Articles | Volume 23, issue 1
https://doi.org/10.5194/nhess-23-159-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-159-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
How uncertain are precipitation and peak flow estimates for the July 2021 flooding event?
Mohamed Saadi
CORRESPONDING AUTHOR
Institute for Bio- and Geosciences (IBG-3, Agrosphere), Forschungszentrum Jülich, Jülich 52425, Germany
Centre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich 52428, Germany
Institut de Mécanique des Fluides de Toulouse (INPT-CNRS-UPS), Toulouse 31400, France
Carina Furusho-Percot
Institute for Bio- and Geosciences (IBG-3, Agrosphere), Forschungszentrum Jülich, Jülich 52425, Germany
Centre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich 52428, Germany
INRAE Centre de Recherche PACA, US 1116 AGROCLIM, Avignon 84914, France
Alexandre Belleflamme
Institute for Bio- and Geosciences (IBG-3, Agrosphere), Forschungszentrum Jülich, Jülich 52425, Germany
Centre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich 52428, Germany
Ju-Yu Chen
Institute for Geosciences, Department of Meteorology, Universität Bonn, Bonn 53121, Germany
Silke Trömel
Institute for Geosciences, Department of Meteorology, Universität Bonn, Bonn 53121, Germany
Laboratory for Clouds and Precipitation Exploration, Geoverbund ABC/J, Bonn 53121, Germany
Stefan Kollet
Institute for Bio- and Geosciences (IBG-3, Agrosphere), Forschungszentrum Jülich, Jülich 52425, Germany
Centre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich 52428, Germany
Related authors
Mohamed Saadi, Louis Guichard, Gabrielle Cognot, Laurent Labbouz, and Hélène Roux
EGUsphere, https://doi.org/10.5194/egusphere-2025-3393, https://doi.org/10.5194/egusphere-2025-3393, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
LSTM networks are excellent deep-learning tools to reproduce stream temperature observations, but their performances over the range of extreme (summer) stream temperature values have been overlooked. We close this gap by looking at strategies to improve the LSTM performances over the highest 10 % values of stream temperature observations. We found that the best strategy is to train the LSTM models at several locations with input variables that include static catchment and reach attributes.
Mohamed Saadi, Louis Guichard, Gabrielle Cognot, Laurent Labbouz, and Hélène Roux
EGUsphere, https://doi.org/10.5194/egusphere-2025-3393, https://doi.org/10.5194/egusphere-2025-3393, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
LSTM networks are excellent deep-learning tools to reproduce stream temperature observations, but their performances over the range of extreme (summer) stream temperature values have been overlooked. We close this gap by looking at strategies to improve the LSTM performances over the highest 10 % values of stream temperature observations. We found that the best strategy is to train the LSTM models at several locations with input variables that include static catchment and reach attributes.
Velibor Pejcic, Kamil Mroz, Kai Mühlbauer, and Silke Trömel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1414, https://doi.org/10.5194/egusphere-2025-1414, 2025
Short summary
Short summary
Estimating the proportions of individual hydrometeor types (hydrometeor partitioning ratios, HPRs) in a mixture of a resolved radar volume and their evaluation is challenging. This study has three objectives, (1) to evaluate HPR retrievals, (2) to exploit the combination of dual-frequency (DF) space-borne radar (SR) and dual-polarisation (DP) ground-based radar (GR) observations for estimating HPRs based on SR DF observations and (3) to further improve HPR estimates based on DP GR observations.
Armin Blanke, Mathias Gergely, and Silke Trömel
Atmos. Chem. Phys., 25, 4167–4184, https://doi.org/10.5194/acp-25-4167-2025, https://doi.org/10.5194/acp-25-4167-2025, 2025
Short summary
Short summary
The area-wide radar-based distinction between riming and aggregation is crucial for model microphysics and data assimilation. This study introduces a discrimination algorithm based on polarimetric radar networks only. Exploiting the unique opportunity to link fall velocities from Doppler spectra to polarimetric variables in an operational setting enables us to set up and evaluate a well-performing machine learning algorithm.
Robert Reinecke, Annemarie Bäthge, Ricarda Dietrich, Sebastian Gnann, Simon N. Gosling, Danielle Grogan, Andreas Hartmann, Stefan Kollet, Rohini Kumar, Richard Lammers, Sida Liu, Yan Liu, Nils Moosdorf, Bibi Naz, Sara Nazari, Chibuike Orazulike, Yadu Pokhrel, Jacob Schewe, Mikhail Smilovic, Maryna Strokal, Yoshihide Wada, Shan Zuidema, and Inge de Graaf
EGUsphere, https://doi.org/10.5194/egusphere-2025-1181, https://doi.org/10.5194/egusphere-2025-1181, 2025
Short summary
Short summary
Here we describe a collaborative effort to improve predictions of how climate change will affect groundwater. The ISIMIP groundwater sector combines multiple global groundwater models to capture a range of possible outcomes and reduce uncertainty. Initial comparisons reveal significant differences between models in key metrics like water table depth and recharge rates, highlighting the need for structured model intercomparisons.
Bamidele Oloruntoba, Stefan Kollet, Carsten Montzka, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 29, 1659–1683, https://doi.org/10.5194/hess-29-1659-2025, https://doi.org/10.5194/hess-29-1659-2025, 2025
Short summary
Short summary
We studied how soil and weather data affect land model simulations over Africa. By combining soil data processed in different ways with weather data of varying time intervals, we found that weather inputs had a greater impact on water processes than soil data type. However, the way soil data were processed became crucial when paired with high-frequency weather inputs, showing that detailed weather data can improve local and regional predictions of how water moves and interacts with the land.
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim G. Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
Nat. Hazards Earth Syst. Sci., 25, 541–564, https://doi.org/10.5194/nhess-25-541-2025, https://doi.org/10.5194/nhess-25-541-2025, 2025
Short summary
Short summary
Europe frequently experiences compound events, with major impacts. We investigate these events’ interactions, characteristics, and changes over time, focusing on socio-economic impacts in Germany and central Europe. Highlighting 2018’s extreme events, this study reveals impacts on water, agriculture, and forests and stresses the need for impact-focused definitions and better future risk quantification to support adaptation planning.
Florian Knutzen, Paul Averbeck, Caterina Barrasso, Laurens M. Bouwer, Barry Gardiner, José M. Grünzweig, Sabine Hänel, Karsten Haustein, Marius Rohde Johannessen, Stefan Kollet, Mortimer M. Müller, Joni-Pekka Pietikäinen, Karolina Pietras-Couffignal, Joaquim G. Pinto, Diana Rechid, Efi Rousi, Ana Russo, Laura Suarez-Gutierrez, Sarah Veit, Julian Wendler, Elena Xoplaki, and Daniel Gliksman
Nat. Hazards Earth Syst. Sci., 25, 77–117, https://doi.org/10.5194/nhess-25-77-2025, https://doi.org/10.5194/nhess-25-77-2025, 2025
Short summary
Short summary
Our research, involving 22 European scientists, investigated drought and heat impacts on forests in 2018–2022. Findings reveal that climate extremes are intensifying, with central Europe being most severely impacted. The southern region showed resilience due to historical drought exposure, while northern and Alpine areas experienced emerging or minimal impacts. The study highlights the need for region-specific strategies, improved data collection, and sustainable practices to safeguard forests.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Liubov Poshyvailo-Strube, Niklas Wagner, Klaus Goergen, Carina Furusho-Percot, Carl Hartick, and Stefan Kollet
Earth Syst. Dynam., 15, 167–189, https://doi.org/10.5194/esd-15-167-2024, https://doi.org/10.5194/esd-15-167-2024, 2024
Short summary
Short summary
Groundwater (GW) representation is simplified in most regional climate models. Here, we introduce a unique Terrestrial Systems Modeling Platform (TSMP) dataset with an explicit representation of GW, in the context of dynamical downscaling of GCMs for climate change studies. We compare the heat events statistics of TSMP and the CORDEX ensemble. Our results show that TSMP systematically simulates fewer heat waves, and they are shorter and less intense.
Lucas Reimann, Clemens Simmer, and Silke Trömel
Atmos. Chem. Phys., 23, 14219–14237, https://doi.org/10.5194/acp-23-14219-2023, https://doi.org/10.5194/acp-23-14219-2023, 2023
Short summary
Short summary
Polarimetric radar observations were assimilated for the first time in a convective-scale numerical weather prediction system in Germany and their impact on short-term precipitation forecasts was evaluated. The assimilation was performed using microphysical retrievals of liquid and ice water content and yielded slightly improved deterministic 9 h precipitation forecasts for three intense summer precipitation cases with respect to the assimilation of radar reflectivity alone.
Zbigniew P. Piotrowski, Jaro Hokkanen, Daniel Caviedes-Voullieme, Olaf Stein, and Stefan Kollet
EGUsphere, https://doi.org/10.5194/egusphere-2023-1079, https://doi.org/10.5194/egusphere-2023-1079, 2023
Preprint withdrawn
Short summary
Short summary
The computer programs capable of simulation of Earth system components evolve, adapting new fundamental science concepts and more observational data on more and more powerful computer hardware. Adaptation of a large scientific program to a new type of hardware is costly. In this work we propose cheap and simple but effective strategy that enable computation using graphic processing units, based on automated program code modification. This results in better resolution and/or longer predictions.
Tobias Tesch, Stefan Kollet, and Jochen Garcke
Geosci. Model Dev., 16, 2149–2166, https://doi.org/10.5194/gmd-16-2149-2023, https://doi.org/10.5194/gmd-16-2149-2023, 2023
Short summary
Short summary
A recent statistical approach for studying relations in the Earth system is to train deep learning (DL) models to predict Earth system variables given one or several others and use interpretable DL to analyze the relations learned by the models. Here, we propose to combine the approach with a theorem from causality research to ensure that the deep learning model learns causal rather than spurious relations. As an example, we apply the method to study soil-moisture–precipitation coupling.
Armin Blanke, Andrew J. Heymsfield, Manuel Moser, and Silke Trömel
Atmos. Meas. Tech., 16, 2089–2106, https://doi.org/10.5194/amt-16-2089-2023, https://doi.org/10.5194/amt-16-2089-2023, 2023
Short summary
Short summary
We present an evaluation of current retrieval techniques in the ice phase applied to polarimetric radar measurements with collocated in situ observations of aircraft conducted over the Olympic Mountains, Washington State, during winter 2015. Radar estimates of ice properties agreed most with aircraft observations in regions with pronounced radar signatures, but uncertainties were identified that indicate issues of some retrievals, particularly in warmer temperature regimes.
Bibi S. Naz, Wendy Sharples, Yueling Ma, Klaus Goergen, and Stefan Kollet
Geosci. Model Dev., 16, 1617–1639, https://doi.org/10.5194/gmd-16-1617-2023, https://doi.org/10.5194/gmd-16-1617-2023, 2023
Short summary
Short summary
It is challenging to apply a high-resolution integrated land surface and groundwater model over large spatial scales. In this paper, we demonstrate the application of such a model over a pan-European domain at 3 km resolution and perform an extensive evaluation of simulated water states and fluxes by comparing with in situ and satellite data. This study can serve as a benchmark and baseline for future studies of climate change impact projections and for hydrological forecasting.
Prabhakar Shrestha, Silke Trömel, Raquel Evaristo, and Clemens Simmer
Atmos. Chem. Phys., 22, 7593–7618, https://doi.org/10.5194/acp-22-7593-2022, https://doi.org/10.5194/acp-22-7593-2022, 2022
Short summary
Short summary
The study makes use of ensemble numerical simulations with forward operator to evaluate the simulated cloud and precipitation processes with radar observations. While comparing model data with radar has its own challenges due to errors in the forward operator and processed radar measurements, the model was generally found to underestimate the high reflectivity, width/magnitude (value) of ZDR columns and high precipitation.
Prabhakar Shrestha, Jana Mendrok, Velibor Pejcic, Silke Trömel, Ulrich Blahak, and Jacob T. Carlin
Geosci. Model Dev., 15, 291–313, https://doi.org/10.5194/gmd-15-291-2022, https://doi.org/10.5194/gmd-15-291-2022, 2022
Short summary
Short summary
The article focuses on the exploitation of radar polarimetry for model evaluation of stratiform precipitation. The model exhibited a low bias in simulated polarimetric moments at lower levels above the melting layer where snow was found to dominate. This necessitates further research into the missing microphysical processes in these lower levels (e.g. fragmentation due to ice–ice collisions) and use of more reliable snow-scattering models in the forward operator to draw valid conclusions.
Silke Trömel, Clemens Simmer, Ulrich Blahak, Armin Blanke, Sabine Doktorowski, Florian Ewald, Michael Frech, Mathias Gergely, Martin Hagen, Tijana Janjic, Heike Kalesse-Los, Stefan Kneifel, Christoph Knote, Jana Mendrok, Manuel Moser, Gregor Köcher, Kai Mühlbauer, Alexander Myagkov, Velibor Pejcic, Patric Seifert, Prabhakar Shrestha, Audrey Teisseire, Leonie von Terzi, Eleni Tetoni, Teresa Vogl, Christiane Voigt, Yuefei Zeng, Tobias Zinner, and Johannes Quaas
Atmos. Chem. Phys., 21, 17291–17314, https://doi.org/10.5194/acp-21-17291-2021, https://doi.org/10.5194/acp-21-17291-2021, 2021
Short summary
Short summary
The article introduces the ACP readership to ongoing research in Germany on cloud- and precipitation-related process information inherent in polarimetric radar measurements, outlines pathways to inform atmospheric models with radar-based information, and points to remaining challenges towards an improved fusion of radar polarimetry and atmospheric modelling.
Bernd Schalge, Gabriele Baroni, Barbara Haese, Daniel Erdal, Gernot Geppert, Pablo Saavedra, Vincent Haefliger, Harry Vereecken, Sabine Attinger, Harald Kunstmann, Olaf A. Cirpka, Felix Ament, Stefan Kollet, Insa Neuweiler, Harrie-Jan Hendricks Franssen, and Clemens Simmer
Earth Syst. Sci. Data, 13, 4437–4464, https://doi.org/10.5194/essd-13-4437-2021, https://doi.org/10.5194/essd-13-4437-2021, 2021
Short summary
Short summary
In this study, a 9-year simulation of complete model output of a coupled atmosphere–land-surface–subsurface model on the catchment scale is discussed. We used the Neckar catchment in SW Germany as the basis of this simulation. Since the dataset includes the full model output, it is not only possible to investigate model behavior and interactions between the component models but also use it as a virtual truth for comparison of, for example, data assimilation experiments.
Yueling Ma, Carsten Montzka, Bagher Bayat, and Stefan Kollet
Hydrol. Earth Syst. Sci., 25, 3555–3575, https://doi.org/10.5194/hess-25-3555-2021, https://doi.org/10.5194/hess-25-3555-2021, 2021
Short summary
Short summary
This study utilized spatiotemporally continuous precipitation anomaly (pra) and water table depth anomaly (wtda) data from integrated hydrologic simulation results over Europe in combination with Long Short-Term Memory (LSTM) networks to capture the time-varying and time-lagged relationship between pra and wtda in order to obtain reliable models to estimate wtda at the individual pixel level.
Cited articles
Anagnostou, M. N., Kalogiros, J., Anagnostou, E. N., Tarolli, M.,
Papadopoulos, A., and Borga, M.: Performance evaluation of high-resolution
rainfall estimation by X-band dual-polarization radar for flash flood
applications in mountainous basins, J. Hydrol., 394, 4–16,
https://doi.org/10.1016/j.jhydrol.2010.06.026, 2010.
Anagnostou, M. N., Nikolopoulos, E. I., Kalogiros, J., Anagnostou, E. N.,
Marra, F., Mair, E., Bertoldi, G., Tappeiner, U., and Borga, M.: Advancing
Precipitation Estimation and Streamflow Simulations in Complex Terrain with
X-Band Dual-Polarization Radar Observations, Remote Sens., 10, 1258,
https://doi.org/10.3390/rs10081258, 2018.
Anctil, F. and Ramos, M.-H.: Verification Metrics for Hydrological Ensemble
Forecasts, in: Handbook of Hydrometeorological Ensemble Forecasting, edited
by: Duan, Q., Pappenberger, F., Thielen, J., Wood, A., Cloke, H. L., and
Schaake, J. C., Springer, Berlin, Heidelberg, 1–30,
https://doi.org/10.1007/978-3-642-40457-3_3-1, 2017.
Anquetin, S., Yates, E., Ducrocq, V., Samouillan, S., Chancibault, K., Davolio, S., Accadia, C., Casaioli, M., Mariani, S., Ficca, G., Gozzini, B., Pasi, F., Pasqui, M., Garcia, A., Martorell, M., Romero, R., and Chessa, P.: The 8 and 9 September 2002 flash flood event in France: a model intercomparison, Nat. Hazards Earth Syst. Sci., 5, 741–754, https://doi.org/10.5194/nhess-5-741-2005, 2005.
Asante, K. O., Artan, G. A., Pervez, M. S., Bandaragoda, C., and Verdin, J.
P.: Technical Manual for the Geospatial Stream Flow Model (GeoSFM),
Technical Manual for the Geospatial Stream Flow Model (GeoSFM), U.S.
Geological Survey, Open-File Report 2007-1441, https://doi.org/10.3133/ofr20071441, 2008.
Berne, A. and Krajewski, W. F.: Radar for hydrology: Unfulfilled promise or
unrecognized potential?, Adv. Water Resour., 51, 357–366,
https://doi.org/10.1016/j.advwatres.2012.05.005, 2013.
BMI: Bericht zur Hochwasserkatastrophe 2021: Katastrophenhilfe, Wiederaufbau
und Evaluierungsprozesse, Bundesministerium des Innern und für Heimat,
Berlin, Germany, https://www.bmi.bund.de/SharedDocs/downloads/DE/veroeffentlichungen/2022/abschlussbericht-hochwasserkatastrophe.pdf;jsessionid=98D3F1ADE38213E64E2F569C09B5F923.1_cid332?__blob=publicationFile&v=1
last access: 21 December 2022.
Borga, M., Boscolo, P., Zanon, F., and Sangati, M.: Hydrometeorological
Analysis of the 29 August 2003 Flash Flood in the Eastern Italian Alps, J.
Hydrometeorol., 8, 1049–1067, https://doi.org/10.1175/JHM593.1, 2007.
Boushaki, F. I., Hsu, K.-L., Sorooshian, S., Park, G.-H., Mahani, S., and
Shi, W.: Bias Adjustment of Satellite Precipitation Estimation Using
Ground-Based Measurement: A Case Study Evaluation over the Southwestern
United States, J. Hydrometeorol., 10, 1231–1242,
https://doi.org/10.1175/2009JHM1099.1, 2009.
Braud, I., Roux, H., Anquetin, S., Maubourguet, M.-M., Manus, C., Viallet,
P., and Dartus, D.: The use of distributed hydrological models for the Gard
2002 flash flood event: Analysis of associated hydrological processes, J.
Hydrol., 394, 162–181, https://doi.org/10.1016/j.jhydrol.2010.03.033, 2010.
Brigode, P., Oudin, L., and Perrin, C.: Hydrological model parameter
instability: A source of additional uncertainty in estimating the
hydrological impacts of climate change?, J. Hydrol., 476, 410–425,
https://doi.org/10.1016/j.jhydrol.2012.11.012, 2013.
Chen, H., Cifelli, R., and White, A.: Improving Operational Radar Rainfall
Estimates Using Profiler Observations Over Complex Terrain in Northern
California, IEEE T. Geosci. Remote, 58, 1821–1832,
https://doi.org/10.1109/TGRS.2019.2949214, 2020.
Chen, J.-Y., Trömel, S., Ryzhkov, A., and Simmer, C.: Assessing the
Benefits of Specific Attenuation for Quantitative Precipitation Estimation
with a C-Band Radar Network, J. Hydrometeorol., 22, 2617–2631,
https://doi.org/10.1175/JHM-D-20-0299.1, 2021.
Chen, J.-Y., Reinoso-Rondinel, R., Trömel, S., Simmer, C., and Ryzhkov,
A.: A radar-based quantitative precipitation estimation algorithm to
overcome the impact of vertical gradients of warm-rain precipitation: the
flood in western Germany on 14 July 2021, J. Hydrometeorol., online first, https://doi.org/10.1175/JHM-D-22-0111.1, 2022.
Cole, S. J. and Moore, R. J.: Distributed hydrological modelling using
weather radar in gauged and ungauged basins, Adv. Water Resour., 32,
1107–1120, https://doi.org/10.1016/j.advwatres.2009.01.006, 2009.
Coron, L., Thirel, G., Delaigue, O., Perrin, C., and Andréassian, V.:
The suite of lumped GR hydrological models in an R package, Environ. Modell.
Softw., 94, 166–171, https://doi.org/10.1016/j.envsoft.2017.05.002, 2017 (code available at: https://hydrogr.github.io/airGR/, last access: 9 January 2023).
Cunha, L. K., Smith, J. A., Krajewski, W. F., Baeck, M. L., and Seo, B.-C.:
NEXRAD NWS Polarimetric Precipitation Product Evaluation for IFloodS, J.
Hydrometeorol., 16, 1676–1699, https://doi.org/10.1175/JHM-D-14-0148.1, 2015.
Dai, Q. and Han, D.: Exploration of discrepancy between radar and gauge
rainfall estimates driven by wind fields, Water Resour. Res., 50,
8571–8588, https://doi.org/10.1002/2014WR015794, 2014.
Derin, Y., Anagnostou, E., Anagnostou, M., and Kalogiros, J.: Evaluation of
X-Band Dual-Polarization Radar-Rainfall Estimates from OLYMPEX, J.
Hydrometeorol., 20, 1941–1959, https://doi.org/10.1175/JHM-D-19-0097.1, 2019.
Deutsche Welle: German floods: Climate change made heavy rains in Europe more likely, https://www.dw.com/en/german-floods-climate-change/a-58959677 (last access: 21 December 2022), 2021.
Diederich, M., Ryzhkov, A., Simmer, C., Zhang, P., and Trömel, S.: Use
of Specific Attenuation for Rainfall Measurement at X-Band Radar
Wavelengths. Part I: Radar Calibration and Partial Beam Blockage Estimation,
J. Hydrometeorol., 16, 487–502, https://doi.org/10.1175/JHM-D-14-0066.1, 2015a.
Diederich, M., Ryzhkov, A., Simmer, C., Zhang, P., and Trömel, S.: Use
of Specific Attenuation for Rainfall Measurement at X-Band Radar
Wavelengths. Part II: Rainfall Estimates and Comparison with Rain Gauges, J.
Hydrometeorol., 16, 503–516, https://doi.org/10.1175/JHM-D-14-0067.1, 2015b.
Dottori, F., Szewczyk, W., Ciscar, J.-C., Zhao, F., Alfieri, L.,
Hirabayashi, Y., Bianchi, A., Mongelli, I., Frieler, K., Betts, R. A., and
Feyen, L.: Increased human and economic losses from river flooding with
anthropogenic warming, Nat. Clim. Change, 8, 781–786,
https://doi.org/10.1038/s41558-018-0257-z, 2018.
Dougherty, E. and Rasmussen, K. L.: Changes in Future Flash Flood–Producing
Storms in the United States, J. Hydrometeorol., 21, 2221–2236,
https://doi.org/10.1175/JHM-D-20-0014.1, 2020.
Dumont, M., Saadi, M., Oudin, L., Lachassagne, P., Nugraha, B., Fadillah, A., Bonjour, J.-L., Muhammad, A., Hendarmawan, Dörfliger, N., and Plagnes, V.: Assessing rainfall global products reliability for water resource management in a tropical volcanic mountainous catchment, J. Hydrol. Reg. Stud., 40, 101037, https://doi.org/10.1016/j.ejrh.2022.101037, 2022.
Duscher, K., Günther, A., Richts, A., Clos, P., Philipp, U., and
Struckmeier, W.: The GIS layers of the “International Hydrogeological Map
of Europe 1:1,500,000” in a vector format, Hydrogeol. J., 23, 1867–1875,
https://doi.org/10.1007/s10040-015-1296-4, 2015.
Edijatno, Nascimento, N. de O., Yang, X., Makhlouf, Z., and Michel, C.:
GR3J: a daily watershed model with three free parameters, Hydrolog. Sci. J.,
44, 263–277, https://doi.org/10.1080/02626669909492221, 1999.
Emmanuel, I., Payrastre, O., Andrieu, H., and Zuber, F.: A method for
assessing the influence of rainfall spatial variability on hydrograph
modeling. First case study in the Cevennes Region, southern France, J.
Hydrol., 555, 314–322, https://doi.org/10.1016/j.jhydrol.2017.10.011, 2017.
Ficchì, A., Perrin, C., and Andréassian, V.: Hydrological modelling
at multiple sub-daily time steps: Model improvement via flux-matching, J.
Hydrol., 575, 1308–1327, https://doi.org/10.1016/j.jhydrol.2019.05.084, 2019.
Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R. P., Ban,
N., Barbero, R., Berg, P., Blenkinsop, S., Do, H. X., Guerreiro, S.,
Haerter, J. O., Kendon, E. J., Lewis, E., Schaer, C., Sharma, A., Villarini,
G., Wasko, C., and Zhang, X.: Anthropogenic intensification of short-duration rainfall extremes, Nat. Rev. Earth Environ., 2, 107–122, https://doi.org/10.1038/s43017-020-00128-6, 2021.
GDV: 2021 teuerstes Naturgefahrenjahr für die Versicherer, Gesamtverband
der Deutschen Versicherungswirtschaft (GDV), Berlin, Germany,
https://www.gdv.de/de/medien/aktuell/2021-teuerstes-naturgefahrenjahr-fuer-die-versicherer-74092
(last access: 21 December 2022), 2021 (in German).
Gourley, J. J., Giangrande, S. E., Hong, Y., Flamig, Z. L., Schuur, T., and
Vrugt, J. A.: Impacts of Polarimetric Radar Observations on Hydrologic
Simulation, J. Hydrometeorol., 11, 781–796, https://doi.org/10.1175/2010JHM1218.1, 2010.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition
of the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Hapuarachchi, H. A. P., Wang, Q. J., and Pagano, T. C.: A review of advances
in flash flood forecasting, Hydrol. Process., 25, 2771–2784,
https://doi.org/10.1002/hyp.8040, 2011.
Harrison, D. L., Driscoll, S. J., and Kitchen, M.: Improving precipitation
estimates from weather radar using quality control and correction techniques, Meteorol. Appl., 7, 135–144, https://doi.org/10.1017/S1350482700001468, 2000.
He, X., Koch, J., Zheng, C., Bøvith, T., and Jensen, K. H.: Comparison of
Simulated Spatial Patterns Using Rain Gauge and Polarimetric-Radar-Based
Precipitation Data in Catchment Hydrological Modeling, J. Hydrometeorol.,
19, 1273–1288, https://doi.org/10.1175/JHM-D-17-0235.1, 2018.
Hengl, T., de Jesus, J. M., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda,
M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, PLOS ONE, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017.
Huang, Y., Bárdossy, A., and Zhang, K.: Sensitivity of hydrological models to temporal and spatial resolutions of rainfall data, Hydrol. Earth Syst. Sci., 23, 2647–2663, https://doi.org/10.5194/hess-23-2647-2019, 2019.
Junghänel, T., Bissolli, P., Daßler, J., Fleckenstein, R., Imbery,
F., Janssen, W., Lengfeld, K., Leppelt, T., Rauthe, M., Rauthe-Schöch,
A., Rocek, M., Walawender, E., and Weigl, E.: Hydro-klimatologische
Einordnung der Stark- und Dauerniederschläge in Teilen Deutschlands im
Zusammenhang mit dem Tiefdruckgebiet “Bernd” vom 12. bis 19.
Juli 2021, Deutscher Wetterdienst (DWD), Offenbach, Germany,
https://www.dwd.de/DE/leistungen/besondereereignisse/niederschlag/20210721_bericht_starkniederschlaege_tief_bernd.html (last access: 21 December 2022), 2021.
Kaspar, F., Müller-Westermeier, G., Penda, E., Mächel, H., Zimmermann, K., Kaiser-Weiss, A., and Deutschländer, T.: Monitoring of climate change in Germany – data, products and services of Germany's National Climate Data Centre, Adv. Sci. Res., 10, 99–106, https://doi.org/10.5194/asr-10-99-2013, 2013.
Kendon, E. J., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C.,
and Senior, C. A.: Heavier summer downpours with climate change revealed by
weather forecast resolution model, Nat. Clim. Change, 4, 570–576,
https://doi.org/10.1038/nclimate2258, 2014.
Koks, E. E., van Ginkel, K. C. H., van Marle, M. J. E., and Lemnitzer, A.: Brief communication: Critical infrastructure impacts of the 2021 mid-July western European flood event, Nat. Hazards Earth Syst. Sci., 22, 3831–3838, https://doi.org/10.5194/nhess-22-3831-2022, 2022.
Kollet, S. J. and Maxwell, R. M.: Integrated surface–groundwater flow
modeling: A free-surface overland flow boundary condition in a parallel
groundwater flow model, Adv. Water Resour., 29, 945–958,
https://doi.org/10.1016/j.advwatres.2005.08.006, 2006.
Kreienkamp, F., Philip, S. Y., Tradowsky, J. S., Kew, S. F., Lorenz, P.,
Arrighi, J., Belleflamme, A., Bettmann, T., Caluwaerts, S., Chan, S. C.,
Ciavarella, A., De Cruz, L., de Vries, H., Demuth, N., Ferrone, A., Fischer,
E. M., Fowler, H. J., Goergen, K., Heinrich, D., Henrichs, Y., Lenderink,
G., Kaspar, F., Nilson, E., Otto, F. E. L., Ragone, F., Seneviratne, S. I.,
Singh, R. K., Skålevåg, A., Termonia, P., Thalheimer, L., van Aalst,
M., Van den Bergh, J., Van de Vyver, H., Vannitsem, S., van Oldenborgh, G.
J., Van Schaeybroeck, B., Vautard, R., Vonk, D., and Wanders, N.: Rapid
attribution of heavy rainfall events leading to the severe flooding in
Western Europe during July 2021, World Weather Attribution (WWA),
https://www.worldweatherattribution.org/heavy-rainfall-which-
led-to-severe-flooding-in-western-europe-made-more-likely-
by-climate-change
(last access: 21 December 2022), 2021.
Kuczera, G., Kavetski, D., Franks, S., and Thyer, M.: Towards a Bayesian
total error analysis of conceptual rainfall-runoff models: Characterising
model error using storm-dependent parameters, J. Hydrol., 331, 161–177,
https://doi.org/10.1016/j.jhydrol.2006.05.010, 2006.
Kuffour, B. N. O., Engdahl, N. B., Woodward, C. S., Condon, L. E., Kollet, S., and Maxwell, R. M.: Simulating coupled surface–subsurface flows with ParFlow v3.5.0: capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydrologic model, Geosci. Model Dev., 13, 1373–1397, https://doi.org/10.5194/gmd-13-1373-2020, 2020.
Langanke, T., Steidl, M., Schleicher, C., and Sannier, C.: Copernicus Land
Monitoring Service – High Resolution Layer Imperviousness: Product
Specifications Document, European Environment Agency, https://land.copernicus.eu/user-corner/technical-library/hrl-imperviousness-technical-document-prod-2015
(last access: 21 December 2022), 2016.
Lin, P., Hopper, L. J., Yang, Z.-L., Lenz, M., and Zeitler, J. W.: Insights
into Hydrometeorological Factors Constraining Flood Prediction Skill during
the May and October 2015 Texas Hill Country Flood Events, J. Hydrometeorol.,
19, 1339–1361, https://doi.org/10.1175/JHM-D-18-0038.1, 2018.
Lobligeois, F., Andréassian, V., Perrin, C., Tabary, P., and Loumagne, C.: When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood events, Hydrol. Earth Syst. Sci., 18, 575–594, https://doi.org/10.5194/hess-18-575-2014, 2014.
Lumbroso, D. and Gaume, E.: Reducing the uncertainty in indirect estimates
of extreme flash flood discharges, J. Hydrol., 414–415, 16–30,
https://doi.org/10.1016/j.jhydrol.2011.08.048, 2012.
Marshall, J. S. and Palmer, W. M. K.: The distribution of raindrops with
size, J. Atmos. Sci., 5, 165–166,
https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2, 1948.
Maxwell, R. M.: A terrain-following grid transform and preconditioner for
parallel, large-scale, integrated hydrologic modeling, Adv. Water Resour.,
53, 109–117, https://doi.org/10.1016/j.advwatres.2012.10.001, 2013.
Mohr, S., Ehret, U., Kunz, M., Ludwig, P., Caldas-Alvarez, A., Daniell, J. E., Ehmele, F., Feldmann, H., Franca, M. J., Gattke, C., Hundhausen, M., Knippertz, P., Küpfer, K., Mühr, B., Pinto, J. G., Quinting, J., Schäfer, A. M., Scheibel, M., Seidel, F., and Wisotzky, C.: A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe. Part 1: Event description and analysis, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2022-137, in review, 2022.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10, 282–290,
https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Nissen, K. M. and Ulbrich, U.: Increasing frequencies and changing characteristics of heavy precipitation events threatening infrastructure in Europe under climate change, Nat. Hazards Earth Syst. Sci., 17, 1177–1190, https://doi.org/10.5194/nhess-17-1177-2017, 2017.
Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil,
F., and Loumagne, C.: Which potential evapotranspiration input for a lumped
rainfall–runoff model?: Part 2 – Towards a simple and efficient potential
evapotranspiration model for rainfall–runoff modelling, J. Hydrol., 303,
290–306, https://doi.org/10.1016/j.jhydrol.2004.08.026, 2005.
Oudin, L., Perrin, C., Mathevet, T., Andréassian, V., and Michel, C.:
Impact of biased and randomly corrupted inputs on the efficiency and the
parameters of watershed models, J. Hydrol., 320, 62–83,
https://doi.org/10.1016/j.jhydrol.2005.07.016, 2006.
Panagos, P.: European Soil Database, GeoConnexion, 5, 32–33, 2006.
Park, S., Berenguer, M., and Sempere-Torres, D.: Long-term analysis of
gauge-adjusted radar rainfall accumulations at European scale, J. Hydrol.,
573, 768–777, https://doi.org/10.1016/j.jhydrol.2019.03.093, 2019.
Pechlivanidis, I. G., McIntyre, N., and Wheater, H. S.: The significance of
spatial variability of rainfall on simulated runoff: an evaluation based on
the Upper Lee catchment, UK, Hydrol. Res., 48, 1118–1130,
https://doi.org/10.2166/nh.2016.038, 2016.
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a
parsimonious model for streamflow simulation, J. Hydrol., 279, 275–289,
https://doi.org/10.1016/S0022-1694(03)00225-7, 2003.
Pokhrel, P. and Gupta, H. V.: On the ability to infer spatial catchment
variability using streamflow hydrographs, Water Resour. Res., 47, W08534,
https://doi.org/10.1029/2010WR009873, 2011.
Poméon, T., Wagner, N., Furusho, C., Kollet, S., and Reinoso-Rondinel,
R.: Performance of a PDE-Based Hydrologic Model in a Flash Flood Modeling
Framework in Sparsely-Gauged Catchments, Water, 12, 2157,
https://doi.org/10.3390/w12082157, 2020.
Porcacchia, L., Kirstetter, P. E., Gourley, J. J., Maggioni, V., Cheong, B.
L., and Anagnostou, M. N.: Toward a Polarimetric Radar Classification Scheme
for Coalescence-Dominant Precipitation: Application to Complex Terrain, J.
Hydrometeorol., 18, 3199–3215, https://doi.org/10.1175/JHM-D-17-0016.1, 2017.
Raimonet, M., Oudin, L., Thieu, V., Silvestre, M., Vautard, R., Rabouille,
C., and Moigne, P. L.: Evaluation of Gridded Meteorological Datasets for
Hydrological Modeling, J. Hydrometeorol., 18, 3027–3041,
https://doi.org/10.1175/JHM-D-17-0018.1, 2017.
Rauthe, M., Steiner, H., Riediger, U., Mazurkiewicz, A., and Gratzki, A.: A
Central European precipitation climatology – Part I: Generation and
validation of a high-resolution gridded daily data set (HYRAS), Meteorol. Z., 22, 235–256, https://doi.org/10.1127/0941-2948/2013/0436, 2013.
Reinoso-Rondinel, R. and Schleiss, M.: Quantitative Evaluation of
Polarimetric Estimates from Scanning Weather Radars Using a Vertically
Pointing Micro Rain Radar, J. Atmos. Ocean. Tech., 38, 481–499,
https://doi.org/10.1175/JTECH-D-20-0062.1, 2021.
Renard, B., Kavetski, D., Leblois, E., Thyer, M., Kuczera, G., and Franks, S. W.: Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation, Water Resour. Res., 47, W11516, https://doi.org/10.1029/2011WR010643, 2011.
Ryzhkov, A., Diederich, M., Zhang, P., and Simmer, C.: Potential Utilization
of Specific Attenuation for Rainfall Estimation, Mitigation of Partial Beam
Blockage, and Radar Networking, J. Atmos. Ocean. Tech., 31, 599–619, https://doi.org/10.1175/JTECH-D-13-00038.1, 2014.
Ryzhkov, A., Zhang, P., Bukovčić, P., Zhang, J., and Cocks, S.:
Polarimetric Radar Quantitative Precipitation Estimation, Remote Sens., 14,
1695, https://doi.org/10.3390/rs14071695, 2022.
Ryzhkov, A. V., Schuur, T. J., Burgess, D. W., Heinselman, P. L., Giangrande, S. E., and Zrnic, D. S.: The Joint Polarization Experiment: Polarimetric Rainfall Measurements and Hydrometeor Classification, B. Am. Meteorol. Soc., 86, 809–824, https://doi.org/10.1175/BAMS-86-6-809, 2005.
Saulnier, G.-M. and Le Lay, M.: Sensitivity of flash-flood simulations on
the volume, the intensity, and the localization of rainfall in the
Cévennes-Vivarais region (France), Water Resour. Res., 45, W10425,
https://doi.org/10.1029/2008WR006906, 2009.
Schaap, M. G., Leij, F. J., and van Genuchten, M. Th.: rosetta: a computer
program for estimating soil hydraulic parameters with hierarchical
pedotransfer functions, J. Hydrol., 251, 163–176, https://doi.org/10.1016/S0022-1694(01)00466-8, 2001.
Schalge, B., Haefliger, V., Kollet, S., and Simmer, C.: Improvement of
surface run-off in the hydrological model ParFlow by a scale-consistent
river parameterization, Hydrol. Process., 33, 2006–2019,
https://doi.org/10.1002/hyp.13448, 2019.
Schleiss, M., Olsson, J., Berg, P., Niemi, T., Kokkonen, T., Thorndahl, S., Nielsen, R., Ellerbæk Nielsen, J., Bozhinova, D., and Pulkkinen, S.: The accuracy of weather radar in heavy rain: a comparative study for Denmark, the Netherlands, Finland and Sweden, Hydrol. Earth Syst. Sci., 24, 3157–3188, https://doi.org/10.5194/hess-24-3157-2020, 2020.
Schröter, K., Kunz, M., Elmer, F., Mühr, B., and Merz, B.: What made the June 2013 flood in Germany an exceptional event? A hydro-meteorological evaluation, Hydrol. Earth Syst. Sci., 19, 309–327, https://doi.org/10.5194/hess-19-309-2015, 2015.
Singh, H. and Reza Najafi, M.: Evaluation of gridded climate datasets over
Canada using univariate and bivariate approaches: Implications for
hydrological modelling, J. Hydrol., 584, 124673, https://doi.org/10.1016/j.jhydrol.2020.124673, 2020.
Smith, S., reedmaxwell, i-ferguson, FabianGasper, Engdahl, N., Condon, L., xy124, Kulkarni, K., Beisman, J., basileh, geouke, cswoodward, Fonseca, J. A., and Thompson, D.: parflow-350/parflow: ParFlow Version 3.5.0, Zenodo [code], https://doi.org/10.5281/zenodo.3555297, 2019.
Sokol, Z., Szturc, J., Orellana-Alvear, J., Popová, J., Jurczyk, A., and
Célleri, R.: The Role of Weather Radar in Rainfall Estimation and Its
Application in Meteorological and Hydrological Modelling–A Review, Remote
Sens., 13, 351, https://doi.org/10.3390/rs13030351, 2021.
Staatliches Umweltamt Köln: Ergebnisbericht Erft. Wasserrahmenrichtlinie
in NRW – Bestandsaufnahme, Ministerium fuer Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen, https://www.flussgebiete.nrw.de/system/files/atoms/files/erf_bestandsaufnahme_2004_erft.pdf
(last access: 9 January 2023), 2005 (in German).
Tetzlaff, D. and Uhlenbrook, S.: Significance of spatial variability in precipitation for process-oriented modelling: results from two nested catchments using radar and ground station data, Hydrol. Earth Syst. Sci., 9, 29–41, https://doi.org/10.5194/hess-9-29-2005, 2005.
Tobin, D. M. and Kumjian, M. R.: Polarimetric Radar and Surface-Based
Precipitation-Type Observations of Ice Pellet to Freezing Rain Transitions,
Weather Forecast., 32, 2065–2082, https://doi.org/10.1175/WAF-D-17-0054.1, 2017.
Trenberth, K.: Changes in precipitation with climate change, Clim. Res., 47,
123–138, https://doi.org/10.3354/cr00953, 2011.
Winterrath, T., Brendel, C., Hafer, M., Junghänel, T., Klameth, A.,
Lengfeld, K., Walawender, E., Weigl, E., and Becker, A.: Radar climatology
(RADKLIM) version 2017.002; gridded precipitation data for Germany:
Radar-based gauge-adjusted one-hour precipitation sum (RW), Deutscher Wetterdienst (DWD) [data set], https://doi.org/10.5676/DWD/RADKLIM_RW_V2017.002, 2018.
Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and
Pavelsky, T. M.: MERIT Hydro: A High-Resolution Global Hydrography Map Based
on Latest Topography Dataset, Water Resour. Res., 55, 5053–5073,
https://doi.org/10.1029/2019WR024873, 2019.
Zappa, M., Jaun, S., Germann, U., Walser, A., and Fundel, F.: Superposition
of three sources of uncertainties in operational flood forecasting chains,
Atmos. Res., 100, 246–262, https://doi.org/10.1016/j.atmosres.2010.12.005, 2011.
Zhou, Z., Smith, J. A., Yang, L., Baeck, M. L., Chaney, M., Veldhuis, M.-C.
T., Deng, H., and Liu, S.: The complexities of urban flood response: Flood
frequency analyses for the Charlotte metropolitan region, Water Resour.
Res., 53, 7401–7425, https://doi.org/10.1002/2016WR019997, 2017.
Short summary
On 14 July 2021, heavy rainfall fell over central Europe, causing considerable damage and human fatalities. We analyzed how accurate our estimates of rainfall and peak flow were for these flooding events in western Germany. We found that the rainfall estimates from radar measurements were improved by including polarimetric variables and their vertical gradients. Peak flow estimates were highly uncertain due to uncertainties in hydrological model parameters and rainfall measurements.
On 14 July 2021, heavy rainfall fell over central Europe, causing considerable damage and human...
Altmetrics
Final-revised paper
Preprint