This backwater effect causes water lev-
els to increase more and over a larger area if the peaks of the
flood drivers at the boundary happen with zero time lags in-
stead of with the observed time lags, especially in the Buzi
River but also in the Pungwe River (see Fig. A5).

3.3 Flood risk

In this section we compare flood risk from univariate flood
drivers and compound flood drivers under different assump-
tions of statistical dependence. The left panel of Fig. 8 shows
the flood risk profiles, i.e., the flood impact as a function of
the return period, for each univariate flood driver. The uni-
variate risk profiles show that coastal flooding causes the
largest risk with an EAD of USD 40.53 million. This is due
to the relatively large exposure in coastal areas. The risk
curve also shows the steepest incline for events beyond the
100-year return period. This is due to the heavy tail of the
marginal distribution for surge-related to tropical cyclone ac-
tivity. Fluvial flooding of the Buzi is more severe in terms
of flood depth and extent, but as its floodplains contain less
exposure, the EAD is lower, at USD 5.38 million. This is
similar for fluvial flooding of the Pungwe, where the EAD
is USD 3.06 million because of even less exposure. Pluvial
flooding does not cause much damage for events up to a 10-
year return period but rapidly increases for more extreme
events. The low damage for events up to a 10-year return
period is mostly related to the flood depth threshold of 15 cm
(Sect. 2.5), below which we assume flooding has no im-
pact, in combination with the infiltration capacity of the soil
(Sect. 2.4).

The right panel of Fig. 8 shows the compound flood risk
profiles under different assumptions of statistical dependence
between the joint annual maxima. Each risk profile is based
on a stochastic event set with the same number of events
based on the observed co-occurrence rates but with indepen-
dence, full dependence, or observed dependence between the
pairs of annual maximum flood drivers. Confidence intervals
between the 0.05–0.95 quantiles are derived based on 30 real-
izations of 1000-year simulations. We report the median risk
values and show the confidence interval between brackets.
We find a risk based on observed dependence of USD 58.03
(55.45–60.43) million in terms of EAD and 29 990 (28 580–
31 230) people in terms of EAAP. This EAD based on ob-
served dependence is smaller than the USD 58.28 (55.51–
61.09) million EAD based on full dependence and larger
than the USD 57.71 (56.00–60.01) million EAD based on
independence. The relative difference in EAD based on in-
dependence and observed dependence is 0.55 %. While the

difference is small and not significant based on the used con-
fidence intervals, the results indicate that taking into account
the observed dependence will likely increase flood risk be-
cause of an increase in damage from rare events (12 % in-
crease at the 100-year return period). In general, the differ-
ence in EAD between full dependence and independence is
relatively small, namely 0.98 %, as the physical interactions
between flood drivers mostly occur in locations with little
flood exposure. When assuming a zero lag time between
flood drivers, the risk is USD 58.19 (55.61–60.59) million
EAD and 30 080 (28 690–31 330) EAAP. While this assump-
tion results in notable differences in flood hazard (Sect. 3.2),
the relative change in risk is small (0.28 %), as the differences
are at locations with little flood exposure.

3.4 Flood risk reduction scenarios

Here, we present the effectiveness of three distinct flood risk
reduction measures: spatial zoning, dry proofing of build-
ings, and levees. Figure 9 shows the risk in terms of EAD and
EAAP for these measures in absolute values on the left y axis
and as a percentage of the base risk (i.e., without any risk
reduction measure) on the right y axis. Zoning is the most
effective risk reduction measure, with a reduction in EAD by
USD 47.71 million (79.0 %) and EAAP by∼ 22 000 (70.4 %)
people at the middle protection level (i.e., 5-year return pe-
riod). However, this is also the most drastic as it entails
the relocation of 31 800 people living in the 5-year flood-
plain. In general, zoning and dry proofing reduce risk across
all return periods and act against all flood drivers, whereas
levees only reduce risk below the protection level and do
not act against pluvial flood drivers. In terms of EAD, the
low-protection-level zoning (2-year return period) and the
middle-protection-level levee (10-year return period) mea-
sures are similarly effective with a risk reduction of 67.5 %
and 71.2 % respectively, while dry proofing does not reach
the same effectiveness across the simulated protection lev-
els. In terms of EAAP, the low-protection-level zoning (2-
year return period), the middle-protection-level dry proofing
(75 cm), and the low-protection-level levee (5-year return pe-
riod) measures are similarly effective with a risk reduction of
55.7 %, 56.1 %, and 49.4 % respectively.

3.5 Limitations and way forward

In this paper, we applied the framework to one location, but
it has two distinct features which make it globally applicable.
Firstly, the schematizations of the hydrodynamic and impact
model are automated and based on global datasets only. Sec-
ondly, the flood drivers (i.e., the model boundary conditions)
are derived from global models. These features make it pos-
sible to easily apply the framework at a different location.

While the use of global open-source datasets and global
models comes with the large benefit of global applicability
of the model setup, the performance of the model will differ
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Figure 6. The 100-year flood hazard maps for univariate flood drivers.

from case to case based on the local quality of the global data
and skill of the global models. A validation for two events
based on a comparison with flood extents derived from re-
mote sensing and sensitivity analysis of the globally applica-
ble model has been performed in a previous study (Eilander
et al., 2023a). Based on a comparison with observed flood
extents from remote sensing, we found that the model skill is
not very sensitive to the river depth but is most sensitive to
the Manning roughness and dynamic forcing. We also inves-
tigated the sensitivity of hydrodynamic interactions between
flood drivers to river and estuarine bathymetry. Based on that

analysis, we found that with a deeper estuary the transition
zone (i.e., where hydrodynamic interactions between flood
drivers amplify water levels) in the Pungwe estuary extends
further inland, but this change is relatively small compared
to the extent of the total transition zone.

Finally, it should be noted that the framework allows for
integration of higher-quality (local) datasets which, if avail-
able, could improve the accuracy of the model. Datasets that
would improve the risk assessment are for example a local
lidar-based DEM, local observations of river bathymetry, ob-
served damage from historical flood events, and observed
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Figure 7. The 100-year compound flood hazard (assuming full statistical dependence) and the difference between this flood hazard map and
the maximum univariate 100-year flood hazard (i.e., maximum from any panels in Fig. 6).

time series of any flood driver. Furthermore, with sufficient
coverage of (new) remote sensing missions, such as ICESat-2
(Ice, Cloud and land Elevation Satellite) and SWOT (Surface
Water and Ocean Topography), it will become easier to quan-
tify uncertainties in global datasets for local flood studies and
go beyond sensitivity analysis.

The change in flood risk when accounting for compound
events depends not only on the dependence between drivers
but also on the co-occurrence rate, duration of and time
lags between drivers, and the hydrodynamics of the estuar-
ies (Harrison et al., 2022; Serafin et al., 2019). We used the
method proposed by Couasnon et al. (2022) to assess flood
risk based on joint magnitude and temporal co-occurrence
of annual maxima in combination with hydrodynamic sim-
ulations. Here, we assume that the dependence can be es-
timated from all annual maxima. In our case study, where,
apart from the significant wave height, the annual maxima
of most drivers are within the same season, the correlation
roughly captures the variability driven by seasonal climato-
logical patterns (see Fig. A6). In locations with fewer co-
occurring annual maxima or a less distinct wet season the
approach might be less applicable. Future research should in-
vestigate how the selected dependence model and sampling
strategy compares to other multivariate dependence models
and sampling strategies (e.g., Zheng et al., 2014; Lucey and
Gallien, 2022) to find out which approach is most appropri-

ate for different applications. Furthermore, we simulated all
combinations of flood drivers based on design events with
fixed duration and time lags between drivers. Accounting for
these in a probabilistic manner would rapidly increase the re-
quired number of simulations. Alternatively, the selection of
simulations could be informed by the multivariate probability
density function by selecting only the most likely combina-
tion (Moftakhari et al., 2019) or multiple combinations based
on weighted random samples (Sadegh et al., 2018) for each
multivariate return period. A brute force approach, which re-
quires fewer assumptions but generally more computational
resources (Winter et al., 2020; Wu et al., 2021), could be an
interesting alternative to design-event-based approaches for
coastal flood risk assessments with many flood drivers.

Here, we focused on compound flood risk based on cur-
rent climate conditions. However, to assess risk reduction
measures, it is important to account for changes in environ-
mental, socioeconomic, and climate conditions. Changes in
climate do not only translate to changes in the magnitude
of flood drivers but may also affect the dependence between
flood drivers (e.g., Gori et al., 2022). At the same time so-
cioeconomic changes will also largely affect flood risk and
without action might be the largest driver of change in future
flood risk (Winsemius et al., 2015; Neumann et al., 2015).
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Figure 8. Flood risk profiles for expected annual damage (EAD) for
univariate flooding (a) and compound flooding under different as-
sumptions of statistical dependence (b). The lines show the median
and the area around the lines the 0.05–0.95 quantiles based on 30
realizations of 1000-year simulations.

4 Conclusions and recommendations

We applied a globally applicable compound flood risk frame-
work to the Sofala region of Mozambique, where Beira is lo-
cated. Using the framework, we compared hazard and risk
resulting from different flood drivers, provided an integrated
assessment of compound flood risk, and evaluated the risk
reduction in three risk reduction measures.

In the base scenario without risk reduction measures and
with observed dependence the median EAD is USD 58.03
(55.45–60.43 at the 0.05 to 0.95 quantile) million and the me-
dian EAAP is 29 990 (28 580–31 230) people. Coastal flood-
ing was found to cause the largest risk in the region despite a
more widespread fluvial and pluvial flood hazard. The com-
pound flood risk in terms of EAD based on observed statis-
tical dependence was found to be 0.55 % larger compared
to the assumption of statistical independence, while the as-
sumption of full dependence leads to an overestimate of the
flood risk. The small difference is attributed to events with re-

Figure 9. Compound flood risk for expected annual damage (EAD;
a) and expected annual affected population (EAAP; b) under low,
middle, and high protection levels of three risk reduction measures:
spatial zoning, dry proofing of buildings, and levees.

turn periods longer than 25 years, which are relatively more
damaging, e.g., 12 % at the 100-year return period. This to-
tal difference between full dependence and independence is,
however, relatively small due to the limited physical inter-
actions occurring in the simulations between the drivers in
areas with significant exposure. Zoning is the most effec-
tive risk reduction measure. We find that zoning based on
the 2-year return period flood plain is similarly effective to
levees with a 10-year return period protection level, while
dry proofing up to 1 m does not reach the same effective-
ness. For this case we found that the compound flood risk is
not sensitive to the time lag between flood drivers. However,
this and other required assumptions in a design-event-based
compound flood risk approach should be further validated in
future studies.

As the framework is based on global datasets and is largely
automated, it can easily be repeated for other regions for first-
order assessments of compound flood risk. While the quality
of the assessment will depend on the accuracy of the global
models and data, it can readily include higher-quality (local)
datasets where available to further improve the assessment.
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Appendix A: Supplementary information

Figure A1. Time series of the flood drivers considered: discharge at the Buzi and Pungwe rivers, rainfall, daily max storm surge, daily max
significant wave heights, and total sea levels. Red dots indicate the annual maximum events.
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Figure A2. Marginal distributions of the flood drivers considered: discharge at the Buzi and Pungwe rivers, rainfall, daily max storm surge,
daily max significant wave heights, and total sea levels. For surge marginal distributions for non-tropical-cyclone (crosses) and tropical
cyclone (dots) events are modeled separately and combined.
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Figure A3. Design event time series for non-flood (blue), 2-year flood (orange), and 100-year flood (green) conditions including observed
time lag.

Table A1. Extreme values of flood drivers used to set up the hydraulic boundary conditions for the SFINCS model. MSL signifies mean sea
level.

Return period Discharge Buzi Discharge Pungwe Rainfall Wave setup Surge Total sea level
(year) (m3 s−1) (m3 s−1) (mm d−1) (m) (m) (m+MSL)

2 2696 913 2.85 0.53 0.67 4.74
5 5169 1406 4.43 0.64 0.75 5.05
10 7342 1816 5.47 0.74 0.8 5.29
50 14 286 3039 7.77 1.07 1.21 5.78
100 18 444 3726 8.74 1.28 1.74 6.02
500 32 200 5848 10.99 1.95 2.85 7.07
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Figure A4. The 10 000 years of simulated (black) and 42 years of observed (red) pairs of annual maximum flood drivers.
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Figure A5. The 100-year compound flood hazard (assuming full statistical dependence) and the difference between this flood hazard map
and the maximum univariate 100-year flood hazard assuming zero lag time between the drivers at the model boundary.

Figure A6. Day of the year (black dots) and mean day of the year (red line) of the annual maxima of all five drivers. The y axis indicates the
magnitude normalized by the mean annual maxima.
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