Articles | Volume 23, issue 4
https://doi.org/10.5194/nhess-23-1465-2023
https://doi.org/10.5194/nhess-23-1465-2023
Research article
 | Highlight paper
 | 
24 Apr 2023
Research article | Highlight paper |  | 24 Apr 2023

Rescuing historical weather observations improves quantification of severe windstorm risks

Ed Hawkins, Philip Brohan, Samantha N. Burgess, Stephen Burt, Gilbert P. Compo, Suzanne L. Gray, Ivan D. Haigh, Hans Hersbach, Kiki Kuijjer, Oscar Martínez-Alvarado, Chesley McColl, Andrew P. Schurer, Laura Slivinski, and Joanne Williams

Related authors

GC Insights: Communicating changes in local climate risk using a physically plausible causal chain
Ed Hawkins, Nigel Arnell, Jamie Hannaford, and Rowan Sutton
EGUsphere, https://doi.org/10.5194/egusphere-2024-289,https://doi.org/10.5194/egusphere-2024-289, 2024
Short summary
ESD Ideas: Translating historical extreme weather events into a warmer world
Ed Hawkins, Gilbert P. Compo, and Prashant D. Sardeshmukh
Earth Syst. Dynam., 14, 1081–1084, https://doi.org/10.5194/esd-14-1081-2023,https://doi.org/10.5194/esd-14-1081-2023, 2023
Short summary
River flow in the near future: a global perspective in the context of a high-emission climate change scenario
Omar Vicente Müller, Patrick McGuire, Pier Luigi Vidale, and Ed Hawkins
EGUsphere, https://doi.org/10.5194/egusphere-2023-1281,https://doi.org/10.5194/egusphere-2023-1281, 2023
Short summary
The modelled climatic response to the 18.6-year lunar nodal cycle and its role in decadal temperature trends
Manoj Joshi, Robert A. Hall, David P. Stevens, and Ed Hawkins
Earth Syst. Dynam., 14, 443–455, https://doi.org/10.5194/esd-14-443-2023,https://doi.org/10.5194/esd-14-443-2023, 2023
Short summary
Uncertainty in aerosol radiative forcing impacts the simulated global monsoon in the 20th century
Jonathan K. P. Shonk, Andrew G. Turner, Amulya Chevuturi, Laura J. Wilcox, Andrea J. Dittus, and Ed Hawkins
Atmos. Chem. Phys., 20, 14903–14915, https://doi.org/10.5194/acp-20-14903-2020,https://doi.org/10.5194/acp-20-14903-2020, 2020
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Assimilation of surface pressure observations from personal weather stations in AROME-France
Alan Demortier, Marc Mandement, Vivien Pourret, and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 24, 907–927, https://doi.org/10.5194/nhess-24-907-2024,https://doi.org/10.5194/nhess-24-907-2024, 2024
Short summary
An open-source radar-based hail damage model for buildings and cars
Timo Schmid, Raphael Portmann, Leonie Villiger, Katharina Schröer, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 847–872, https://doi.org/10.5194/nhess-24-847-2024,https://doi.org/10.5194/nhess-24-847-2024, 2024
Short summary
Linkages between atmospheric rivers and humid heat across the United States
Colin Raymond, Anamika Shreevastava, Emily Slinskey, and Duane Waliser
Nat. Hazards Earth Syst. Sci., 24, 791–801, https://doi.org/10.5194/nhess-24-791-2024,https://doi.org/10.5194/nhess-24-791-2024, 2024
Short summary
Evaluating pySTEPS optical flow algorithms for convection nowcasting over the Maritime Continent using satellite data
Joseph Smith, Cathryn Birch, John Marsham, Simon Peatman, Massimo Bollasina, and George Pankiewicz
Nat. Hazards Earth Syst. Sci., 24, 567–582, https://doi.org/10.5194/nhess-24-567-2024,https://doi.org/10.5194/nhess-24-567-2024, 2024
Short summary
Climate change impacts on regional fire weather in heterogeneous landscapes of central Europe
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024,https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary

Cited articles

Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741–2758, 1999. 
Board of Trade: Furness Railway, https://www.railwaysarchive.co.uk/documents/BoT_LevenViaduct1903.pdf (last access: 20 September 2022), 1903. 
Brönnimann, S., Martius, O., Franke, J., Stickler, A., and Auchmann, R.: Historical weather extremes in the “Twentieth Century Reanalysis”, edited by: Brönnimann, S. and Martius, O., Weather extremes during the past 140 years, Reihe G Grundlagenforschung: Vol. G89 (pp. 7–17), Bern: Geographica Bernensia, https://doi.org/10.4480/GB2013.G89.01, 2013. 
Browning, K. A.: The sting at the end of the tail: damaging winds associated with extratropical cyclones, Q. J. R. Meteorol. Soc., 130, 375–399, https://doi.org/10.1002/wea.3889, 2004. 
Download
Executive editor
This paper clearly demonstrates the value of the rescue of historical meteorological data, as they help to come to a better assessment of the characteristics of events in the past. Using such data, the study is able to give evidence for physical processes of particular relevance for the intensity of an historical hazardous event. The approach makes an assessment of such events in the context of climate change and variability possible.
Short summary
We examine a severe windstorm that occurred in February 1903 and caused significant damage in the UK and Ireland. Using newly digitized weather observations from the time of the storm, combined with a modern weather forecast model, allows us to determine why this storm caused so much damage. We demonstrate that the event is one of the most severe windstorms to affect this region since detailed records began. The approach establishes a new tool to improve assessments of risk from extreme weather.
Altmetrics
Final-revised paper
Preprint