Articles | Volume 23, issue 6
https://doi.org/10.5194/nhess-23-2203-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-23-2203-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Scenario-based multi-risk assessment from existing single-hazard vulnerability models. An application to consecutive earthquakes and tsunamis in Lima, Peru
Juan Camilo Gómez Zapata
CORRESPONDING AUTHOR
Seismic Hazard and Risk Dynamics, GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Institute for Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
Massimiliano Pittore
Seismic Hazard and Risk Dynamics, GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Institute for Earth Observation, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
Nils Brinckmann
eScience Centre, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Juan Lizarazo-Marriaga
Departamento de Ingeniería Civil y Agrícola, Universidad Nacional de Colombia, 11001 sede Bogotá, Colombia
Sergio Medina
Departamento de Ingeniería Civil y Agrícola, Universidad Nacional de Colombia, 11001 sede Bogotá, Colombia
Nicola Tarque
Gerdis Research Group, Civil Eng. Division, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
Department of Continuum Mechanics and Structures, Universidad Politécnica de Madrid, Calle Prof. Aranguren 3, 28040 Madrid, Spain
Fabrice Cotton
Seismic Hazard and Risk Dynamics, GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Institute for Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
Related authors
Elisabeth Schoepfer, Jörn Lauterjung, Torsten Riedlinger, Harald Spahn, Juan Camilo Gómez Zapata, Christian D. León, Hugo Rosero-Velásquez, Sven Harig, Michael Langbein, Nils Brinckmann, Günter Strunz, Christian Geiß, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 4631–4660, https://doi.org/10.5194/nhess-24-4631-2024, https://doi.org/10.5194/nhess-24-4631-2024, 2024
Short summary
Short summary
In this paper, we provide a brief introduction of the paradigm shift from managing disasters to managing risks, followed by single-hazard to multi-risk assessment. We highlight four global strategies that address disaster risk reduction and call for action. Subsequently, we present a conceptual approach for multi-risk assessment which was designed to serve potential users like disaster risk managers, urban planners or operators of critical infrastructure to increase their capabilities.
Hugo Rosero-Velásquez, Mauricio Monsalve, Juan Camilo Gómez Zapata, Elisa Ferrario, Alan Poulos, Juan Carlos de la Llera, and Daniel Straub
Nat. Hazards Earth Syst. Sci., 24, 2667–2687, https://doi.org/10.5194/nhess-24-2667-2024, https://doi.org/10.5194/nhess-24-2667-2024, 2024
Short summary
Short summary
Seismic risk management uses reference earthquake scenarios, but the criteria for selecting them do not always consider consequences for exposed assets. Hence, we adopt a definition of representative scenarios associated with a return period and loss level to select such scenarios among a large set of possible earthquakes. We identify the scenarios for the residential-building stock and power supply in Valparaíso and Viña del Mar, Chile. The selected scenarios depend on the exposed assets.
Christian Geiß, Jana Maier, Emily So, Elisabeth Schoepfer, Sven Harig, Juan Camilo Gómez Zapata, and Yue Zhu
Nat. Hazards Earth Syst. Sci., 24, 1051–1064, https://doi.org/10.5194/nhess-24-1051-2024, https://doi.org/10.5194/nhess-24-1051-2024, 2024
Short summary
Short summary
We establish a model of future geospatial population distributions to quantify the number of people living in earthquake-prone and tsunami-prone areas of Lima and Callao, Peru, for the year 2035. Areas of high earthquake intensity will experience a population growth of almost 30 %. The population in the tsunami inundation area is estimated to grow by more than 60 %. Uncovering those relations can help urban planners and policymakers to develop effective risk mitigation strategies.
Dirsa Feliciano, Orlando Arroyo, Tamara Cabrera, Diana Contreras, Jairo Andrés Valcárcel Torres, and Juan Camilo Gómez Zapata
Nat. Hazards Earth Syst. Sci., 23, 1863–1890, https://doi.org/10.5194/nhess-23-1863-2023, https://doi.org/10.5194/nhess-23-1863-2023, 2023
Short summary
Short summary
This article presents the number of damaged buildings and estimates the economic losses from a set of earthquakes in Sabana Centro, a region of 11 towns in Colombia.
Juan Camilo Gomez-Zapata, Nils Brinckmann, Sven Harig, Raquel Zafrir, Massimiliano Pittore, Fabrice Cotton, and Andrey Babeyko
Nat. Hazards Earth Syst. Sci., 21, 3599–3628, https://doi.org/10.5194/nhess-21-3599-2021, https://doi.org/10.5194/nhess-21-3599-2021, 2021
Short summary
Short summary
We present variable-resolution boundaries based on central Voronoi tessellations (CVTs) to spatially aggregate building exposure models and physical vulnerability assessment. Their geo-cell sizes are inversely proportional to underlying distributions that account for the combination between hazard intensities and exposure proxies. We explore their efficiency and associated uncertainties in risk–loss estimations and mapping from decoupled scenario-based earthquakes and tsunamis in Lima, Peru.
Marc Lemus-Canovas, Alice Crespi, Elena Maines, Stefano Terzi, and Massimiliano Pittore
EGUsphere, https://doi.org/10.5194/egusphere-2025-1347, https://doi.org/10.5194/egusphere-2025-1347, 2025
Short summary
Short summary
We studied a severe compound drought and heatwave event in the Adige River basin in May 2022 and found that similar events are now hotter and drier due to current warming. These changes worsen water stress and river drying. We show that timing matters: events in June are now more critical than in April, as the snowmelt contribution to streamflow in June has become much lower than in the past. However, many climate models still fail to capture these changes.
Gabriella Tocchi, Massimiliano Pittore, and Maria Polese
EGUsphere, https://doi.org/10.5194/egusphere-2025-908, https://doi.org/10.5194/egusphere-2025-908, 2025
Short summary
Short summary
This study identifies different types of urban areas in Italy based on population, location, and economic conditions to understand their vulnerability to risks. Using public data and clustering methods, it defines 18 urban archetypes. These archetypes provide a structured understanding of urban vulnerability, helping policymakers assess disaster risk, allocate adaptation funding, and design targeted resilience strategies for urban settlements at regional and national scales.
Jess Delves, Kathrin Renner, Piero Campalani, Jesica Piñón, Stefan Schneiderbauer, Stefan Steger, Mateo Moreno, Maria Belen Benito Oterino, Eduardo Perez, and Massimiliano Pittore
EGUsphere, https://doi.org/10.5194/egusphere-2024-3445, https://doi.org/10.5194/egusphere-2024-3445, 2025
Short summary
Short summary
This scientific paper presents a multi-hazard risk assessment for Burundi, focusing on flooding, torrential rains, landslides, earthquakes, and strong winds. The study identifies key risk hotspots with estimated economic losses of 92 million USD (2.5 % of GDP). Climate change projections indicate increased precipitation. The paper highlights data limitations and stresses the need for improved hazard models and the consideration of compounding risks in future assessments.
Elisabeth Schoepfer, Jörn Lauterjung, Torsten Riedlinger, Harald Spahn, Juan Camilo Gómez Zapata, Christian D. León, Hugo Rosero-Velásquez, Sven Harig, Michael Langbein, Nils Brinckmann, Günter Strunz, Christian Geiß, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 4631–4660, https://doi.org/10.5194/nhess-24-4631-2024, https://doi.org/10.5194/nhess-24-4631-2024, 2024
Short summary
Short summary
In this paper, we provide a brief introduction of the paradigm shift from managing disasters to managing risks, followed by single-hazard to multi-risk assessment. We highlight four global strategies that address disaster risk reduction and call for action. Subsequently, we present a conceptual approach for multi-risk assessment which was designed to serve potential users like disaster risk managers, urban planners or operators of critical infrastructure to increase their capabilities.
Graeme Weatherill, Fabrice Cotton, Guillaume Daniel, Irmela Zentner, Pablo Iturrieta, and Christian Bosse
Nat. Hazards Earth Syst. Sci., 24, 3755–3787, https://doi.org/10.5194/nhess-24-3755-2024, https://doi.org/10.5194/nhess-24-3755-2024, 2024
Short summary
Short summary
New generations of seismic hazard models are developed with sophisticated approaches to quantify uncertainties in our knowledge of earthquake processes. To understand why and how recent state-of-the-art seismic hazard models for France, Germany, and Europe differ despite similar underlying assumptions, we present a systematic approach to investigate model-to-model differences and to quantify and visualise them while accounting for their respective uncertainties.
Laurentiu Danciu, Domenico Giardini, Graeme Weatherill, Roberto Basili, Shyam Nandan, Andrea Rovida, Céline Beauval, Pierre-Yves Bard, Marco Pagani, Celso G. Reyes, Karin Sesetyan, Susana Vilanova, Fabrice Cotton, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3049–3073, https://doi.org/10.5194/nhess-24-3049-2024, https://doi.org/10.5194/nhess-24-3049-2024, 2024
Short summary
Short summary
The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative references in the next update of the European Seismic Design Code (CEN EC8), and it also provides a key input to the first earthquake risk model for Europe.
Hugo Rosero-Velásquez, Mauricio Monsalve, Juan Camilo Gómez Zapata, Elisa Ferrario, Alan Poulos, Juan Carlos de la Llera, and Daniel Straub
Nat. Hazards Earth Syst. Sci., 24, 2667–2687, https://doi.org/10.5194/nhess-24-2667-2024, https://doi.org/10.5194/nhess-24-2667-2024, 2024
Short summary
Short summary
Seismic risk management uses reference earthquake scenarios, but the criteria for selecting them do not always consider consequences for exposed assets. Hence, we adopt a definition of representative scenarios associated with a return period and loss level to select such scenarios among a large set of possible earthquakes. We identify the scenarios for the residential-building stock and power supply in Valparaíso and Viña del Mar, Chile. The selected scenarios depend on the exposed assets.
Graeme Weatherill, Sreeram Reddy Kotha, Laurentiu Danciu, Susana Vilanova, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 24, 1795–1834, https://doi.org/10.5194/nhess-24-1795-2024, https://doi.org/10.5194/nhess-24-1795-2024, 2024
Short summary
Short summary
The ground motion models (GMMs) selected for the 2020 European Seismic Hazard Model (ESHM20) and their uncertainties require adaptation to different tectonic environments. Using insights from new data, local experts and developments in the scientific literature, we further calibrate the ESHM20 GMM logic tree to capture previously unmodelled regional variation. We also propose a new scaled-backbone logic tree for application to Europe's subduction zones and the Vrancea deep seismic source.
Karina Loviknes, Fabrice Cotton, and Graeme Weatherill
Nat. Hazards Earth Syst. Sci., 24, 1223–1247, https://doi.org/10.5194/nhess-24-1223-2024, https://doi.org/10.5194/nhess-24-1223-2024, 2024
Short summary
Short summary
Earthquake ground shaking can be strongly affected by local geology and is often amplified by soft sediments. In this study, we introduce a global geomorphological model for sediment thickness as a protentional parameter for predicting this site amplification. The results show that including geology and geomorphology in site-amplification predictions adds important value and that global or regional models for sediment thickness from fields beyond engineering seismology are worth considering.
Dino Bindi, Riccardo Zaccarelli, Angelo Strollo, Domenico Di Giacomo, Andres Heinloo, Peter Evans, Fabrice Cotton, and Frederik Tilmann
Earth Syst. Sci. Data, 16, 1733–1745, https://doi.org/10.5194/essd-16-1733-2024, https://doi.org/10.5194/essd-16-1733-2024, 2024
Short summary
Short summary
The size of an earthquake is often described by a single number called the magnitude. Among the possible magnitude scales, the seismic moment (Mw) and the radiated energy (Me) scales are based on physical parameters describing the rupture process. Since these two magnitude scales provide complementary information that can be used for seismic hazard assessment and for seismic risk mitigation, we complement the Mw catalog disseminated by the GEOFON Data Centre with Me values.
Christian Geiß, Jana Maier, Emily So, Elisabeth Schoepfer, Sven Harig, Juan Camilo Gómez Zapata, and Yue Zhu
Nat. Hazards Earth Syst. Sci., 24, 1051–1064, https://doi.org/10.5194/nhess-24-1051-2024, https://doi.org/10.5194/nhess-24-1051-2024, 2024
Short summary
Short summary
We establish a model of future geospatial population distributions to quantify the number of people living in earthquake-prone and tsunami-prone areas of Lima and Callao, Peru, for the year 2035. Areas of high earthquake intensity will experience a population growth of almost 30 %. The population in the tsunami inundation area is estimated to grow by more than 60 %. Uncovering those relations can help urban planners and policymakers to develop effective risk mitigation strategies.
Irina Dallo, Michèle Marti, Nadja Valenzuela, Helen Crowley, Jamal Dabbeek, Laurentiu Danciu, Simone Zaugg, Fabrice Cotton, Domenico Giardini, Rui Pinho, John F. Schneider, Céline Beauval, António A. Correia, Olga-Joan Ktenidou, Päivi Mäntyniemi, Marco Pagani, Vitor Silva, Graeme Weatherill, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 291–307, https://doi.org/10.5194/nhess-24-291-2024, https://doi.org/10.5194/nhess-24-291-2024, 2024
Short summary
Short summary
For the release of cross-country harmonised hazard and risk models, a communication strategy co-defined by the model developers and communication experts is needed. The strategy should consist of a communication concept, user testing, expert feedback mechanisms, and the establishment of a network with outreach specialists. Here we present our approach for the release of the European Seismic Hazard Model and European Seismic Risk Model and provide practical recommendations for similar efforts.
Max Schneider, Fabrice Cotton, and Pia-Johanna Schweizer
Nat. Hazards Earth Syst. Sci., 23, 2505–2521, https://doi.org/10.5194/nhess-23-2505-2023, https://doi.org/10.5194/nhess-23-2505-2023, 2023
Short summary
Short summary
Hazard maps are fundamental to earthquake risk reduction, but research is missing on how to design them. We review the visualization literature to identify evidence-based criteria for color and classification schemes for hazard maps. We implement these for the German seismic hazard map, focusing on communicating four properties of seismic hazard. Our evaluation finds that the redesigned map successfully communicates seismic hazard in Germany, improving on the baseline map for two key properties.
Dirsa Feliciano, Orlando Arroyo, Tamara Cabrera, Diana Contreras, Jairo Andrés Valcárcel Torres, and Juan Camilo Gómez Zapata
Nat. Hazards Earth Syst. Sci., 23, 1863–1890, https://doi.org/10.5194/nhess-23-1863-2023, https://doi.org/10.5194/nhess-23-1863-2023, 2023
Short summary
Short summary
This article presents the number of damaged buildings and estimates the economic losses from a set of earthquakes in Sabana Centro, a region of 11 towns in Colombia.
Stefan Steger, Mateo Moreno, Alice Crespi, Peter James Zellner, Stefano Luigi Gariano, Maria Teresa Brunetti, Massimo Melillo, Silvia Peruccacci, Francesco Marra, Robin Kohrs, Jason Goetz, Volkmar Mair, and Massimiliano Pittore
Nat. Hazards Earth Syst. Sci., 23, 1483–1506, https://doi.org/10.5194/nhess-23-1483-2023, https://doi.org/10.5194/nhess-23-1483-2023, 2023
Short summary
Short summary
We present a novel data-driven modelling approach to determine season-specific critical precipitation conditions for landslide occurrence. It is shown that the amount of precipitation required to trigger a landslide in South Tyrol varies from season to season. In summer, a higher amount of preparatory precipitation is required to trigger a landslide, probably due to denser vegetation and higher temperatures. We derive dynamic thresholds that directly relate to hit rates and false-alarm rates.
Audrey Bonnelye, Pierre Dick, Marco Bohnhoff, Fabrice Cotton, Rüdiger Giese, Jan Henninges, Damien Jougnot, Grzegorz Kwiatek, and Stefan Lüth
Adv. Geosci., 58, 177–188, https://doi.org/10.5194/adgeo-58-177-2023, https://doi.org/10.5194/adgeo-58-177-2023, 2023
Short summary
Short summary
The overall objective of the CHENILLE project is to performed an in-situ experiment in the Underground Reaserch Laboratory of Tournemire (Southern France) consisting of hydraulic and thermal stimulation of a fault zone. This experiment is monitored with extensive geophysical means (passive seismic, active seismic, distributed fiber optics for temperature measurements) in order to unravel the physical processes taking place during the stimulation for a better charactization of fault zones.
Juan Camilo Gomez-Zapata, Nils Brinckmann, Sven Harig, Raquel Zafrir, Massimiliano Pittore, Fabrice Cotton, and Andrey Babeyko
Nat. Hazards Earth Syst. Sci., 21, 3599–3628, https://doi.org/10.5194/nhess-21-3599-2021, https://doi.org/10.5194/nhess-21-3599-2021, 2021
Short summary
Short summary
We present variable-resolution boundaries based on central Voronoi tessellations (CVTs) to spatially aggregate building exposure models and physical vulnerability assessment. Their geo-cell sizes are inversely proportional to underlying distributions that account for the combination between hazard intensities and exposure proxies. We explore their efficiency and associated uncertainties in risk–loss estimations and mapping from decoupled scenario-based earthquakes and tsunamis in Lima, Peru.
Cited articles
Adriano, B., Mas, E., Koshimura, S., Estrada, M., and Jimenez, C.: Scenarios
of Earthquake and Tsunami Damage Probability in Callao Region, Peru Using
Tsunami Fragility Functions, Journal of Disaster Research, 9, 968–975,
https://doi.org/10.20965/jdr.2014.p0968, 2014.
Aguilar, Z., Lazares, F., Alarcon, S., Quispe, S., Uriarte, R., and
Calderon, D.: Actualización de la Microzonificación Sísmica de
la ciudad de Lima, International Symposium for CISMID 25th Anniversary
17–18 August, 2012, Lima, Peru, 2013.
Aguilar, Z., Tarazona, J., Vergaray, L., Barrantes, J., Uriarte, R., and
Calderon, D.: Site response analysis and its comparison with the peruvian
seismic design spectrum, TECNIA, 29, 91–97, https://doi.org/10.21754/tecnia.v29i2.700, 2019.
Allen, T. I. and Wald, D. J.: Topographic Slope as a Proxy for Seismic
Site-Conditions (VS30) and Amplification Around the Globe, Open-File Report 2007-1357, https://doi.org/10.3133/ofr20071357, 2007.
Antoncecchi, I., Ciccone, F., Dialuce, G., Grandi, S., Terlizzeze, F., Di
Bucci, D., Dolce, M., Argnani, A., Mercorella, A., Pellegrini, C., Rovere,
M., Armigliato, A., Pagnoni, G., Paparo, M. A., Tinti, S., Zaniboni, F.,
Basili, R., Cavallaro, D., Coltelli, M., Firetto Carlino, M., Lipparini, L.,
Lorito, S., Maesano, F. E., Romano, F., Scarfì, L., Tiberti, M. M.,
Volpe, M., Fedorik, J., Toscani, G., Borzi, B., Faravelli, M., Bozzoni, F.,
Pascale, V., Quaroni, D., Germagnoli, F., Belliazzi, S., Del Zoppo, M., Di
Ludovico, M., Lignola, G. P., and Prota, A.: Progetto SPOT - Sismicità
Potenzialmente Innescabile Offshore e Tsunami: Report integrato di fine
progetto, Version 1, Ministero dello Sviluppo Economico, Zenodo,
https://doi.org/10.5281/zenodo.3732887, 2020.
Arrighi, C., Tanganelli, M., Cristofaro, M. T., Cardinali, V., Marra, A.,
Castelli, F., and De Stefano, M.: Multi-risk assessment in a historical
city, Nat. Hazards, online first, https://doi.org/10.1007/s11069-021-05125-6, 2022.
Attary, N., van de Lindt, J. W., Unnikrishnan, V. U., Barbosa, A. R., and
Cox, D. T.: Methodology for Development of Physics-Based Tsunami
Fragilities, J. Struct. Eng., 143, 04016223,
https://doi.org/10.1061/(ASCE)ST.1943-541X.0001715, 2017.
Attary, N., Van De Lindt, J. W., Barbosa, A. R., Cox, D. T., and
Unnikrishnan, V. U.: Performance-Based Tsunami Engineering for Risk
Assessment of Structures Subjected to Multi-Hazards: Tsunami following
Earthquake, J. Earthq. Eng., 25, 2065–2084, https://doi.org/10.1080/13632469.2019.1616335, 2021.
Baggio, C., Bernardini, A., Colozza, R., Corazza, L., Della Orsini, M., Di
Pascuale, G., Dolce, M., Goretti, A., Martinelli, A., Orsini, G., Papa, F.,
and Zuccaro, G.: Field Manual for post-earthquake damage and safety
assessment and short term countermeasures (AeDES), EUR 22868 EN – Joint
Research Centre – Institute for the Protection and Security of the
Citizen, Office for Official Publications of the European Communities,
Luxembourg, 100 pp., https://publications.jrc.ec.europa.eu/repository/handle/JRC37914 (last access: 2 June 2023), 2007.
Behrens, J., Løvholt, F., Jalayer, F., Lorito, S., Salgado-Gálvez, M.
A., Sørensen, M., Abadie, S., Aguirre-Ayerbe, I., Aniel-Quiroga, I.,
Babeyko, A., Baiguera, M., Basili, R., Belliazzi, S., Grezio, A., Johnson,
K., Murphy, S., Paris, R., Rafliana, I., De Risi, R., Rossetto, T., Selva,
J., Taroni, M., Del Zoppo, M., Armigliato, A., Bureš, V., Cech, P.,
Cecioni, C., Christodoulides, P., Davies, G., Dias, F., Bayraktar, H. B.,
González, M., Gritsevich, M., Guillas, S., Harbitz, C. B., Kânoğlu,
U., Macías, J., Papadopoulos, G. A., Polet, J., Romano, F., Salamon,
A., Scala, A., Stepinac, M., Tappin, D. R., Thio, H. K., Tonini, R.,
Triantafyllou, I., Ulrich, T., Varini, E., Volpe, M., and Vyhmeister, E.:
Probabilistic Tsunami Hazard and Risk Analysis: A Review of Research Gaps,
Frontiers in Earth Science, 9, 628772, https://doi.org/10.3389/feart.2021.628772, 2021.
Belliazzi, S., Lignola, G. P., Di Ludovico, M., and Prota, A.: Preliminary
tsunami analytical fragility functions proposal for Italian coastal
residential masonry buildings, Structures, 31, 68–79,
https://doi.org/10.1016/j.istruc.2021.01.059, 2021.
Bernal, G. A., Salgado-Gálvez, M. A., Zuloaga, D., Tristancho, J., González, D., and Cardona, O.-D.: Integration of Probabilistic and
Multi-Hazard Risk Assessment Within Urban Development Planning and Emergency
Preparedness and Response: Application to Manizales, Colombia, Int. J. Disast. Risk Sc., 8, 270–283, https://doi.org/10.1007/s13753-017-0135-8, 2017.
Bonacho, J. and Oliveira, C. S.: Multi-hazard analysis of earthquake shaking
and tsunami impact, Int. J. Disast. Risk Re., 31, 275–280, https://doi.org/10.1016/j.ijdrr.2018.05.023, 2018.
Brinckmann, N., Gomez-Zapata, J. C., Pittore, M., and Rüster, M.: DEUS:
Damage-Exposure-Update-Service, Version 1.0, GFZ Data Services [code], https://doi.org/10.5880/riesgos.2021.011, 2021.
Brzev, S., Scawthor, C., Charleson, A. W., Allen, L., Greene, M., Jaiswal, K., and Silva, V.: GEM building taxonomy version 2.0, GEM Foundation, Pavia, https://doi.org/10.13117/GEM.EXP-MOD.TR2013.02, 2013.
Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel,
O., Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R.,
VanderPlas, J., Joly, A., Holt, B., and Varoquaux, G.: API design for
machine learning software: experiences from the scikit-learn project, in:
European Conference on Machine Learning and Principles and Practices of Knowledge Discovery in Databases, Prague, Czech Republic, September 2013, 108–122, https://inria.hal.science/hal-00856511 (last access: 2 June 2023), 2013.
Ceferino, L., Kiremidjian, A., and Deierlein, G.: Regional Multiseverity
Casualty Estimation Due to Building Damage following a Mw 8.8 Earthquake
Scenario in Lima, Peru, Earthq. Spectra, 34, 1739–1761,
https://doi.org/10.1193/080617EQS154M, 2018.
Charvet, I., Macabuag, J., and Rossetto, T.: Estimating Tsunami-Induced
Building Damage through Fragility Functions: Critical Review and Research
Needs, Frontiers in Built Environment, 3, 36,
https://doi.org/10.3389/fbuil.2017.00036, 2017.
Cremen, G., Galasso, C., and McCloskey, J.: Modelling and quantifying
tomorrow's risks from natural hazards, Sci. Total Environ., 817, 152552, https://doi.org/10.1016/j.scitotenv.2021.152552, 2022.
Dabbeek, J. and Silva, V.: Modeling the residential building stock in the
Middle East for multi-hazard risk assessment, Nat. Hazards, 100,
781–810, https://doi.org/10.1007/s11069-019-03842-7, 2020.
Dabbeek, J., Silva, V., Galasso, C., and Smith, A.: Probabilistic earthquake
and flood loss assessment in the Middle East, Int. J. Disast. Risk Re., 49, 101662, https://doi.org/10.1016/j.ijdrr.2020.101662, 2020.
Daniell, J. E., Schaefer, A. M., and Wenzel, F.: Losses Associated with
Secondary Effects in Earthquakes, Frontiers in Built Environment, 3, 30,
https://doi.org/10.3389/fbuil.2017.00030, 2017.
De Angeli, S., Malamud, B. D., Rossi, L., Taylor, F. E., Trasforini, E., and
Rudari, R.: A multi-hazard framework for spatial-temporal impact analysis,
Int. J. Disast. Risk Re., 102829, https://doi.org/10.1016/j.ijdrr.2022.102829, 2022.
Del Zoppo, M., Wijesundara, K., Rossetto, T., Dias, P., Baiguera, M.,
Ludovico, M. D., Thamboo, J., and Prota, A.: Influence of exterior infill
walls on the performance of RC frames under tsunami loads: Case study of
school buildings in Sri Lanka, Eng. Struct., 234, 111920,
https://doi.org/10.1016/j.engstruct.2021.111920, 2021.
de Ruiter, M. C., Couasnon, A., van den Homberg, M. J. C., Daniell, J. E.,
Gill, J. C., and Ward, P. J.: Why We Can No Longer Ignore Consecutive
Disasters, Earth's Future, 8, e2019EF001425, https://doi.org/10.1029/2019EF001425, 2020.
Dorbath, L., Cisternas, A., and Dorbath, C.: Assessment of the size of large and great historical earthquakes in Peru, B. Seismol. Soc. Am., 80, 551–576, 1990.
FEMA: Multi-hazard loss estimation methodology, Federal Emergency Management
Agency, Washington, https://www.fema.gov/sites/default/files/2020-09/fema_hazus_flood-model_user-manual_2.1.pdf (last access: 2 June 2023), 2003.
FEMA: HAZUS Tsunami Model Technical Guidance, Federal Emergency Management
Agency, Washington, D.C.,
https://www.fema.gov/sites/default/files/2020-09/fema_hazus_tsunami_technical-manual_4.0.pdf (last access: 2 June 2023), 2017.
Figueiredo, R., Romão, X., and Paupério, E.: Component-based flood
vulnerability modelling for cultural heritage buildings, Int. J. Disast. Risk Re., 61, 102323, https://doi.org/10.1016/j.ijdrr.2021.102323, 2021.
Frucht, E., Salamon, A., Rozelle, J., Levi, T., Calvo, R., Avirav, V.,
Burns, J. N., Zuzak, C., Gal, E., Trapper, P., Galanti, B., and Bausch, D.:
Tsunami loss assessment based on Hazus approach – The Bat Galim, Israel,
case study, Eng. Geol., 289, 106175, https://doi.org/10.1016/j.enggeo.2021.106175, 2021.
Gallina, V., Torresan, S., Critto, A., Sperotto, A., Glade, T., and
Marcomini, A.: A review of multi-risk methodologies for natural hazards:
Consequences and challenges for a climate change impact assessment, J. Environ. Manage., 168, 123–132, https://doi.org/10.1016/j.jenvman.2015.11.011, 2016.
Gehl, P. and D'Ayala, D.: System loss assessment of bridge networks
accounting for multi-hazard interactions, Struct. Infrastruct. E., 14, 1355–1371, https://doi.org/10.1080/15732479.2018.1434671, 2018.
Gehl, P., Quinet, C., Le Cozannet, G., Kouokam, E., and Thierry, P.: Potential and limitations of risk scenario tools in volcanic areas through an example at Mount Cameroon, Nat. Hazards Earth Syst. Sci., 13, 2409–2424, https://doi.org/10.5194/nhess-13-2409-2013, 2013.
GEM: Report on the SARA Exposure and Vulnerability Workshop in Medellin,
Colombia, Version 1.0, 47 pp., https://sara.openquake.org/_media/risk:03_2014_-_workshop_medellin_-_exposure.pdf (last access: 2 June 2023), 2014.
Gill, J. C. and Malamud, B. D.: Hazard interactions and interaction networks (cascades) within multi-hazard methodologies, Earth Syst. Dynam., 7, 659–679, https://doi.org/10.5194/esd-7-659-2016, 2016.
Goda, K. and De Risi, R.: Multi-hazard loss estimation for shaking and
tsunami using stochastic rupture sources, Int. J. Disast. Risk Re., 28, 539–554, https://doi.org/10.1016/j.ijdrr.2018.01.002, 2018.
Goda, K., Mori, N., Yasuda, T., Prasetyo, A., Muhammad, A., and Tsujio, D.:
Cascading Geological Hazards and Risks of the 2018 Sulawesi Indonesia
Earthquake and Sensitivity Analysis of Tsunami Inundation Simulations,
Frontiers in Earth Science, 7, 261, https://doi.org/10.3389/feart.2019.00261, 2019.
Gómez Zapata, J. C., Pittore, M., Brinckmann, N., and Shinde, S.:
Dynamic physical vulnerability: a Multi-risk Scenario approach from
building- single- hazard fragility- models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18379, https://doi.org/10.5194/egusphere-egu2020-18379, 2020.
Gomez-Zapata, J. C., Zafrir, R., Harig, S., and Pittore, M.: Customised
focus maps and resultant CVT-based aggregation entities for Lima and Callao
(Peru), Version 1.0, GFZ Data Services [data set],
https://doi.org/10.5880/riesgos.2021.006, 2021a.
Gomez-Zapata, J. C., Zafrir, R., Brinckmann, N., and Pittore, M.: Residential building exposure and physical vulnerability models for ground-shaking and tsunami risk in Lima and Callao (Peru), Version 1.0., GFZ Data Services [data set], https://doi.org/10.5880/riesgos.2021.007, 2021b.
Gomez-Zapata, J. C., Brinckmann, N., Pittore, M., and Cotton, F.:
Seismic ground motion fields for six deterministic earthquake scenarios (Mw
8.5-9.0) for Lima (Peru), GFZ Data Services [data set],
https://doi.org/10.5880/riesgos.2021.008, 2021c.
Gomez-Zapata, J. C., Brinckmann, N., Pittore, M., and Cotton, F.:
Spatial representation of direct loss estimates on the residential building
stock of Lima (Peru) from decoupled earthquake and tsunami scenarios on
variable resolutions exposure models, GFZ Data Services [data set],
https://doi.org/10.5880/riesgos.2021.009, 2021d.
Gomez-Zapata, J. C., Brinckmann, N., Harig, S., Zafrir, R., Pittore, M., Cotton, F., and Babeyko, A.: Variable-resolution building exposure modelling for earthquake and tsunami scenario-based risk assessment: an application case in Lima, Peru, Nat. Hazards Earth Syst. Sci., 21, 3599–3628, https://doi.org/10.5194/nhess-21-3599-2021, 2021e.
Gómez Zapata, J. C., Medina, S., and Lizarazo-Marriaga, J.: Creation of
simplified state-dependent fragility functions through ad-hoc scaling
factors to account for previous damage in a multi-hazard risk context. An
application to flow-depth-based analytical tsunami fragility functions for
the Pacific coast of South America, GFZ Data Services [data set],
https://doi.org/10.5880/riesgos.2022.002, 2022a.
Gómez Zapata, J. C., Pittore, M., Cotton, F., Lilienkamp, H., Simantini,
S., Aguirre, P., and Hernan, S. M.: Epistemic uncertainty of probabilistic
building exposure compositions in scenario-based earthquake loss models,
B. Earthq. Eng., 20, pages 2401–2438, https://doi.org/10.1007/s10518-021-01312-9, 2022b.
Gómez Zapata, J. C., Pittore, M., and Lizarazo, J. M.: Probabilistic
inter-scheme compatibility matrices for multi-hazard exposure modeling. An
application using existing vulnerability models for earthquakes and tsunami
from synthetic datasets constructed using the AeDEs form through
expert-based heuristics, GFZ Data Services [data set],
https://doi.org/10.5880/riesgos.2022.003, 2022c.
Grünthal, G.: European Macroseismic Scale 1998, Centre Européen de
Géodynamique et de Séismologie, Luxembourg, 99 pp., https://doi.org/10.2312/EMS-98.full.en, 1998.
Harig, S. and Rakowsky, N.: Tsunami flow depth in Lima/Callao (Peru) caused
by six hypothetical simplified tsunami scenarios offshore Lima, GFZ Data
Services [data set], https://doi.org/10.5880/riesgos.2021.010, 2021.
Harig, S., Immerz, A., Weniza, Griffin, J., Weber, B., Babeyko, A.,
Rakowsky, N., Hartanto, D., Nurokhim, A., Handayani, T., and Weber, R.: The
Tsunami Scenario Database of the Indonesia Tsunami Early Warning System
(InaTEWS): Evolution of the Coverage and the Involved Modeling Approaches,
Pure Appl. Geophys., 177, 1379–1401, https://doi.org/10.1007/s00024-019-02305-1, 2020.
Hill, M. and Rossetto, T.: Comparison of building damage scales and damage
descriptions for use in earthquake loss modelling in Europe, B. Earthq. Eng., 6, 335–365, https://doi.org/10.1007/s10518-007-9057-y, 2008.
Imamura, F., Boret, S. P., Suppasri, A., and Muhari, A.: Recent occurrences
of serious tsunami damage and the future challenges of tsunami disaster risk
reduction, Progress in Disaster Science, 1, 100009, https://doi.org/10.1016/j.pdisas.2019.100009, 2019.
INEI: Censos Nacionales 2007, Instituto Nacional de Estadistica e
Informatica (INEI; Institute of Statistic and Informatics), Lima, Peru,
https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1136/libro.pdf (last access: 2 June 2023), 2007.
INEI: Censos Nacionales 2017, Instituto Nacional de Estadistica e
Informatica (INEI; Institute of Statistic and Informatics), Lima, Peru, https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1544/ (last access: 2 June 2023), 2017.
INEI: Perú: 50 años de cambios, desafíos y oportunidades
poblacionales, Instituto Nacional de Estadistica e Informatica (INEI;
Institute of Statistic and Informatics), https://www.gob.pe/institucion/inei/informes-publicaciones/
3254297-peru-50-anos-de-cambios-desafios-y-oportunidades-poblacionales (last access: 2 June 2023), 2022.
Jimenez, C., Moggiano, N., Mas, E., Adriano, B., Koshimura, S., Fujii, Y.,
and Yanagisawa, H.: Seismic Source of 1746 Callao Earthquake from
Tsunami Numerical Modeling, Journal of Disaster Research, 8, 266–273,
https://doi.org/10.20965/jdr.2013.p0266, 2013.
Julià, P. B. and Ferreira, T. M.: From single- to multi-hazard vulnerability and risk in Historic Urban Areas: a literature review, Nat. Hazards, 108, 93–128, https://doi.org/10.1007/s11069-021-04734-5, 2021.
Kappes, M. S., Keiler, M., von Elverfeldt, K., and Glade, T.: Challenges of
analyzing multi-hazard risk: a review, Nat., Hazards, 64, 1925–1958,
https://doi.org/10.1007/s11069-012-0294-2, 2012.
Karapetrou, S., Manakou, M., Bindi, D., Petrovic, B., and Pitilakis, K.:
“Time-building specific” seismic vulnerability assessment of a hospital RC
building using field monitoring data, Eng. Struct., 112, 114–132,
https://doi.org/10.1016/j.engstruct.2016.01.009, 2016.
Komendantova, N., Mrzyglocki, R., Mignan, A., Khazai, B., Wenzel, F., Patt,
A., and Fleming, K.: Multi-hazard and multi-risk decision-support tools as a
part of participatory risk governance: Feedback from civil protection
stakeholders, Int. J. Disast. Risk Re., 8, 50–67, https://doi.org/10.1016/j.ijdrr.2013.12.006, 2014.
Kulikov, E. A., Rabinovich, A. B., and Thomson, R. E.: Estimation of Tsunami
Risk for the Coasts of Peru and Northern Chile, Nat. Hazards, 35, 185–209, https://doi.org/10.1007/s11069-004-4809-3, 2005.
Lagomarsino, S. and Giovinazzi, S.: Macroseismic and mechanical models for
the vulnerability and damage assessment of current buildings, B. Earthq. Eng., 4, 415–443, https://doi.org/10.1007/s10518-006-9024-z, 2006.
Lagomarsino, S., Cattari, S., and Ottonelli, D.: The heuristic vulnerability
model: fragility curves for masonry buildings, B. Earthq. Eng., 19, 3129–3163, https://doi.org/10.1007/s10518-021-01063-7, 2021.
Lahcene, E., Ioannou, I., Suppasri, A., Pakoksung, K., Paulik, R., Syamsidik, S., Bouchette, F., and Imamura, F.: Characteristics of building fragility curves for seismic and non-seismic tsunamis: case studies of the 2018 Sunda Strait, 2018 Sulawesi–Palu, and 2004 Indian Ocean tsunamis, Nat. Hazards Earth Syst. Sci., 21, 2313–2344, https://doi.org/10.5194/nhess-21-2313-2021, 2021.
Liu, B., Siu, Y. L., and Mitchell, G.: Hazard interaction analysis for multi-hazard risk assessment: a systematic classification based on hazard-forming environment, Nat. Hazards Earth Syst. Sci., 16, 629–642, https://doi.org/10.5194/nhess-16-629-2016, 2016.
Løvholt, F., Glimsdal, S., Harbitz, C. B., Horspool, N., Smebye, H., de
Bono, A., and Nadim, F.: Global tsunami hazard and exposure due to large
co-seismic slip, Int. J. Disast. Risk Re., 10, 406–418, https://doi.org/10.1016/j.ijdrr.2014.04.003, 2014.
Maiwald, H. and Schwarz, J.: Unified damage description and risk assessment
of buildings under extreme natural hazards, Mauerwerk, 23, 95–111,
https://doi.org/10.1002/dama.201910014, 2019.
Mangalathu, S., Sun, H., Nweke, C. C., Yi, Z., and Burton, H. V.:
Classifying earthquake damage to buildings using machine learning,
Earthq. Spectra, 36, 183–208, https://doi.org/10.1177/8755293019878137, 2020.
Markhvida, M., Ceferino, L., and Baker, J. W.: Effect of ground motion
correlation on regional seismic lossestimation: application to Lima, Peru
using across-correlated principal component analysis model, Safety,
Reliability, Risk, Resilience and Sustainability of Structures and
Infrastructure. 12th Int. Conf. on Structural Safety and Reliability,
Vienna, Austria, 2017.
Markhvida, M., Ceferino, L., and Baker, J. W.: Modeling spatially correlated
spectral accelerations at multiple periods using principal component
analysis and geostatistics, Earthq. Eng. Struct. D., 47, 1107–1123, https://doi.org/10.1002/eqe.3007, 2018.
Marzocchi, W., Garcia-Aristizabal, A., Gasparini, P., Mastellone, M. L., and
Di Ruocco, A.: Basic principles of multi-risk assessment: a case study in
Italy, Nat. Hazards, 62, 551–573, https://doi.org/10.1007/s11069-012-0092-x, 2012.
Mas, E., Paulik, R., Pakoksung, K., Adriano, B., Moya, L., Suppasri, A.,
Muhari, A., Khomarudin, R., Yokoya, N., Matsuoka, M., and Koshimura, S.:
Characteristics of Tsunami Fragility Functions Developed Using Different
Sources of Damage Data from the 2018 Sulawesi Earthquake and Tsunami, Pure Appl. Geophys., 177, 2437–2455, https://doi.org/10.1007/s00024-020-02501-4, 2020.
Medina, S.: Zonificación de la vulnerabilidad física para
edificaciones típicas en San Andrés de Tumaco, Costa Pacífica
Colombiana, Master thesis in Civil Engineering, Master thesis, Universidad Nacional de
Colombia Facultad de Ingeniería, Departamento Ingeniería Civil y
Ambiental, Bogotá, Colombia, 245 pp., 2019.
Medina, S., Lizarazo-Marriaga, J., Estrada, M., Koshimura, S., Mas, E., and
Adriano, B.: Tsunami analytical fragility curves for the Colombian Pacific
coast: A reinforced concrete building example, Eng. Struct., 196, 109309, https://doi.org/10.1016/j.engstruct.2019.109309, 2019.
Merz, B., Kuhlicke, C., Kunz, M., Pittore, M., Babeyko, A., Bresch, D. N.,
Domeisen, D. I. V., Feser, F., Koszalka, I., Kreibich, H., Pantillon, F.,
Parolai, S., Pinto, J. G., Punge, H. J., Rivalta, E., Schröter, K.,
Strehlow, K., Weisse, R., and Wurpts, A.: Impact Forecasting to Support
Emergency Management of Natural Hazards, Rev. Geophys., 58, e2020RG000704, https://doi.org/10.1029/2020RG000704, 2020.
Montalva, G. A., Bastías, N., and Rodriguez-Marek, A.: Ground-Motion
Prediction Equation for the Chilean Subduction Zone, B. Seismol. Soc. Am., 107, 901–911, https://doi.org/10.1785/0120160221, 2017.
Negulescu, C., Benaïchouche, A., Lemoine, A., Le Roy, S., and Pedreros, R.: Adjustability of exposed elements by updating their capacity for resistance after a damaging event: application to an earthquake–tsunami cascade scenario, Nat. Hazards, 104, 753–793, https://doi.org/10.1007/s11069-020-04189-0, 2020.
Ordaz, M., Salgado-Gálvez, M. A., Huerta, B., Rodríguez, J. C., and Avelar, C.: Considering the impacts of simultaneous perils: The challenges of integrating earthquake and tsunamigenic risk, Disaster Prev. Manag., 28, 823–837, https://doi.org/10.1108/DPM-09-2019-0295, 2019.
Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., Henshaw, P., Butler, L., Nastasi, M., Panzeri, L., Simionato, M., and Vigano, D.: OpenQuake Engine: An Open Hazard (and Risk) Software for the Global Earthquake Model, Seismol. Res. Lett., 85, 692–702, https://doi.org/10.1785/0220130087, 2014.
Papadopoulos, A. N. and Bazzurro, P.: Exploring probabilistic seismic risk
assessment accounting for seismicity clustering and damage accumulation:
Part II. Risk analysis, Earthq. Spectra, 37, 386–408,
https://doi.org/10.1177/8755293020938816, 2021.
Park, H., Cox, D. T., and Barbosa, A. R.: Comparison of inundation depth and
momentum flux based fragilities for probabilistic tsunami damage assessment
and uncertainty analysis, Coast. Eng., 122, 10–26,
https://doi.org/10.1016/j.coastaleng.2017.01.008, 2017.
Park, H., Alam, M. S., Cox, D. T., Barbosa, A. R., and van de Lindt, J. W.:
Probabilistic seismic and tsunami damage analysis (PSTDA) of the Cascadia
Subduction Zone applied to Seaside, Oregon, Int. J. Disast. Risk Re., 35, 101076, https://doi.org/10.1016/j.ijdrr.2019.101076, 2019.
Pescaroli, G. and Alexander, D.: Understanding Compound, Interconnected,
Interacting, and Cascading Risks: A Holistic Framework, Risk Anal., 38,
2245–2257, https://doi.org/10.1111/risa.13128, 2018.
Petersen, M. D., Harmsen, S. C., Jaiswal, K. S., Rukstales, K. S., Luco, N.,
Haller, K. M., Mueller, C. S., and Shumway, A. M.: Seismic Hazard, Risk, and
Design for South America, B. Seismol. Soc. Am., 108, 781–800, https://doi.org/10.1785/0120170002, 2018.
Petrone, C., Rossetto, T., and Goda, K.: Fragility assessment of a RC
structure under tsunami actions via nonlinear static and dynamic analyses,
Eng. Struct., 136, 36–53, https://doi.org/10.1016/j.engstruct.2017.01.013, 2017.
Petrone, C., Rossetto, T., Baiguera, M., la Barra Bustamante, C. D., and
Ioannou, I.: Fragility functions for a reinforced concrete structure
subjected to earthquake and tsunami in sequence, Eng. Struct., 205, 110120, https://doi.org/10.1016/j.engstruct.2019.110120, 2020.
Pittore, M., Haas, M., and Megalooikonomou, K. G.: Risk-Oriented, Bottom-Up
Modeling of Building Portfolios With Faceted Taxonomies, Frontiers in Built
Environment, 4, 41, https://doi.org/10.3389/fbuil.2018.00041, 2018.
Pittore, M., Haas, M., and Silva, V.: Variable resolution probabilistic
modeling of residential exposure and vulnerability for risk applications,
Earthq. Spectra, 36, 321–344, https://doi.org/10.1177/8755293020951582, 2020.
Pittore, M., Gomez-Zapata, J. C., Brinckmann, N., and Rüster, M.:
Assetmaster and Modelprop: web services to serve building exposure models
and fragility functions for physical vulnerability to natural-hazards, Version 1.0, GFZ Data Services [data set], https://doi.org/10.5880/riesgos.2021.005, 2021.
Rao, A. S., Lepech, M. D., and Kiremidjian, A.: Development of
time-dependent fragility functions for deteriorating reinforced concrete
bridge piers, Struct. Infrastruct. E., 13, 67–83,
https://doi.org/10.1080/15732479.2016.1198401, 2017.
Rossetto, T., Petrone, C., Eames, I., De La Barra, C., Foster, A., and
Macabuag, J.: Advances in the Assessment of Buildings Subjected to
Earthquakes and Tsunami, in: Recent Advances in Earthquake Engineering in
Europe: 16th European Conference on Earthquake Engineering-Thessaloniki
2018, edited by: Pitilakis, K., Springer International Publishing, Cham,
545–562, https://doi.org/10.1007/978-3-319-75741-4_23, 2018.
Rossetto, T., De la Barra, C., Petrone, C., De la Llera, J. C., Vásquez, J., and Baiguera, M.: Comparative assessment of nonlinear static and dynamic
methods for analysing building response under sequential earthquake and
tsunami, Earthq. Eng. Struct. D., 48, 867–887, https://doi.org/10.1002/eqe.3167, 2019.
Schelske, O., Sundermann, L., and Hausmann, P.: Mind the risk - A global
ranking of cities under threat from natural disasters, Swiss Re, 2013.
Schwarz, J., Maiwald, H., Kaufmann, C., Langhammer, T., and Beinersdorf, S.:
Conceptual basics and tools to assess the multi hazard vulnerability of
existing buildings, Mauerwerk, 23, 246–264, https://doi.org/10.1002/dama.201910025, 2019.
Selva, J.: Long-term multi-risk assessment: statistical treatment of
interaction among risks, Nat. Hazards, 67, 701–722, https://doi.org/10.1007/s11069-013-0599-9, 2013.
Silva, V., Yepes-Estrada, C., Dabbeek, J., Martins, L., and Brzev, S.:
GED4ALL: Global exposure database for multi-hazard risk analysis.
Multi-hazard exposure taxonomy, D5 - Final Report, GEM Technical Report 2018-05, GGEM Foundation, Pavia, https://riskdatalibrary.org/assets/docs/technicalReports/challengefund_phase1_exposureSchemaDevelopment_D5%20-%20Final%20report.pdf (last access: 2 June 2023), 2018.
Silva, V., Brzev, S., Scawthorn, C., Yepes, C., Dabbeek, J., and Crowley, H.: A Building Classification System for Multi-hazard Risk Assessment, Int. J. Disast. Risk Sc., 161–177, https://doi.org/10.1007/s13753-022-00400-x, 2022.
Suppasri, A., Mas, E., Charvet, I., Gunasekera, R., Imai, K., Fukutani, Y.,
Abe, Y., and Imamura, F.: Building damage characteristics based on surveyed
data and fragility curves of the 2011 Great East Japan tsunami, Nat. Hazards, 66, 319–341, https://doi.org/10.1007/s11069-012-0487-8, 2013.
Suppasri, A., Charvet, I., Imai, K., and Imamura, F.: Fragility Curves Based
on Data from the 2011 Tohoku-Oki Tsunami in Ishinomaki City, with Discussion
of Parameters Influencing Building Damage, Earthq. Spectra, 31, 841–868,
https://doi.org/10.1193/053013EQS138M, 2015.
Suppasri, A., Maly, E., Kitamura, M., Syamsidik, Pescaroli, G., Alexander,
D., and Imamura, F.: Cascading disasters triggered by tsunami hazards: A
perspective for critical infrastructure resilience and disaster risk
reduction, Int. J. Disast. Risk Re., 66, 102597, https://doi.org/10.1016/j.ijdrr.2021.102597, 2021.
Tarque, N., Salsavilca, J., Yacila, J., and Camata, G.: Multi-criteria
analysis of five reinforcement options for Peruvian confined masonry walls,
Earthq. Struct., 17, 205–219, 2019.
Terzi, S., Torresan, S., Schneiderbauer, S., Critto, A., Zebisch, M., and
Marcomini, A.: Multi-risk assessment in mountain regions: A review of modelling approaches for climate change adaptation, J. Environ. Manage., 232, 759–771, https://doi.org/10.1016/j.jenvman.2018.11.100, 2019.
Tilloy, A., Malamud, B. D., Winter, H., and Joly-Laugel, A.: A review of
quantification methodologies for multi-hazard interrelationships,
Earth-Sci. Rev., 196, 102881, https://doi.org/10.1016/j.earscirev.2019.102881, 2019.
Trevlopoulos, K., Guéguen, P., Helmstetter, A., and Cotton, F.: Earthquake risk in reinforced concrete buildings during aftershock sequences
based on period elongation and operational earthquake forecasting,
Struct. Saf., 84, 101922, https://doi.org/10.1016/j.strusafe.2020.101922, 2020.
Triantafyllou, I., Novikova, T., Charalampakis, M., Fokaefs, A., and
Papadopoulos, G. A.: Quantitative Tsunami Risk Assessment in Terms of
Building Replacement Cost Based on Tsunami Modelling and GIS Methods: The
Case of Crete Isl., Hellenic Arc, Pure Appl. Geophys., 176, 3207–3225, https://doi.org/10.1007/s00024-018-1984-9, 2019.
Turchi, A., Traglia, F. D., Gentile, R., Fornaciai, A., Zetti, I., and
Fanti, R.: Relative seismic and tsunami risk assessment for Stromboli Island
(Italy), Int. J. Disast. Risk Re., 76, 103002, https://doi.org/10.1016/j.ijdrr.2022.103002, 2022.
Vamvatsikos, D., Panagopoulos, G., Kappos, A. J., Nigro, E., Rossetto, T.,
Lloyd, T. O., and Stathopoulos, T.: Structural Vulnerability Assessment
under Natural Hazards: A review, in: COST ACTION C26: Urban Habitat Constructions under Catastrophic Events, Naples, Italy, 16–18 September 2010, edited by: Mazzolani, F. M., CRC Press, http://ikee.lib.auth.gr/record/228630/?ln=en (last access: 2 June 2023), 2010.
Villar-Vega, M., Silva, V., Crowley, H., Yepes, C., Tarque, N., Acevedo, A.
B., Hube, M. A., Gustavo, C. D., and María, H. S.: Development of a
Fragility Model for the Residential Building Stock in South America,
Earthq. Spectra, 33, 581–604, https://doi.org/10.1193/010716EQS005M, 2017.
Ward, P. J., Blauhut, V., Bloemendaal, N., Daniell, J. E., de Ruiter, M. C., Duncan, M. J., Emberson, R., Jenkins, S. F., Kirschbaum, D., Kunz, M., Mohr, S., Muis, S., Riddell, G. A., Schäfer, A., Stanley, T., Veldkamp, T. I. E., and Winsemius, H. C.: Review article: Natural hazard risk assessments at the global scale, Nat. Hazards Earth Syst. Sci., 20, 1069–1096, https://doi.org/10.5194/nhess-20-1069-2020, 2020.
Ward, P. J., Daniell, J., Duncan, M., Dunne, A., Hananel, C., Hochrainer-Stigler, S., Tijssen, A., Torresan, S., Ciurean, R., Gill, J. C., Sillmann, J., Couasnon, A., Koks, E., Padrón-Fumero, N., Tatman, S., Tronstad Lund, M., Adesiyun, A., Aerts, J. C. J. H., Alabaster, A., Bulder, B., Campillo Torres, C., Critto, A., Hernández-Martín, R., Machado, M., Mysiak, J., Orth, R., Palomino Antolín, I., Petrescu, E.-C., Reichstein, M., Tiggeloven, T., Van Loon, A. F., Vuong Pham, H., and de Ruiter, M. C.: Invited perspectives: A research agenda towards disaster risk management pathways in multi-(hazard-)risk assessment, Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, 2022.
Weatherill, G., Pittore, M., Haas, M., Brinckmann, N., Rüster, M., and
Gomez-Zapata, J. C.: Shakyground: a web service to serve GMPE-based ground
motion fields, Version 1.0, GFZ Data Services [data set], https://doi.org/10.5880/riesgos.2021.004, 2021.
Yepes-Estrada, C., Silva, V., Valcárcel, J., Acevedo, A. B., Tarque, N.,
Hube, M. A., Coronel, G., and María, H. S.: Modeling the Residential
Building Inventory in South America for Seismic Risk Assessment, Earthq.
Spectra, 33, 299–322, https://doi.org/10.1193/101915EQS155DP, 2017.
Zuccaro, G., Cacace, F., Spence, R. J. S., and Baxter, P. J.: Impact of
explosive eruption scenarios at Vesuvius, J. Volcanol. Geoth. Res., 178, 416–453, https://doi.org/10.1016/j.jvolgeores.2008.01.005, 2008.
Zuccaro, G., De Gregorio, D., and Leone, M. F.: Theoretical model for
cascading effects analyses, Int. J. Disast. Risk Re., 30, 199–215, https://doi.org/10.1016/j.ijdrr.2018.04.019, 2018.
Short summary
To investigate cumulative damage on extended building portfolios, we propose an alternative and modular method to probabilistically integrate sets of single-hazard vulnerability models that are being constantly developed by experts from various research fields to be used within a multi-risk context. We demonstrate its application by assessing the economic losses expected for the residential building stock of Lima, Peru, a megacity commonly exposed to consecutive earthquake and tsunami scenarios.
To investigate cumulative damage on extended building portfolios, we propose an alternative and...
Special issue
Altmetrics
Final-revised paper
Preprint