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Abstract. The disastrous July 2021 flooding event made us
question the ability of current hydrometeorological tools in
providing timely and reliable flood forecasts for unprece-
dented events. This is an urgent concern since extreme events
are increasing due to global warming, and existing meth-
ods are usually limited to more frequently observed events
with the usual flood generation processes. For the July 2021
event, we simulated the hourly streamflows of seven catch-
ments located in western Germany by combining seven
partly polarimetric, radar-based quantitative precipitation es-
timates (QPEs) with two hydrological models: a concep-
tual lumped model (GR4H) and a physically based, 3D dis-
tributed model (ParFlowCLM). GR4H parameters were cal-
ibrated with an emphasis on high flows using historical dis-
charge observations, whereas ParFlowCLM parameters were
estimated based on landscape and soil properties. The key
results are as follows. (1) With no correction of the vertical
profiles of radar variables, radar-based QPE products under-
estimated the total precipitation depth relative to rain gauges
due to intense collision–coalescence processes near the sur-
face, i.e., below the height levels monitored by the radars.
(2) Correcting the vertical profiles of radar variables led to
substantial improvements. (3) The probability of exceeding
the highest measured peak flow before July 2021 was highly
impacted by the QPE product, and this impact depended on
the catchment for both models. (4) The estimation of model
parameters had a larger impact than the choice of QPE prod-

uct, but simulated peak flows of ParFlowCLM agreed with
those of GR4H for five of the seven catchments. This study
highlights the need for the correction of vertical profiles of
reflectivity and other polarimetric variables near the surface
to improve radar-based QPEs for extreme flooding events. It
also underlines the large uncertainty in peak flow estimates
due to model parameter estimation.

1 Introduction

1.1 Old questions in the light of new extremes

Many parts of the world will face an increase in the fre-
quency and intensity of heavy summer precipitation events
under a warmer climate as a result of the enhanced moisture-
holding capacity of the atmosphere (Fowler et al., 2021;
Kendon et al., 2014; Trenberth, 2011). This implies more
frequent flash flooding events (Dougherty and Rasmussen,
2020), hence increasing damage to infrastructure and loss of
human life (Dottori et al., 2018; Nissen and Ulbrich, 2017).
The flooding events of July 2021 in Europe resulted in more
than 220 deaths (Deutsche Welle, 2021), large-scale dam-
age to infrastructure (Koks et al., 2022), and costs of up to
EUR 8.2 billion in insured losses (GDV, 2021) and up to
EUR 32.05 billion in total losses in Germany alone (BMI,
2022), making them the most severe natural disaster caused
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by heavy rain and flooding in Germany (Mohr et al., 2022).
Predicting such never-before-seen extremes challenges our
forecasting chains (Hapuarachchi et al., 2011) and gives a
new opportunity to re-examine persistent questions. How ac-
curate are new, state-of-the-art radar-based precipitation esti-
mates for this event? Given the recent developments in radar-
based precipitation estimation and hydrological modeling,
which of these sources of uncertainty is predominant in ex-
treme peak flow estimation?

1.2 Precipitation estimates and hydrological modeling
approaches

Rain gauges are often used as a reference source of quan-
titative precipitation estimates (QPEs; Boushaki et al., 2009;
Derin et al., 2019; Dumont et al., 2022; Schleiss et al., 2020).
However, they are sparse and may miss the spatial variability
in precipitation, especially of convective precipitation fields
that can generate extreme flooding events in high-elevation,
complex terrain configurations (Anquetin et al., 2005; Em-
manuel et al., 2017; Sokol et al., 2021; Tetzlaff and Uhlen-
brook, 2005). Alternatively, operational radar-based QPEs
provide better coverage and characterization of precipita-
tion dynamics with higher spatial and temporal resolutions,
which is particularly useful for flooding events (Anagnos-
tou et al., 2010; Zhou et al., 2017). Traditionally, radar-
based QPEs are derived from horizontal reflectivity (Z) us-
ing Marshall–Palmer-type formulae (Marshall and Palmer,
1948). However, these are highly sensitive to the variabil-
ity in the raindrop size distribution, and in some cases, QPEs
based on Z only tend to underestimate heavy precipitation
(Harrison et al., 2000; Park et al., 2019; Schleiss et al., 2020).
In addition, they are affected by radar calibration, attenua-
tion, partial beam blockage, and the radome effect (Berne
and Krajewski, 2013; Borga et al., 2007; Chen et al., 2021;
Diederich et al., 2015a, b; Ryzhkov et al., 2014). These lim-
itations can be overcome by using additional variables from
dual-polarimetric radars, which provide a better characteri-
zation of the shape and the concentration of hydrometeors
and are less sensitive to raindrop size distribution (Gourley
et al., 2010; Ryzhkov et al., 2005). Phase-based observables
from polarimetric radars, such as specific differential phase
(KDP) and specific attenuation at horizontal or vertical po-
larization (A), help improve QPEs especially for heavy, con-
vective, and hail-contaminated rainfall events (Anagnostou
et al., 2018; Berne and Krajewski, 2013; Chen et al., 2021;
Ryzhkov et al., 2014, 2022). However, including these vari-
ables may only lead to better spatial correlations with lim-
ited improvements in biases (Cunha et al., 2015). Improving
these biases may require the vertical gradients in radar vari-
ables and/or precipitation and their evolution near the ground
to be accounted for (Chen et al., 2020; Reinoso-Rondinel and
Schleiss, 2021), especially when the rain formation is dom-
inated by strong collision–coalescence processes that lead
to changes in the vertical precipitation intensity (Porcac-

chia et al., 2017). The evaluation of radar-based QPEs has
been commonly done with regards to point-scale ground-
based measurements from rain gauges, but when the ultimate
goal is to provide an accurate estimation of flood severity, a
catchment-scale hydrological evaluation is needed.

Precipitation is the main driving factor of land-surface hy-
drological processes at the event-scale. Consequently, uncer-
tainties in the input QPEs strongly control the uncertainties
of hydrological model outputs (Oudin et al., 2006; Renard
et al., 2011) and are found to be larger than the structural
uncertainties of the models (Kuczera et al., 2006; Zappa et
al., 2011). Previous studies evaluated the added value of im-
proved spatial and temporal resolutions of QPEs using hy-
drological models. Cole and Moore (2009) showed the bene-
fits of gauge-corrected radar-based QPEs for ungauged lo-
cations using a distributed hydrological model. Lobligeois
et al. (2014) found that using high-resolution, spatially dis-
tributed precipitation was mainly beneficial in regions with
high spatial variability in precipitation and topography fields.
For flash flood applications, several studies (e.g., Borga et
al., 2007; Braud et al., 2010; Emmanuel et al., 2017; Lin et
al., 2018) concluded that QPEs are the major controlling fac-
tor of flash flood dynamics and of hydrological model per-
formances. However, they found that the extent to which
uncertainties in QPEs impacted model outputs is dependent
on the strength of the storage behavior of the catchment,
which may hide the benefit of using high-resolution QPEs
(Pokhrel and Gupta, 2011). Yet, fewer studies (e.g., Gour-
ley et al., 2010; He et al., 2018) assessed the added value
of polarimetric radar measurements in predicting hydrologi-
cal extremes. Additionally, the reliability of calibrated mod-
els for predicting unprecedented extreme hydrological events
is questionable as they depend on historical observations
(Poméon et al., 2020). In this respect, little attention has been
drawn to how highly contrasted model formulations (lumped,
conceptual vs. distributed, physically based) are affected by
uncertainties in QPE inputs for the case of extreme precipi-
tation events.

1.3 Insights from the disastrous July 2021 event in
western Germany

This study investigates the influence of improved QPEs and
different representations of hydrological processes on the un-
certainties in simulating extreme flooding events. The nov-
elties of our study consist in (1) using new QPE products
from vertical-profile-corrected, phase-based observables of
C-band and X-band radars, (2) examining contrasting hy-
drological modeling approaches (conceptual vs. partial dif-
ferential equation (PDE)-based model), and (3) proposing
an evaluation framework of the hydrometeorological predic-
tion chain for unprecedented extreme events with unavailable
discharge measurements. Since no peak flow measurements
are available (partly due to destroyed monitoring systems),
our analysis focused on the probability that the simulated
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peak flow exceeds the highest historically observed peak
flow. This is relevant because hydrological models are of-
ten evaluated based on their ability to detect the probability
of flows exceeding catchment-specific critical thresholds for
flood warning applications (Anctil and Ramos, 2017).

This paper is structured as follows: Sect. 2 presents the
study region, Sect. 3 explains the methodology, Sects. 4 and 5
show and discuss our results, and Sect. 6 summarizes our
conclusions.

2 Study region

Our study focused on a set of seven catchments located
in western Germany (Fig. 1b), draining parts of the Eifel
low mountain range, with areas ranging between 140 and
1670 km2 (Table 1). Four of the seven stream gauges are
located on the Ahr and the Kyll rivers in the federal state
of Rhineland-Palatinate. The remaining three stream gauges
are located on the Erft and Rur rivers in the federal state
of North Rhine-Westphalia. The hypsometry of the catch-
ments shows a rolling plateau at mild elevations (300 to
700 m a.s.l.) except for the catchments drained by the Erft
river (Fig. 1c). The region is characterized by sedimen-
tary rocks interbedded with volcanic rocks, with relatively
shallow soils characterized by low water-holding capacity
(Kreienkamp et al., 2021) and dominated by sand (catchment
averages: 34 %–41 %) and silt (catchment averages 29 %–
38 %; Panagos, 2006). The land cover of the catchments is
dominated by agricultural and forest areas, with a relatively
small proportion of artificial areas (Table 1). Average pre-
cipitation depths range from 700 to 1080 mm yr−1, and cor-
responding aridity indices are between 0.5 and 0.9, which
reflects a region with a temperate climate under oceanic in-
fluence.

3 Methodology

3.1 The lumped conceptual hydrological modeling
approach

We selected GR4H (Ficchì et al., 2019) as a representa-
tive of the lumped, conceptual modeling approach. GR4H
inputs consist of catchment-average precipitation and po-
tential evapotranspiration at the hourly time step. Potential
evapotranspiration was estimated using a formula based on
catchment-average temperature (Oudin et al., 2005). GR4H
estimates net precipitation from input precipitation using an
interception with a soil moisture accounting reservoir. Then,
the net precipitation is split into 10 % routed through the
quick-flow routing branch (via a unit hydrograph) and 90 %
routed through the slow-flow branch (via a unit hydrograph
and a nonlinear routing reservoir). On both branches, ex-
changes between surface water and groundwater are enabled.

Detailed equations can be found in Ficchì et al. (2019) and
Perrin et al. (2003).

We calibrated GR4H parameters using historical obser-
vations of discharge and a gradient-descent-based algorithm
(Coron et al., 2017; Edijatno et al., 1999). Since hourly dis-
charge values for all stream gauges were unavailable, hourly
model simulations were aggregated into daily time steps to
be compared to the daily discharge observations. Because we
are interested in simulating high discharge values, we looked
for optimal parameters θopt that maximized the following ob-
jective function OF(θ):

OF(θ)=
1
4
C (Qsim(θ),Qobs)

+
3
4
C
(
Qsim(θ), Qobs|Qobs ≥Qobs,th

)
, (1)

where θ are model parameters,Qsim(θ) andQobs are, respec-
tively, simulated and observed discharges, C (Qsim(θ),Qobs)

is a calculated error criterion over the whole period of cal-
ibration, and C

(
Qsim(θ),Qobs|Qobs ≥Qobs,th

)
is the same

error criterion calculated using only the periods when the
observed discharge is above the threshold Qobs,th, which in-
tends to emphasize high flows. To account for the uncertain-
ties in parameter estimation, we split the available time series
into two distinct and length-equivalent sub-periods (2007–
2013 and 2014–2020), over which we calibrated the model
with regards to two criteria C: the Nash–Sutcliffe efficiency
(Nash and Sutcliffe, 1970) and the Kling–Gupta efficiency
(Gupta et al., 2009). For the thresholdQobs,th, we chose three
values: the minimum discharge value (i.e., no explicit em-
phasis on high flows), the 90th percentile, and the 99th per-
centile of daily discharge values. Combining these choices
yielded 12 optimal parameter sets (from 2 periods of calibra-
tion×2 evaluation criteria×3 discharge thresholds) for each
catchment. During calibration, the first year of records (2006)
was used for model spin-up to minimize the impact of model
initialization on model calibration and simulation results.

3.2 The distributed PDE-based hydrological modeling
approach

In addition to GR4H, we used the hydrological model
ParFlow with its internal land-surface module CLM (Com-
mon Land Model), hereafter ParFlowCLM (Kollet and
Maxwell, 2006; Kuffour et al., 2020; Maxwell, 2013), imple-
mented on a 611 m resolution grid with 15 depth layers down
to 60 m below the surface, with geometrically increased
thickness. CLM resolves the energy budget at the land sur-
face, as well as the water exchange at the atmosphere–land–
soil interface, which helps discern the net precipitation from
interception, soil evaporation, plant transpiration, and in-
filtration. ParFlow resolves the 3D Richards’ equation for
variably saturated subsurface and groundwater flow, coupled
with the kinematic wave model for the overland flow routing.
Assuming the continuity of pressure at the ground surface,
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Figure 1. (a) Location of the four C-band radars (Essen, Flechtdorf, Neuheilenbach, and Offenthal) operated by the German Weather Service
(DWD) and used to derive the radar-based QPE products, (b) location of study region and catchment polygons, and (c) hypsometric curves
of the seven catchments. Negative elevations are due to open-pit mines in the region.

Table 1. Hydroclimatic and landscape characteristics of the seven studied catchments. Data sources are detailed in Sect. 3.3.

Catchmenta Area Mean Aridity Mean Artificialb Agriculturalb Forestb Water Highest
(km2) precipitationc indexd discharge (%) (%) (%) bodiesb measured

(mm yr−1) (–) (mm yr−1) (%) peak flow
before

July 2021
(m3 s−1)

Ahr at Muesch 346 790 0.75 280 (1972–2021) 4.0 52.9 43.1 0.0 132
Ahr at Altenahr 757 760 0.78 280 (1945–2021) 3.5 39.5 57.0 0.0 236
Kyll at Densborn 473 890 0.65 450 (1972–2021) 4.0 47.7 48.2 0.0 180
Kyll at Kordel 840 830 0.71 370 (1967–2021) 5.4 51.9 42.7 0.0 218
Erft at Bliesheim 552 700 0.89 130 (2000–2020) 12.6 59.1 28.2 0.0 55.8
Erft at Neubrueck 1668 740 0.86 180 (2000–2020) 17.7 64.3 17.8 0.2 46.6
Rur at Monschau 144 1080 0.52 760 (2000–2021) 6.1 25.4 62.9 5.6 109.6

a All catchments are regulated, i.e., contain at least one reservoir or dam at the upstream of the catchment outlet, according to the non-exhaustive database at
https://dewiki.de/Lexikon/Liste_von_Talsperren_in_Deutschland (last access: 20 December 2022, in German).
b These percentages were computed based on the CORINE Land Cover classification of the Copernicus Land Monitoring Service (Langanke et al., 2016). They correspond to the
proportion of the catchment that is occupied by the classes belonging to (1) “Artificial Surfaces” for Artificial, (2) “Agricultural areas” for Agricultural, (3) “Forest and seminatural
areas” for Forest, and (4) “Wetlands” and “Water bodies” for Water bodies. See https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html
(last access: 20 December 2022).
c Average precipitation depths were estimated over the period 2006–2021 from RADOLAN.
d Aridity index was estimated as the ratio of average potential evapotranspiration to average precipitation.

the boundary fluxes for Richards’ equation are estimated
from the kinematic wave model, and vice versa (Kollet and
Maxwell, 2006). The model represents both the Hortonian
and the Dunne runoff processes, and it accounts for exfiltra-
tion and re-infiltration at the downstream hydraulic pathway.

ParFlowCLM was forced at the hourly time step with
a spin-up period starting from 2007. Slopes were esti-
mated from the ASTER (Advanced Spaceborne Thermal
Emission and Reflection Radiometer; https://lpdaac.usgs.
gov/products/astgtmv003, last access: 9 January 2023) DEM
(digital elevation model) combined with the hydrologically
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enhanced DEM MERIT (Multi-Error-Removed Improved-
Terrain) Hydro (Yamazaki et al., 2019). Soil and sub-
soil types are defined from the SoilGrids250m (Hengl et
al., 2017) reclassified into 12 USDA (United States De-
partment of Agriculture) texture types. The hydraulic pa-
rameters for each soil type (hydraulic conductivity, resid-
ual and saturated water content, and van Genuchten param-
eters) were obtained from the ROSETTA model (Schaap
et al., 2001). Below the depth to bedrock (given by Soil-
Grids250m), the typology of the International Hydrogeo-
logical Map of Europe IHME1500 (scale 1 : 1500000) was
used (Duscher et al., 2015). Land cover was characterized
using the CORINE Land Cover database of the Coperni-
cus Land Monitoring Service for the year 2018 (Langanke
et al., 2016), whose land cover classification was converted
into the 18 IGBP (International Geosphere–Biosphere Pro-
gramme) categories. To account for the uncertainty in Man-
ning’s roughness coefficient, which highly impacts the peak
flow simulations (Lumbroso and Gaume, 2012), different
scenario simulations with spatially homogeneous and dis-
tributed roughness values were performed. In total, three spa-
tially homogeneous values were tested for the whole domain:
a default value of 0.2 s m−1/3 (HMann, i.e., high rough-
ness, from Schalge et al., 2019) and two additional val-
ues of 0.1 s m−1/3 (MMann, i.e., medium roughness) and
0.03 s m−1/3 (LMann, i.e., low roughness). These three val-
ues cover the whole range of Manning’s coefficient values re-
ported by Lumbroso and Gaume (2012), but adopting a uni-
form spatial distribution (although simple to implement and
to interpret) is unrealistic given the differences in roughness
values between land cover types. Therefore, a fourth simula-
tion was performed using distributed Manning’s coefficients
(DMann) based on land cover types (and following Table 2
in Asante et al., 2008), with low values for water bodies
(0.02 s m−1/3) and urban and barren surfaces (0.03 s m−1/3),
mild values for croplands (0.033 s m−1/3), natural vegetation
mosaics (0.037 s m−1/3), shrublands, grasslands, snow/ice,
and permanent wetlands (0.05 s m−1/3), and high values for
forests (0.1–0.12 s m−1/3).

3.3 Atmospheric forcing and streamflow data

Eight atmospheric variables were needed for the runs of
ParFlowCLM, namely 2 m air temperature, precipitation,
surface pressure, downward solar and thermal radiation,
specific humidity, and eastward and northward components
of the 10 m wind. Precipitation was obtained from the
operational-radar-based RADOLAN product of the DWD
(Deutsche Wetterdienst, German Weather Service; Winter-
rath et al., 2018), which is gauge-adjusted and available at
1 km resolution. The remaining atmospheric variables were
obtained from the ERA5-Land dataset (Muñoz-Sabater et
al., 2021), available at 9 km resolution. All variables were
regridded to the model resolution using a bicubic interpo-
lation. For GR4H, data demand is limited to precipitation

and 2 m air temperature, which were catchment-averaged
using the Thiessen polygon method, and discharge data
for model calibration, which were obtained for the period
2007–2021 from the state offices for environment of North
Rhine-Westphalia (LANUV, https://www.elwasweb.nrw.de,
last access: 20 September 2021) and Rhineland-Palatinate
(https://wasserportal.rlp-umwelt.de, last access: 20 Septem-
ber 2021).

3.4 Evaluation of QPE products and modeling choices
for the July 2021 events

For 14 July 2021, we tested seven radar-based, 1 km grid-
ded QPE products as detailed in Table 2. In addition to
the gauge-adjusted RADOLAN, three products were de-
rived from the measurements of four polarimetric, C-band
radars operated by the DWD (located in Essen, Flechtdorf,
Neuheilenbach, and Offenthal; Fig. 1a). These state-of-the-
art products were derived using algorithms that exploit hori-
zontal reflectivity (Z), specific differential phase (KDP), and
specific attenuation at horizontal polarization (A; see Chen
et al., 2021), without correction of vertical profiles (RZ,
RZKDP, and RAKDP). Three additional, similar products
(RZ-VPC, RZKDP-VPC, and RAKDP-VPC) were derived
by exploiting information on the vertical variability in the
radar variables, namely through (Chen et al., 2022)

1. the inclusion of the observations from an X-band radar
located near Jülich (JuXPol, Fig. 1b) of the Labora-
tory for Clouds and Precipitation Exploration (CPEX-
LAB, http://www.cpex-lab.de, last access: 9 January
2023) to provide lower-altitude observations and fill the
gaps between the C-band radars located at Essen and
Neuheilenbach,

2. the derivation of new rainfall relations at the lowest alti-
tudes from the simulated radar variables based on rain-
drop size distributions (DSDs) observed by the two mi-
cro rain radars (MRRs) located at Bonn and Bergheim
(Fig. 1b), and

3. the application of a vertical profile correction (VPC)
to Z and KDP based on the approach by Chen et
al. (2020) using real-time range-defined quasi-vertical
profiles (RD-QVPs; Tobin and Kumjian, 2017) as a ver-
tical profile reference (note that the specific attenuation
A was not included in this procedure).

We evaluated the radar-based QPEs first with respect to
their agreement with rain gauges both at the point scale and
at the catchment scale and then with respect to their effect
on simulated peak flows by GR4H and ParFlowCLM. First,
total rainfall depths for 14 July 2021 (between 14 July 2021
00:00 UTC and 15 July 2021 00:00 UTC) of the radar-based
QPEs are compared at the point scale with the rain gauges
using the normalized root-mean-square error (nRMSE), the
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Table 2. Summary of QPE products used for 14 July 2021 for the study region. MRR refers to micro rain radar. JuXPol is an X-band radar
located near Jülich (Fig. 1b).

QPE abbreviation Description Source Run with

REGNIE∗ (for Daily gridded precipitation product Rauthe et al. (2013)
REgionalisierte based on linearly interpolated and DWD
NIEderschlagshöhe) measurements from rain gauges using (https://opendata.dwd.de,

their location, height, exposition, last access: 21 December 2022)
and local mountain slopes

Rain gauges Hourly precipitation measurements Kaspar et al. (2013),
from rain gauges. The average value Winterrath et al. (2018)
for each catchment was estimated and DWD GR4H
using Thiessen polygons (https://opendata.dwd.de,

RADOLAN The hourly operational QPE product of the DWD, last access:
(RADar-OnLine-ANeichung) adjusted to rain gauges (RADOLAN-RW) 21 December 2022)

RZ Precipitation estimation based on
horizontal reflectivity (Z): R(Z)

RZKDP Precipitation estimation based on
horizontal reflectivity (Z) when
Z ≤ 40 dBZ and specific differential
phase (KDP) when Z > 40 dBZ: Chen et al. (2021)
R(Z)/R(KDP)

RAKDP Precipitation estimation based on
specific attenuation at horizontal
polarization (A) and specific
differential phase (KDP) GR4H,
when Z > 40 dBZ: R(A)/R(KDP) ParFlowCLM

RZ-VPC Improved RZ product using MRR
measurements and a vertical profile
correction (VPC) of Z.
JuXPol is used as a gap filler

RZKDP-VPC Improved RZKDP product using MRR
measurements and a vertical profile
correction of Z and KDP. Chen et al. (2022)
JuXPol is used as a gap filler

RAKDP-VPC Improved RAKDP product using MRR
measurements and a vertical profile
correction of KDP.
JuXPol is used as a gap filler

∗ REGNIE covers most of the studied catchments, except for the Rur at Monschau, where it covers only ∼ 50 % of its area. Only the covered area is used to estimate the average
precipitation from REGNIE for this catchment.

normalized mean bias (NMB), and Pearson’s correlation co-
efficient (CC), expressed as



nRMSE(%)= 100 ·

√∑N
i=1(Pradar,i−PRG,i)

2√∑N
i=1
(
PRG−PRG,i

)2
NMB(%)= 100 ·

∑N
i=1

(
Pradar,i −PRG,i

)∑N
i=1PRG,i

CC=

∑N
i=1

(
PRG,i −PRG

)(
Pradar,i −Pradar

)√∑N
i=1
(
PRG,i −PRG

)2∑N
j=1

(
Pradar,j −Pradar

)2
, (2)

where PRG,i is the total rainfall depth for 14 July 2021 mea-
sured at the ith rain gauge, and Pradar,i is the total rainfall
depth given by the radar-based QPE radar (Table 2) and av-
eraged over the raster cell containing the ith rain gauge and
its 8 neighboring cells. This averaging was applied to ac-
count for differences in location between radar cells and rain
gauges due to wind, motion, and vertical variability (Schleiss
et al., 2020; Dai and Han, 2014). PRG and Pradar are the aver-
ages of total rainfall depths of the considered N rain gauges
and their corresponding N averages from neighboring raster
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cells of the radar-based QPEs, respectively. nRMSE and
NMB both have a perfect score of 0, and CC has a perfect
score of 1. Positive NMB values indicate that the radar-based
QPE overestimates the total rainfall depth for 14 July 2021
compared to rain gauges, and vice versa.

At the catchment scale, the spatial average QPE derived
from radar observations for 14 July 2021 is compared with
that from rain gauges (based on Thiessen polygons) using
the relative error:

1rel (Pradar,PRG)(%)= 100 ·
Pradar−PRG

PRG
, (3)

which is positive (negative) when the radar-based QPE over-
estimates (underestimates) the total catchment-average pre-
cipitation depth with respect to rain gauges and equals
zero for a perfect match. Acknowledging the uncertainties
that may arise from using Thiessen polygons to compute
catchment-scale precipitation depths, we compared these to
catchment-scale precipitation estimates from the daily grid-
ded product REGNIE (1 km resolution), which accounts for
the position, the height, the exposition, and the slope of the
gauge stations in the interpolation of the precipitation fields
from rain gauges (Rauthe et al., 2013).

Second, we examined the effect of QPEs on the frequency
of exceeding the highest historically observed peak flow for
each catchment (Table 1) by simulated peak flows for the
July 2021 event. Both GR4H and ParFlowCLM were ini-
tialized using a long spin-up period starting from 2006 for
GR4H and 2007 for ParFlowCLM. This allowed the whole
available record period of climatic forcing to be exploited
to yield the best estimates of antecedent soil moisture con-
ditions. Then, each radar-based QPE was used as input for
both models to obtain 12 peak flow simulations from GR4H
and 4 peak flow simulations from ParFlowCLM (i.e., a to-
tal of 16 peak flow simulations for each catchment). These
peak flows are compared with the highest historically mea-
sured peak flow. Although GR4H simulations predominate,
this will still illustrate the effect of QPE input on how well
a model can issue a warning of an upcoming event that has
never occurred.

Third, for each catchment and for each model, we ana-
lyzed the effect of the choice of QPE input using the rel-
ative error in simulated peak flows attributed to replacing
RADOLAN with another QPE product, such as the follow-
ing:

1relQp,sim (QPE,RADOLAN)(%)

= 100 ·
Qp,sim (QPE)−Qp,sim (RADOLAN)

Qp,sim (RADOLAN)
, (4)

which is positive (negative) if using QPE products other than
RADOLAN leads to higher (lower) simulated peak flows.
Similarly, agreement across all QPE products between GR4H

and ParFlowCLM is quantified using

1relQp,sim (GR4H,ParFlowCLM)(%)

= 100 ·
Qp,sim,GR4H−Qp,sim,ParFlowCLM

Qp,sim,ParFlowCLM
, (5)

whereQp,sim,GR4H andQp,sim,ParFlowCLM are simulated peak
flows by GR4H and ParFlowCLM, respectively. Perfect
agreement is obtained with a relative error equal to zero,
whereas positive (negative) values indicate that GR4H over-
estimates (underestimates) peak flows compared to ParFlow-
CLM. This relative error is estimated using all possible com-
binations of the 12 estimated peak flows by GR4H and the 4
estimated peak flows by ParFlowCLM.

4 Results

4.1 Point-scale and catchment-scale differences
between the QPE products

The different radar-based QPEs show a relatively similar spa-
tial pattern to rain gauges and REGNIE, as can be seen in
Fig. 2. Heavy precipitation depths have fallen over the high-
est altitudes, namely the Eifel range on the left bank of the
Rhine river and the Bergisches Land on the right bank. These
rainfall depths were a result of long-lasting intense stratiform
rain connected to a cut-off low-pressure system (Junghänel
et al., 2021), which locally broke historical precipitation
records (Kreienkamp et al., 2021). For the rain gauge mea-
surements, precipitation depths reached up to 162 mm, which
is equivalent to what would fall in 2–3 months on average
(i.e., by assuming a uniform distribution of rainfall and divid-
ing 162 mm by the annual averages in Table 1). Conversely,
the radar products significantly differ in terms of total pre-
cipitation depth for 14 July 2021. QPEs with vertical pro-
file correction and gap-filling (RAKDP-VPC, RZKDP-VPC,
and RZ-VPC) showed higher-precipitation depths compared
to gauge-adjusted RADOLAN, especially when specific at-
tenuation was used (RAKDP-VPC). Without vertical profile
correction, radar-based QPEs (RAKDP, RZKDP, and RZ)
showed significantly low precipitation depths.

At the point scale, the comparison with N = 63 rain
gauges over the region shows that the radar-based QPEs
with vertical profile correction and gap-filling are the ones
that agreed most with the rain gauges (Fig. 3). Values of
nRMSE varied from 18 % for RAKDP-VPC to 32 %–35 %
for RADOLAN and the two products based on horizontal
reflectivity with a vertical profile correction and gap-filling
(RZKDP-VPC and RZ-VPC), and they then jumped to 60 %–
81 % for the remaining radar-based QPEs without vertical
profile correction (RAKDP, RZKDP, and RZ). The negative
NMB values show that QPE products underestimated the
precipitation amounts compared to rain gauges when the ver-
tical gradients of the radar variables were not accounted for.
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Figure 2. Total precipitation depths for 14 July 2021 (between 14 July 2021 00:00 UTC and 15 July 2021 00:00 UTC) from nine QPE
products (Table 2) over the study region. Note that REGNIE is available only at the daily time step and that it covers only ∼ 50 % of the area
of the catchment drained by the Rur at Monschau.

Thanks to the vertical profile correction, NMB values were
kept between −10 % and +3 % (RAKDP-VPC, RZKDP-
VPC, and RZ-VPC). Nevertheless, the high CC values con-
firm that all products captured well the spatial pattern of the
ground-based precipitation measurements.

Conclusions about the agreement between QPE products
and rain gauges are similar when we look at the catchment-
scale evaluation. Specifically, QPEs based on specific atten-
uation (A) with corrected vertical profiles forKDP (RAKDP-

VPC) outperformed RADOLAN in reproducing estimates
from rain gauges (using Thiessen polygons) across the seven
catchments (Fig. 4) and reduced relative error from a median
of −18 % for RADOLAN to +2 %. With the exception of
RAKDP-VPC, radar-based QPE products tended to under-
estimate catchment-scale precipitation with respect to rain
gauges in most cases, confirming the point-scale results (see
NMB scores in Fig. 3). However, this comparison underlines
the fact that the assessment of QPE products is catchment-
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Figure 3. Point-scale evaluation scores of radar-based QPEs with
respect to measurements from 63 rain gauges (Fig. 2) of total pre-
cipitation depth of 14 July 2021.

dependent. RAKDP-VPC outperformed RADOLAN (with
respect to rain gauges) for the catchments drained by the
Ahr and the Kyll, whereas they both agreed for the Rur at
Monschau. For the catchments drained by the Erft, RAKDP-
VPC overestimated precipitation depths with respect to rain
gauges, whereas RADOLAN underestimated the total pre-
cipitation depth. Finally, using the Thiessen polygon method
led to similar catchment-scale precipitation depths compared
to the regionalized REGNIE product, except for the Erft at
Bliesheim where the Thiessen polygon method underesti-
mated the total precipitation depth with respect to REGNIE.

4.2 Effect of QPEs and modeling choices on simulated
peak flows

The QPE inputs significantly impacted both GR4H and
ParFlowCLM model simulations, as illustrated in Fig. 5 for
the Ahr at Altenahr. Changing from RADOLAN to RAKDP-
VPC led to increased peak flow simulations, which is in

line with the catchment-scale comparison (Fig. 4). For this
catchment, a relative agreement was reached between the
two models as GR4H simulations bracketed peak flow sim-
ulations from ParFlowCLM, except for the case when Man-
ning’s coefficient was the lowest (LMann). Both the choices
of GR4H calibration and Manning’s coefficient for ParFlow-
CLM led to high uncertainty of peak flow simulations. With a
high Manning’s coefficient, ParFlowCLM succeeded in esti-
mating both the timing and the magnitude of the last recorded
peak flow at the catchment outlet (∼ 330 m3 s−1 at ∼ 19:00
on 14 July), whereas the median simulation of GR4H was
delayed with respect to simulated hydrographs by ParFlow-
CLM. Using a distributed Manning’s coefficient (DMann)
led to similar ParFlowCLM simulations as when using a uni-
formly distributed, median Manning’s value (MMann) for
the Ahr at Altenahr. Finally, all model simulations with both
RADOLAN and RAKDP-VPC illustrate how the heavy pre-
cipitation event resulted in a record-breaking flood for the
Ahr at Altenahr.

Overall, the ranking of QPE products with respect to
the total precipitation depth for the 14 July event was pre-
served by model simulations for all catchments, as shown in
Fig. 6. Model simulations with RADOLAN as input barely
reached reported estimates by Mohr et al. (2022) based on
relationships between water level and streamflow (dashed
red lines in Fig. 6). Using RAKDP-VPC as input, simula-
tions of ParFlowCLM bracketed well the estimates based
on hydraulic approaches, with the best estimates obtained
with a median or distributed Manning’s coefficient (MMann
and DMann). GR4H also succeeded in bracketing these es-
timates except for the Erft at Bliesheim, but most of GR4H
peak flow estimates for this catchment were lower than the
ones based on hydraulic approaches. Comparing both mod-
els, ParFlowCLM simulations with high, medium, and (to a
lesser extent) distributed Manning’s values were bracketed
by those of GR4H except for the largest catchment (Erft at
Neubrueck) and the smallest catchment (Rur at Monschau).
However, both the distributions of simulated peak flows by
GR4H and ParFlowCLM revealed a large uncertainty due
to model parameter estimation. For instance, simulated peak
flows by GR4H for the Ahr at Altenahr varied between 70
and 420 m3 s−1 using RZ as input, whereas they varied be-
tween 390 and 1500 m3 s−1 using RAKDP-VPC as input.
For GR4H, analyzing the effect of calibration choices (not
shown here) showed that the choice of the calibration period
had the greatest impact on the simulated peak flows across
the catchments, with higher peak flows obtained when the
latest period in time was used for calibration.

The probability of exceeding the highest peak flow ever
measured (dashed orange lines in Fig. 6) by model simula-
tions was impacted by QPE inputs for all catchments (Fig. 7).
The Ahr catchments and the Erft at Bliesheim showed high
probabilities of breaking the records except when using QPE
products based on horizontal reflectivity or specific differen-
tial phase with no correction of vertical profiles (RZKDP and
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Figure 4. (a) Total precipitation depths for 14 July 2021 estimated by rain gauges, REGNIE, and radar-based QPE products. (b) Relative
errors in REGNIE and radar-based QPEs with respect to (w.r.t) estimates from rain gauges using Thiessen polygons of the total catchment-
scale precipitation depth for 14 July 2021.

RZ). Conversely, for the Rur at Monschau, all model simula-
tions from the different QPE products agreed that the event
was not heavy enough to surpass the highest measured peak
flow. The Kyll catchments and the Erft at Neubrueck showed
more conflicting answers to whether there was a high prob-
ability (i.e., more than 50 %) that the event peak flow would
surpass the highest measured peak flow before the event. This
subset of catchments underlines the crucial impact of the in-
put QPE on our interpretation of the severity of the event.

In general, the differences between simulated peak flows
appeared to be more influenced by the choice of the hydro-
logical model than the choice of the QPE input, as shown
in Fig. 8. GR4H tended to systematically underestimate the
event peak flow relative to ParFlowCLM, and both mod-
els disagreed most in the Erft at Neubrueck and the Rur
at Monschau. The differences between GR4H and ParFlow-
CLM were generally independent of the QPE input (Fig. 8a).
Conversely, replacing RADOLAN with any other QPE led
to increases in simulated peak flows for all catchments ex-
cept for the Rur at Monschau and the catchments drained

by the Kyll, with median errors closer to zero compared to
the distributions of errors between GR4H and ParFlowCLM
(Fig. 8b). Both hydrological models showed similar median
errors due to differences between RADOLAN and the other
QPE products, with a larger variability in peak flows esti-
mated by GR4H compared to ParFlowCLM, except for the
Erft at Neubrueck.

5 Discussion

5.1 Importance of hydrological, catchment-scale
evaluation of QPE products

Our evaluation shows that the radar-based QPEs agreed with
rain gauges in terms of spatial pattern (Fig. 2, CC values in
Fig. 3), which demonstrates that their use for a denser spatial
characterization of precipitation fields is useful. Conversely,
all radar-based QPEs still suffer from the important under-
estimation of heavy precipitation relative to rain gauges for
which no vertical profile correction is applied, in particular
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Figure 5. Simulated hydrographs by GR4H (in green) and ParFlowCLM (with low Manning’s coefficient LMann in black, medium Man-
ning’s MMann coefficient in grey, high Manning’s HMann coefficient in blue, and distributed Manning’s coefficient DMann in violet) using
(a) RADOLAN and (b) RAKDP-VPC as precipitation input for the Ahr at Altenahr. The green shaded area is delimited by the minimum
and maximum values of estimated discharge by GR4H for each time step. The dashed orange line indicates the highest measured peak flow
before July 2021. The dashed horizontal red line indicates the last measured flow before measurement devices became unavailable and the
dashed vertical red line its timing.

for QPEs relying only on horizontal reflectivity Z. In a study
over four countries, Schleiss et al. (2020) found that radar-
based QPE products underestimated heavy rain compared to
rain gauges by up to 44 %, and Park et al. (2019) found that
the pan-European radar composites OPERA systematically
underestimated daily precipitation compared to rain gauges.
For the 14 July 2021 event, this underestimation may be
explained by intense collision–coalescence processes taking
place close to the surface, i.e., mostly below the height lev-
els monitored by the radars. With increasing distance from
the site, radars scan at increasing heights. As a consequence,
a nearly complete vertical profile of radar-measured vari-
ables is available in the vicinity of the different radar sites
but not area-wide. Exploiting the spatiotemporal variability
in radar profiles using additional information from MRRs,
methods of vertical profile correction, and gap-filling obser-
vations from an X-band radar helped overcome the deficien-
cies of radar-based QPEs for our case study, as can be seen
in Figs. 2, 3, and 4.

Apart from the need for the correction of vertical pro-
files, Figs. 2–4 demonstrate the benefit of using polarimet-
ric radar variables, such as specific attenuation and specific
differential phase, to improve the QPEs with respect to rain
gauges, especially in extreme rainfall events (Gourley et
al., 2010). Model simulations by GR4H and especially by
the distributed ParFlowCLM (Figs. 5–7) are coherent with
the catchment-scale evaluation of Fig. 4, which agreed in

our case with the widely applied point-scale evaluation (e.g.,
Chen et al., 2021; Derin et al., 2019; Schleiss et al., 2020).

The sensitivity of model simulations confirms the domi-
nant impact of QPEs on the performances of the hydrolog-
ical models (Braud et al., 2010; Oudin et al., 2006), under-
lining the need for reliable precipitation estimates especially
for extreme flooding events. However, the effect of QPEs
seemed relatively smaller (but still important) than that of
model parameterizations (Fig. 8), and it was variable from
one catchment to another for the 14 July event (Figs. 6–7).
The large differences between model estimates for a single
QPE input reflect how uncertain peak flow estimates can be
for such an extreme event (see Table 2 for the Ahr at Altenahr
in Kreienkamp et al., 2021). The stronger effect of model pa-
rameterizations with respect to QPEs may be due to the inclu-
siveness of our approach that did not exclude ill-performing
parameterizations, especially in the case of ParFlowCLM.
Removing these would lead to lower differences due to hy-
drological models, but this removal needs streamflow mea-
surements for the event, which are unavailable or highly un-
certain for our catchment set. The variability in the impact
of errors in the QPEs on peak flow simulations indicates that
the differences (particularly the improvements) may be fil-
tered out depending on the catchment properties (size and
shape), the spatial variability in antecedent moisture condi-
tions, and the precipitation fields (Lin et al., 2018; Pechli-
vanidis et al., 2016; Pokhrel and Gupta, 2011; Saulnier and
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Figure 6. Distributions of simulated peak flows by GR4H (in green) and ParFlowCLM (in black) using eight QPE inputs (on y axis) for the
seven catchments. Dashed orange lines indicate the highest measured peak flow before July 2021. When available, dashed red lines indicate
the peak flow estimates based on relationships between water level depths and discharge taken from Mohr et al. (2022).

Le Lay, 2009). Antecedent soil moisture conditions may be
a high factor in the variability in the impact of QPEs on the
severity of the floods from one catchment to another, as the
10 d (5 d) antecedent precipitations varied from 40 to 66 mm
(20 to 44 mm) over the seven catchments. Antecedent soil
moisture conditions that are high enough can indeed lead to
extreme flooding events even when the precipitation amount
is not relatively extreme (with respect to historical events),

as shown by Schröter et al. (2015) for the exceptional June
2013 flooding event in Germany.

5.2 (Dis-)agreement of contrasting modeling
approaches

Earlier studies focused on the difference between a dis-
tributed and a lumped approach while retaining the same
complexity of process representation (e.g., Cole and Moore,
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Figure 7. (a) Total precipitation depth for 14 July 2021 from the eight QPE products for each of the seven catchments and (b) resulting
probabilities of overpassing the highest measured peak flow prior to July 2021.

2009; Huang et al., 2019; Lobligeois et al., 2014). Our
study compared contrasting modeling approaches in terms
of both spatial and process representation. This follows the
study of Poméon et al. (2020) that compared the 3D dis-
tributed ParFlow with the calibrated HBV model for flash
flood events in Germany. Poméon et al. (2020) found that
parameter estimation of HBV was highly dependent on ex-
treme flooding events in the calibration period to achieve
similar performances to ParFlow. In our study, all previous
extreme floods were kept in the calibration time series, but
the strongest peak flow obtained with ParFlowCLM was still
higher than the range of peak flows simulated with GR4H.
The non-bracketed, high ParFlowCLM simulations associ-
ated with a low Manning’s coefficient (LMann) may suggest
that the tested value is too low, but it is still within the range
of Manning’s values from guidance documents (Lumbroso
and Gaume, 2012). In addition, using a coarse model res-
olution should be compensated by lower Manning’s coeffi-
cient values (Schalge et al., 2019). The large uncertainty due
to Manning’s coefficient is perhaps accentuated by the na-
ture of the relationship between the coefficient and the dis-
charge, but it is still here a lower bound since uncertainty

for other parameters (hydraulic conductivity, van Genuchten
parameters) was not included. This underlines that even the
physically based approach does not completely overcome the
issue of parameter estimation, particularly for extreme and
record-breaking floods. Finally, the use of distributed Man-
ning’s roughness led to simulations that were all bracketed
by the ParFlowCLM simulations with uniformly distributed
values.

GR4H peak flows were delayed compared to the ones
simulated by ParFlowCLM, which is perhaps related to the
delaying effect of the unit hydrographs of GR4H. The base
time of these unit hydrographs is lumped (i.e., catchment-
averaged) and calibrated on long-term discharge records,
which implies that it reflects a smoother response than the
exceptional development of the July 2021 flooding event.
Moreover, GR4H significantly underestimated peak flow rel-
ative to ParFlowCLM for the Erft at Neubrueck and the Rur
at Monschau. In the case of the Erft at Neubrueck, we suspect
that these differences are related to the strong anthropogenic
intervention (flood protection systems, dominant agricultural
activity, or the existence of large mining pits with signif-
icant water-holding capacity; see Table 1 and Staatliches
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Figure 8. Relative errors in simulated peak flow due to (a) applying GR4H instead of ParFlowCLM across all radar-based QPE products and
(b) replacing RADOLAN by any of the remaining seven (or six for ParFlowCLM) hourly QPE products (Table 2) as precipitation input for
the July 2021 event. Dashed orange lines limit the 50 % relative error region.

Umweltamt Köln, 2005) which could be learned by GR4H
from the calibration process on historical observations, in
contrast to ParFlowCLM that does not explicitly account for
such anthropogenic effects. For the Rur at Monschau, the
differences between simulated hydrographs by ParFlowCLM
and GR4H may be due to the existence of small reservoirs at
the upstream. These differences would be better understood
if GR4H parameters had been estimated using information
from hourly discharge measurements. Finally, the analysis
of the effect of the calibration choices on GR4H simula-
tions (not shown here) highlighted the effect of the hydro-
climatic specificities of the calibration period on the model
simulations for unprecedented or future events (Brigode et
al., 2013).

Accounting for the 3D soil and subsoil heterogeneities in
the representation of hydrological processes allows ParFlow-
CLM to represent well the runoff generation by overland
flow and increased interflow in the upstream steep part of
the study catchments, but it would be improved by includ-
ing anthropogenic effects on hydrological processes that had
a large impact on the flood generation mechanisms for this
event (Mohr et al., 2022). The structure of ParFlowCLM al-
lows us to couple the complex hydrological and morphody-
namic processes (sediment and debris transport, bank ero-
sion, and developing landslides) that nonlinearly interacted
with the flood propagation and river morphology, increasing
the destructiveness of the event.

Due to the low computational cost of the GR4H implemen-
tation, estimating the uncertainty of its peak flow simulations
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was less demanding than with ParFlowCLM. However, us-
ing the extreme, physically possible values of Manning’s pa-
rameter allowed ParFlowCLM to simulate higher peak flows
than the calibrated model, suggesting that it could provide
a more accurate range of possible peak flow values for un-
precedented events, unlike the calibrated GR4H. One could
combine both models by running a few ParFlowCLM sim-
ulations, use GR4H with various calibration approaches to
map the uncertainty in peak flow estimation from different
behavioral model parameters and different climatic inputs,
and then transfer this uncertainty to ParFlowCLM simula-
tions. This would, however, require exhaustive analysis of
the agreement between ParFlowCLM and GR4H for a wide
variety of catchments.

5.3 Study limitations

Our study has several limitations. First, focusing on only one
event for a few catchments makes our conclusions event- and
location-dependent. A large sample approach (such as in Rai-
monet et al., 2017; Singh and Reza Najafi, 2020) would help
analyze the interplay between QPEs and contrasting mod-
eling philosophies not only for extreme event purposes but
also for overall long-term hydrological needs. Second, the
absence of reliable discharge measurements for the catas-
trophic event limits our model evaluation, but our model
simulations could be used as estimates of the severity of
the flooding event despite the large uncertainty in simulated
peak flows. Third, our study overlooked the effect of dis-
tributed antecedent saturation on the evaluation of QPEs,
which would help explain the differences between the catch-
ments under humid antecedent conditions. Fourth, the accu-
racy of the parameter estimation in our study could be im-
proved by investigating the uncertainty related to other dis-
tributed parameters (such as hydraulic conductivity; Poméon
et al., 2020) or using hourly discharge streamflows for the
GR4H calibration.

6 Conclusions and future work

The July 2021 events in western Germany questioned the
ability of our current methods of precipitation estimation and
hydrological modeling to correctly anticipate the severity of
the floods. We compared state-of-the-art radar-based QPEs
and two contrasting hydrological models, the conceptual and
lumped GR4H with the 3D-distributed and physically based
ParFlowCLM, to analyze how the choices of QPEs or hy-
drological modeling approach impacted the simulated peak
flows. We concluded the following.

1. Better characterization of the vertical profiles of radar
variables led to significant improvements in radar-based
QPEs for the extreme event of 14 July 2021 with respect
to rain gauges. These improvements were confirmed at
both the point scale and the catchment scale.

2. Errors in the QPEs impacted both GR4H and ParFlow-
CLM peak flow estimates, but their impact on the sever-
ity of the flood (i.e., surpassing the highest historically
measured peak flow) varied from one catchment to an-
other.

3. A large uncertainty characterized the peak flow simula-
tions by both GR4H and ParFlowCLM, but they agreed
in detecting the historical thresholds in most catchments
with low anthropogenic influence.

As future work, a larger time span with more extreme
events are to be considered to confirm these conclusions.
A correction of vertical profiles of radar variables is to be
implemented for further improvements in the accuracy of
the QPE products. A modeling framework that combines
ParFlowCLM and GR4H to better anticipate never-before-
seen events is to be designed to benefit from the advantages
of both modeling philosophies.

Code and data availability. Both ParFlowCLM (https://doi.org/10.
5281/zenodo.3555297; Smith et al., 2019) and GR4H (https://
hydrogr.github.io/airGR/, last access: 9 January 2023; Coron et
al., 2017; https://doi.org/10.1016/j.envsoft.2017.05.002) codes are
available in public repositories. All original data are public, except
for the QPE products generated for the study, which can be made
available upon reasonable request to the authors.

Author contributions. MS co-designed and conducted all of the ex-
periments, produced all of the figures, and carried out the writing
of the original manuscript and its revision. CFP closely supervised
and co-designed the experiments. AB designed the ParFlowCLM
setup and assisted MS in its application for this study. JYC pro-
duced the state-of-the-art QPE products under the supervision of
ST. CFP, ST, and SK acquired the project funding. All authors par-
ticipated in the analysis and critique of the results and the revision
of the manuscript.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The authors gratefully acknowledge the Earth
System Modelling Project (ESM) for funding this work by provid-
ing computing time for ParFlowCLM runs on the ESM partition of
the supercomputer JUWELS at the Jülich Supercomputing Centre
(JSC).

https://doi.org/10.5194/nhess-23-159-2023 Nat. Hazards Earth Syst. Sci., 23, 159–177, 2023

https://doi.org/10.5281/zenodo.3555297
https://doi.org/10.5281/zenodo.3555297
https://hydrogr.github.io/airGR/
https://hydrogr.github.io/airGR/
https://doi.org/10.1016/j.envsoft.2017.05.002


174 M. Saadi et al.: Uncertainties in precipitation and peak flow estimates for the 14 July 2021 event

Financial support. This study is part of the RealPEP (Near-
Realtime Quantitative Precipitation Estimation and Prediction
https://www2.meteo.uni-bonn.de/realpep/doku.php, last access:
9 January 2023) P4 project (Evaluation of QPE and QPN im-
provements in a flash flood nowcasting framework with data
assimilation), funded by the Deutsche Forschungsgemeinschaft
(German Research Foundation; grant no. 2589).

The article processing charges for this open-access
publication were covered by the Forschungszentrum Jülich.

Review statement. This paper was edited by Heidi Kreibich and re-
viewed by two anonymous referees.

References

Anagnostou, M. N., Kalogiros, J., Anagnostou, E. N., Tarolli, M.,
Papadopoulos, A., and Borga, M.: Performance evaluation of
high-resolution rainfall estimation by X-band dual-polarization
radar for flash flood applications in mountainous basins, J. Hy-
drol., 394, 4–16, https://doi.org/10.1016/j.jhydrol.2010.06.026,
2010.

Anagnostou, M. N., Nikolopoulos, E. I., Kalogiros, J., Anag-
nostou, E. N., Marra, F., Mair, E., Bertoldi, G., Tappeiner,
U., and Borga, M.: Advancing Precipitation Estimation and
Streamflow Simulations in Complex Terrain with X-Band Dual-
Polarization Radar Observations, Remote Sens., 10, 1258,
https://doi.org/10.3390/rs10081258, 2018.

Anctil, F. and Ramos, M.-H.: Verification Metrics for Hydrolog-
ical Ensemble Forecasts, in: Handbook of Hydrometeorologi-
cal Ensemble Forecasting, edited by: Duan, Q., Pappenberger,
F., Thielen, J., Wood, A., Cloke, H. L., and Schaake, J. C.,
Springer, Berlin, Heidelberg, 1–30, https://doi.org/10.1007/978-
3-642-40457-3_3-1, 2017.

Anquetin, S., Yates, E., Ducrocq, V., Samouillan, S., Chancibault,
K., Davolio, S., Accadia, C., Casaioli, M., Mariani, S., Ficca,
G., Gozzini, B., Pasi, F., Pasqui, M., Garcia, A., Martorell, M.,
Romero, R., and Chessa, P.: The 8 and 9 September 2002 flash
flood event in France: a model intercomparison, Nat. Hazards
Earth Syst. Sci., 5, 741–754, https://doi.org/10.5194/nhess-5-
741-2005, 2005.

Asante, K. O., Artan, G. A., Pervez, M. S., Bandaragoda, C., and
Verdin, J. P.: Technical Manual for the Geospatial Stream Flow
Model (GeoSFM), Technical Manual for the Geospatial Stream
Flow Model (GeoSFM), U.S. Geological Survey, Open-File Re-
port 2007-1441, https://doi.org/10.3133/ofr20071441, 2008.

Berne, A. and Krajewski, W. F.: Radar for hydrology: Unful-
filled promise or unrecognized potential?, Adv. Water Resour.,
51, 357–366, https://doi.org/10.1016/j.advwatres.2012.05.005,
2013.

BMI: Bericht zur Hochwasserkatastrophe 2021: Katastrophenhilfe,
Wiederaufbau und Evaluierungsprozesse, Bundesministerium
des Innern und für Heimat, Berlin, Germany, https://www.
bmi.bund.de/SharedDocs/downloads/DE/veroeffentlichungen/
2022/abschlussbericht-hochwasserkatastrophe.pdf;jsessionid=
98D3F1ADE38213E64E2F569C09B5F923.1_cid332?__blob=
publicationFile&v=1 last access: 21 December 2022.

Borga, M., Boscolo, P., Zanon, F., and Sangati, M.: Hydrom-
eteorological Analysis of the 29 August 2003 Flash Flood
in the Eastern Italian Alps, J. Hydrometeorol., 8, 1049–1067,
https://doi.org/10.1175/JHM593.1, 2007.

Boushaki, F. I., Hsu, K.-L., Sorooshian, S., Park, G.-H., Mahani, S.,
and Shi, W.: Bias Adjustment of Satellite Precipitation Estima-
tion Using Ground-Based Measurement: A Case Study Evalua-
tion over the Southwestern United States, J. Hydrometeorol., 10,
1231–1242, https://doi.org/10.1175/2009JHM1099.1, 2009.

Braud, I., Roux, H., Anquetin, S., Maubourguet, M.-M., Manus,
C., Viallet, P., and Dartus, D.: The use of distributed hydro-
logical models for the Gard 2002 flash flood event: Analysis
of associated hydrological processes, J. Hydrol., 394, 162–181,
https://doi.org/10.1016/j.jhydrol.2010.03.033, 2010.

Brigode, P., Oudin, L., and Perrin, C.: Hydrological model parame-
ter instability: A source of additional uncertainty in estimating
the hydrological impacts of climate change?, J. Hydrol., 476,
410–425, https://doi.org/10.1016/j.jhydrol.2012.11.012, 2013.

Chen, H., Cifelli, R., and White, A.: Improving Operational Radar
Rainfall Estimates Using Profiler Observations Over Complex
Terrain in Northern California, IEEE T. Geosci. Remote, 58,
1821–1832, https://doi.org/10.1109/TGRS.2019.2949214, 2020.

Chen, J.-Y., Trömel, S., Ryzhkov, A., and Simmer, C.: Assessing
the Benefits of Specific Attenuation for Quantitative Precipita-
tion Estimation with a C-Band Radar Network, J. Hydrometeo-
rol., 22, 2617–2631, https://doi.org/10.1175/JHM-D-20-0299.1,
2021.

Chen, J.-Y., Reinoso-Rondinel, R., Trömel, S., Simmer, C., and
Ryzhkov, A.: A radar-based quantitative precipitation estimation
algorithm to overcome the impact of vertical gradients of warm-
rain precipitation: the flood in western Germany on 14 July 2021,
J. Hydrometeorol., online first, https://doi.org/10.1175/JHM-D-
22-0111.1, 2022.

Cole, S. J. and Moore, R. J.: Distributed hydrologi-
cal modelling using weather radar in gauged and un-
gauged basins, Adv. Water Resour., 32, 1107–1120,
https://doi.org/10.1016/j.advwatres.2009.01.006, 2009.

Coron, L., Thirel, G., Delaigue, O., Perrin, C., and Andréas-
sian, V.: The suite of lumped GR hydrological models
in an R package, Environ. Modell. Softw., 94, 166–171,
https://doi.org/10.1016/j.envsoft.2017.05.002, 2017 (code avail-
able at: https://hydrogr.github.io/airGR/, last access: 9 January
2023).

Cunha, L. K., Smith, J. A., Krajewski, W. F., Baeck, M. L., and
Seo, B.-C.: NEXRAD NWS Polarimetric Precipitation Prod-
uct Evaluation for IFloodS, J. Hydrometeorol., 16, 1676–1699,
https://doi.org/10.1175/JHM-D-14-0148.1, 2015.

Dai, Q. and Han, D.: Exploration of discrepancy between radar and
gauge rainfall estimates driven by wind fields, Water Resour.
Res., 50, 8571–8588, https://doi.org/10.1002/2014WR015794,
2014.

Derin, Y., Anagnostou, E., Anagnostou, M., and Kalogiros, J.:
Evaluation of X-Band Dual-Polarization Radar-Rainfall Esti-
mates from OLYMPEX, J. Hydrometeorol., 20, 1941–1959,
https://doi.org/10.1175/JHM-D-19-0097.1, 2019.

Deutsche Welle: German floods: Climate change made heavy
rains in Europe more likely, https://www.dw.com/en/
german-floods-climate-change/a-58959677 (last access:
21 December 2022), 2021.

Nat. Hazards Earth Syst. Sci., 23, 159–177, 2023 https://doi.org/10.5194/nhess-23-159-2023

https://www2.meteo.uni-bonn.de/realpep/doku.php
https://doi.org/10.1016/j.jhydrol.2010.06.026
https://doi.org/10.3390/rs10081258
https://doi.org/10.1007/978-3-642-40457-3_3-1
https://doi.org/10.1007/978-3-642-40457-3_3-1
https://doi.org/10.5194/nhess-5-741-2005
https://doi.org/10.5194/nhess-5-741-2005
https://doi.org/10.3133/ofr20071441
https://doi.org/10.1016/j.advwatres.2012.05.005
https://www.bmi.bund.de/SharedDocs/downloads/DE/veroeffentlichungen/2022/abschlussbericht-hochwasserkatastrophe.pdf;jsessionid=98D3F1ADE38213E64E2F569C09B5F923.1_cid332?__blob=publicationFile&v=1
https://www.bmi.bund.de/SharedDocs/downloads/DE/veroeffentlichungen/2022/abschlussbericht-hochwasserkatastrophe.pdf;jsessionid=98D3F1ADE38213E64E2F569C09B5F923.1_cid332?__blob=publicationFile&v=1
https://www.bmi.bund.de/SharedDocs/downloads/DE/veroeffentlichungen/2022/abschlussbericht-hochwasserkatastrophe.pdf;jsessionid=98D3F1ADE38213E64E2F569C09B5F923.1_cid332?__blob=publicationFile&v=1
https://www.bmi.bund.de/SharedDocs/downloads/DE/veroeffentlichungen/2022/abschlussbericht-hochwasserkatastrophe.pdf;jsessionid=98D3F1ADE38213E64E2F569C09B5F923.1_cid332?__blob=publicationFile&v=1
https://www.bmi.bund.de/SharedDocs/downloads/DE/veroeffentlichungen/2022/abschlussbericht-hochwasserkatastrophe.pdf;jsessionid=98D3F1ADE38213E64E2F569C09B5F923.1_cid332?__blob=publicationFile&v=1
https://doi.org/10.1175/JHM593.1
https://doi.org/10.1175/2009JHM1099.1
https://doi.org/10.1016/j.jhydrol.2010.03.033
https://doi.org/10.1016/j.jhydrol.2012.11.012
https://doi.org/10.1109/TGRS.2019.2949214
https://doi.org/10.1175/JHM-D-20-0299.1
https://doi.org/10.1175/JHM-D-22-0111.1
https://doi.org/10.1175/JHM-D-22-0111.1
https://doi.org/10.1016/j.advwatres.2009.01.006
https://doi.org/10.1016/j.envsoft.2017.05.002
https://hydrogr.github.io/airGR/
https://doi.org/10.1175/JHM-D-14-0148.1
https://doi.org/10.1002/2014WR015794
https://doi.org/10.1175/JHM-D-19-0097.1
https://www.dw.com/en/german-floods-climate-change/a-58959677
https://www.dw.com/en/german-floods-climate-change/a-58959677


M. Saadi et al.: Uncertainties in precipitation and peak flow estimates for the 14 July 2021 event 175

Diederich, M., Ryzhkov, A., Simmer, C., Zhang, P., and Trömel,
S.: Use of Specific Attenuation for Rainfall Measurement at X-
Band Radar Wavelengths. Part I: Radar Calibration and Partial
Beam Blockage Estimation, J. Hydrometeorol., 16, 487–502,
https://doi.org/10.1175/JHM-D-14-0066.1, 2015a.

Diederich, M., Ryzhkov, A., Simmer, C., Zhang, P., and Trömel,
S.: Use of Specific Attenuation for Rainfall Measurement at X-
Band Radar Wavelengths. Part II: Rainfall Estimates and Com-
parison with Rain Gauges, J. Hydrometeorol., 16, 503–516,
https://doi.org/10.1175/JHM-D-14-0067.1, 2015b.

Dottori, F., Szewczyk, W., Ciscar, J.-C., Zhao, F., Alfieri, L.,
Hirabayashi, Y., Bianchi, A., Mongelli, I., Frieler, K., Betts, R.
A., and Feyen, L.: Increased human and economic losses from
river flooding with anthropogenic warming, Nat. Clim. Change,
8, 781–786, https://doi.org/10.1038/s41558-018-0257-z, 2018.

Dougherty, E. and Rasmussen, K. L.: Changes in Future Flash
Flood–Producing Storms in the United States, J. Hydrometeo-
rol., 21, 2221–2236, https://doi.org/10.1175/JHM-D-20-0014.1,
2020.

Dumont, M., Saadi, M., Oudin, L., Lachassagne, P., Nugraha, B.,
Fadillah, A., Bonjour, J.-L., Muhammad, A., Hendarmawan,
Dörfliger, N., and Plagnes, V.: Assessing rainfall global prod-
ucts reliability for water resource management in a tropical vol-
canic mountainous catchment, J. Hydrol. Reg. Stud., 40, 101037,
https://doi.org/10.1016/j.ejrh.2022.101037, 2022.

Duscher, K., Günther, A., Richts, A., Clos, P., Philipp, U., and
Struckmeier, W.: The GIS layers of the “International Hydroge-
ological Map of Europe 1:1,500,000” in a vector format, Hy-
drogeol. J., 23, 1867–1875, https://doi.org/10.1007/s10040-015-
1296-4, 2015.

Edijatno, Nascimento, N. de O., Yang, X., Makhlouf, Z.,
and Michel, C.: GR3J: a daily watershed model with
three free parameters, Hydrolog. Sci. J., 44, 263–277,
https://doi.org/10.1080/02626669909492221, 1999.

Emmanuel, I., Payrastre, O., Andrieu, H., and Zuber, F.: A
method for assessing the influence of rainfall spatial vari-
ability on hydrograph modeling. First case study in the
Cevennes Region, southern France, J. Hydrol., 555, 314–322,
https://doi.org/10.1016/j.jhydrol.2017.10.011, 2017.

Ficchì, A., Perrin, C., and Andréassian, V.: Hydrological
modelling at multiple sub-daily time steps: Model im-
provement via flux-matching, J. Hydrol., 575, 1308–1327,
https://doi.org/10.1016/j.jhydrol.2019.05.084, 2019.

Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R. P.,
Ban, N., Barbero, R., Berg, P., Blenkinsop, S., Do, H. X., Guer-
reiro, S., Haerter, J. O., Kendon, E. J., Lewis, E., Schaer, C.,
Sharma, A., Villarini, G., Wasko, C., and Zhang, X.: Anthro-
pogenic intensification of short-duration rainfall extremes, Nat.
Rev. Earth Environ., 2, 107–122, https://doi.org/10.1038/s43017-
020-00128-6, 2021.

GDV: 2021 teuerstes Naturgefahrenjahr für die Versicherer,
Gesamtverband der Deutschen Versicherungswirtschaft (GDV),
Berlin, Germany, https://www.gdv.de/de/medien/aktuell/
2021-teuerstes-naturgefahrenjahr-fuer-die-versicherer-74092
(last access: 21 December 2022), 2021 (in German).

Gourley, J. J., Giangrande, S. E., Hong, Y., Flamig, Z. L., Schuur,
T., and Vrugt, J. A.: Impacts of Polarimetric Radar Observa-
tions on Hydrologic Simulation, J. Hydrometeorol., 11, 781–796,
https://doi.org/10.1175/2010JHM1218.1, 2010.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decom-
position of the mean squared error and NSE performance criteria:
Implications for improving hydrological modelling, J. Hydrol.,
377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.

Hapuarachchi, H. A. P., Wang, Q. J., and Pagano, T. C.: A review of
advances in flash flood forecasting, Hydrol. Process., 25, 2771–
2784, https://doi.org/10.1002/hyp.8040, 2011.

Harrison, D. L., Driscoll, S. J., and Kitchen, M.: Improving
precipitation estimates from weather radar using quality con-
trol and correction techniques, Meteorol. Appl., 7, 135–144,
https://doi.org/10.1017/S1350482700001468, 2000.

He, X., Koch, J., Zheng, C., Bøvith, T., and Jensen, K. H.:
Comparison of Simulated Spatial Patterns Using Rain Gauge
and Polarimetric-Radar-Based Precipitation Data in Catchment
Hydrological Modeling, J. Hydrometeorol., 19, 1273–1288,
https://doi.org/10.1175/JHM-D-17-0235.1, 2018.

Hengl, T., de Jesus, J. M., Heuvelink, G. B. M., Gonza-
lez, M. R., Kilibarda, M., Blagotić, A., Shangguan, W.,
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