Articles | Volume 22, issue 12
https://doi.org/10.5194/nhess-22-3875-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-22-3875-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Droughts in Germany: performance of regional climate models in reproducing observed characteristics
Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe
Institute of Technology, Campus Alpin, Kreuzeckbahnstraße 19, 82467
Garmisch-Partenkirchen, Germany
Benjamin Fersch
Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe
Institute of Technology, Campus Alpin, Kreuzeckbahnstraße 19, 82467
Garmisch-Partenkirchen, Germany
Harald Kunstmann
Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe
Institute of Technology, Campus Alpin, Kreuzeckbahnstraße 19, 82467
Garmisch-Partenkirchen, Germany
Institute of Geography and Centre for Climate Resilience, University of Augsburg, Alter Postweg 118, 86159 Augsburg, Germany
Related authors
Dragan Petrovic, Benjamin Fersch, and Harald Kunstmann
Nat. Hazards Earth Syst. Sci., 24, 265–289, https://doi.org/10.5194/nhess-24-265-2024, https://doi.org/10.5194/nhess-24-265-2024, 2024
Short summary
Short summary
The influence of model resolution and settings on the reproduction of heat waves in Germany between 1980–2009 is analyzed. Outputs from a high-resolution model with settings tailored to the target region are compared to those from coarser-resolution models with more general settings. Neither the increased resolution nor the tailored model settings are found to add significant value to the heat wave simulation. The models exhibit a large spread, indicating that the choice of model can be crucial.
Efi Rousi, Andreas H. Fink, Lauren S. Andersen, Florian N. Becker, Goratz Beobide-Arsuaga, Marcus Breil, Giacomo Cozzi, Jens Heinke, Lisa Jach, Deborah Niermann, Dragan Petrovic, Andy Richling, Johannes Riebold, Stella Steidl, Laura Suarez-Gutierrez, Jordis S. Tradowsky, Dim Coumou, André Düsterhus, Florian Ellsäßer, Georgios Fragkoulidis, Daniel Gliksman, Dörthe Handorf, Karsten Haustein, Kai Kornhuber, Harald Kunstmann, Joaquim G. Pinto, Kirsten Warrach-Sagi, and Elena Xoplaki
Nat. Hazards Earth Syst. Sci., 23, 1699–1718, https://doi.org/10.5194/nhess-23-1699-2023, https://doi.org/10.5194/nhess-23-1699-2023, 2023
Short summary
Short summary
The objective of this study was to perform a comprehensive, multi-faceted analysis of the 2018 extreme summer in terms of heat and drought in central and northern Europe, with a particular focus on Germany. A combination of favorable large-scale conditions and locally dry soils were related with the intensity and persistence of the events. We also showed that such extremes have become more likely due to anthropogenic climate change and might occur almost every year under +2 °C of global warming.
Yinchi Zhang, Wanling Xu, Chao Deng, Shao Sun, Miaomiao Ma, Jianhui Wei, Ying Chen, Harald Kunstmann, and Lu Gao
EGUsphere, https://doi.org/10.5194/egusphere-2025-2438, https://doi.org/10.5194/egusphere-2025-2438, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Most studies of compound extremes assume stable climate conditions. We use high-resolution regional climate modeling and non-stationary statistical methods to assess future changes in southeastern China. Our results show that non-stationary models better capture shifts in the risk of compound extremes, highlighting that traditional methods may underestimate future threats.
Ningpeng Dong, Haoran Hao, Mingxiang Yang, Jianhui Wei, Shiqin Xu, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 29, 2023–2042, https://doi.org/10.5194/hess-29-2023-2025, https://doi.org/10.5194/hess-29-2023-2025, 2025
Short summary
Short summary
Hydrometeorological forecasting is crucial for managing water resources and mitigating extreme weather events, yet current long-term forecast products are often embedded with uncertainties. We develop a deep-learning-based modelling framework to improve 30 d rainfall and streamflow forecasts by combining advanced neural networks and physical models. With the flow forecast error reduced by up to 33 %, the framework has the potential to enhance water management and disaster prevention.
Ling Zhang, Lu Li, Zhongshi Zhang, Joël Arnault, Stefan Sobolowski, Anthony Musili Mwanthi, Pratik Kad, Mohammed Abdullahi Hassan, Tanja Portele, and Harald Kunstmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-278, https://doi.org/10.5194/hess-2024-278, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
To address challenges related to unreliable hydrological simulations, we present an enhanced hydrological simulation with a refined climate model and a more comprehensive hydrological model. The model with the two parts outperforms that without, especially in migrating bias in peak flow and dry-season flow. Our findings highlight the enhanced hydrological simulation capability with the refined climate and lake module contributing 24 % and 76 % improvement, respectively.
Maximilian Graf, Andreas Wagner, Julius Polz, Llorenç Lliso, José Alberto Lahuerta, Harald Kunstmann, and Christian Chwala
Atmos. Meas. Tech., 17, 2165–2182, https://doi.org/10.5194/amt-17-2165-2024, https://doi.org/10.5194/amt-17-2165-2024, 2024
Short summary
Short summary
Commercial microwave links (CMLs) can be used for rainfall retrieval. The detection of rainy periods in their attenuation time series is a crucial processing step. We investigate the usage of rainfall data from MSG SEVIRI for this task, compare this approach with existing methods, and introduce a novel combined approach. The results show certain advantages for SEVIRI-based methods, particularly for CMLs where existing methods perform poorly. Our novel combination yields the best performance.
Patrick Olschewski, Qi Sun, Jianhui Wei, Yu Li, Zhan Tian, Laixiang Sun, Joël Arnault, Tanja C. Schober, Brian Böker, Harald Kunstmann, and Patrick Laux
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-95, https://doi.org/10.5194/hess-2024-95, 2024
Preprint under review for HESS
Short summary
Short summary
There are indications that typhoon intensities may increase under global warming. However, further research on these projections and their uncertainties is necessary. We study changes in typhoon intensity under SSP5-8.5 for seven events affecting the Pearl River Delta using Pseudo-Global Warming and a storyline approach based on 16 CMIP6 models. Results show intensified wind speed, sea level pressure drop and precipitation levels for six events with amplified increases for individual storylines.
Patrick Olschewski, Mame Diarra Bousso Dieng, Hassane Moutahir, Brian Böker, Edwin Haas, Harald Kunstmann, and Patrick Laux
Nat. Hazards Earth Syst. Sci., 24, 1099–1134, https://doi.org/10.5194/nhess-24-1099-2024, https://doi.org/10.5194/nhess-24-1099-2024, 2024
Short summary
Short summary
We applied a multivariate and dependency-preserving bias correction method to climate model output for the Greater Mediterranean Region and investigated potential changes in false-spring events (FSEs) and heat–drought compound events (HDCEs). Results project an increase in the frequency of FSEs in middle and late spring as well as increases in frequency, intensity, and duration for HDCEs. This will potentially aggravate the risk of crop loss and failure and negatively impact food security.
Qi Sun, Patrick Olschewski, Jianhui Wei, Zhan Tian, Laixiang Sun, Harald Kunstmann, and Patrick Laux
Hydrol. Earth Syst. Sci., 28, 761–780, https://doi.org/10.5194/hess-28-761-2024, https://doi.org/10.5194/hess-28-761-2024, 2024
Short summary
Short summary
Tropical cyclones (TCs) often cause high economic loss due to heavy winds and rainfall, particularly in densely populated regions such as the Pearl River Delta (China). This study provides a reference to set up regional climate models for TC simulations. They contribute to a better TC process understanding and assess the potential changes and risks of TCs in the future. This lays the foundation for hydrodynamical modelling, from which the cities' disaster management and defence could benefit.
Dragan Petrovic, Benjamin Fersch, and Harald Kunstmann
Nat. Hazards Earth Syst. Sci., 24, 265–289, https://doi.org/10.5194/nhess-24-265-2024, https://doi.org/10.5194/nhess-24-265-2024, 2024
Short summary
Short summary
The influence of model resolution and settings on the reproduction of heat waves in Germany between 1980–2009 is analyzed. Outputs from a high-resolution model with settings tailored to the target region are compared to those from coarser-resolution models with more general settings. Neither the increased resolution nor the tailored model settings are found to add significant value to the heat wave simulation. The models exhibit a large spread, indicating that the choice of model can be crucial.
Mohsen Soltani, Bert Hamelers, Abbas Mofidi, Christopher G. Fletcher, Arie Staal, Stefan C. Dekker, Patrick Laux, Joel Arnault, Harald Kunstmann, Ties van der Hoeven, and Maarten Lanters
Earth Syst. Dynam., 14, 931–953, https://doi.org/10.5194/esd-14-931-2023, https://doi.org/10.5194/esd-14-931-2023, 2023
Short summary
Short summary
The temporal changes and spatial patterns in precipitation events do not show a homogeneous tendency across the Sinai Peninsula. Mediterranean cyclones accompanied by the Red Sea and Persian troughs are responsible for the majority of Sinai's extreme rainfall events. Cyclone tracking captures 156 cyclones (rainfall ≥10 mm d-1) either formed within or transferred to the Mediterranean basin precipitating over Sinai.
Efi Rousi, Andreas H. Fink, Lauren S. Andersen, Florian N. Becker, Goratz Beobide-Arsuaga, Marcus Breil, Giacomo Cozzi, Jens Heinke, Lisa Jach, Deborah Niermann, Dragan Petrovic, Andy Richling, Johannes Riebold, Stella Steidl, Laura Suarez-Gutierrez, Jordis S. Tradowsky, Dim Coumou, André Düsterhus, Florian Ellsäßer, Georgios Fragkoulidis, Daniel Gliksman, Dörthe Handorf, Karsten Haustein, Kai Kornhuber, Harald Kunstmann, Joaquim G. Pinto, Kirsten Warrach-Sagi, and Elena Xoplaki
Nat. Hazards Earth Syst. Sci., 23, 1699–1718, https://doi.org/10.5194/nhess-23-1699-2023, https://doi.org/10.5194/nhess-23-1699-2023, 2023
Short summary
Short summary
The objective of this study was to perform a comprehensive, multi-faceted analysis of the 2018 extreme summer in terms of heat and drought in central and northern Europe, with a particular focus on Germany. A combination of favorable large-scale conditions and locally dry soils were related with the intensity and persistence of the events. We also showed that such extremes have become more likely due to anthropogenic climate change and might occur almost every year under +2 °C of global warming.
Benjamin Fersch, Andreas Wagner, Bettina Kamm, Endrit Shehaj, Andreas Schenk, Peng Yuan, Alain Geiger, Gregor Moeller, Bernhard Heck, Stefan Hinz, Hansjörg Kutterer, and Harald Kunstmann
Earth Syst. Sci. Data, 14, 5287–5307, https://doi.org/10.5194/essd-14-5287-2022, https://doi.org/10.5194/essd-14-5287-2022, 2022
Short summary
Short summary
In this study, a comprehensive multi-disciplinary dataset for tropospheric water vapor was developed. Geodetic, photogrammetric, and atmospheric modeling and data fusion techniques were used to obtain maps of water vapor in a high spatial and temporal resolution. It could be shown that regional weather simulations for different seasons benefit from assimilating these maps and that the combination of the different observation techniques led to positive synergies.
Maik Heistermann, Heye Bogena, Till Francke, Andreas Güntner, Jannis Jakobi, Daniel Rasche, Martin Schrön, Veronika Döpper, Benjamin Fersch, Jannis Groh, Amol Patil, Thomas Pütz, Marvin Reich, Steffen Zacharias, Carmen Zengerle, and Sascha Oswald
Earth Syst. Sci. Data, 14, 2501–2519, https://doi.org/10.5194/essd-14-2501-2022, https://doi.org/10.5194/essd-14-2501-2022, 2022
Short summary
Short summary
This paper presents a dense network of cosmic-ray neutron sensing (CRNS) to measure spatio-temporal soil moisture patterns during a 2-month campaign in the Wüstebach headwater catchment in Germany. Stationary, mobile, and airborne CRNS technology monitored the root-zone water dynamics as well as spatial heterogeneity in the 0.4 km2 area. The 15 CRNS stations were supported by a hydrogravimeter, biomass sampling, and a wireless soil sensor network to facilitate holistic hydrological analysis.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Bernd Schalge, Gabriele Baroni, Barbara Haese, Daniel Erdal, Gernot Geppert, Pablo Saavedra, Vincent Haefliger, Harry Vereecken, Sabine Attinger, Harald Kunstmann, Olaf A. Cirpka, Felix Ament, Stefan Kollet, Insa Neuweiler, Harrie-Jan Hendricks Franssen, and Clemens Simmer
Earth Syst. Sci. Data, 13, 4437–4464, https://doi.org/10.5194/essd-13-4437-2021, https://doi.org/10.5194/essd-13-4437-2021, 2021
Short summary
Short summary
In this study, a 9-year simulation of complete model output of a coupled atmosphere–land-surface–subsurface model on the catchment scale is discussed. We used the Neckar catchment in SW Germany as the basis of this simulation. Since the dataset includes the full model output, it is not only possible to investigate model behavior and interactions between the component models but also use it as a virtual truth for comparison of, for example, data assimilation experiments.
Christof Lorenz, Tanja C. Portele, Patrick Laux, and Harald Kunstmann
Earth Syst. Sci. Data, 13, 2701–2722, https://doi.org/10.5194/essd-13-2701-2021, https://doi.org/10.5194/essd-13-2701-2021, 2021
Short summary
Short summary
Semi-arid regions depend on the freshwater resources from the rainy seasons as they are crucial for ensuring security for drinking water, food and electricity. Thus, forecasting the conditions for the next season is crucial for proactive water management. We hence present a seasonal forecast product for four semi-arid domains in Iran, Brazil, Sudan/Ethiopia and Ecuador/Peru. It provides a benchmark for seasonal forecasts and, finally, a crucial contribution for improved disaster preparedness.
Benjamin Fersch, Till Francke, Maik Heistermann, Martin Schrön, Veronika Döpper, Jannis Jakobi, Gabriele Baroni, Theresa Blume, Heye Bogena, Christian Budach, Tobias Gränzig, Michael Förster, Andreas Güntner, Harrie-Jan Hendricks Franssen, Mandy Kasner, Markus Köhli, Birgit Kleinschmit, Harald Kunstmann, Amol Patil, Daniel Rasche, Lena Scheiffele, Ulrich Schmidt, Sandra Szulc-Seyfried, Jannis Weimar, Steffen Zacharias, Marek Zreda, Bernd Heber, Ralf Kiese, Vladimir Mares, Hannes Mollenhauer, Ingo Völksch, and Sascha Oswald
Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020, https://doi.org/10.5194/essd-12-2289-2020, 2020
Cited articles
Alhaji, U. U., Yusuf, A. S., Edet, C. O., Oche, C. O., and Agbo, E. P.:
Trend Analysis of Temperature in Gombe State Using Mann Kendall Trend Test,
Journal of Scientific Research & Reports, 3, 1–9, https://doi.org/10.9734/JSRR/2018/42029, 2018.
Allen, R. G., Pruitt, W. O., Wright, J. L., Howell, T. A., Ventura, F.,
Snyder, R., Itenfisu, D., Steduto, P., Berengena, J., Yrisarry, J. B.,
Smith, M., Pereira, L. S., Raes, D., Perrier, A., Alves, I., Walter, I., and
Elliott, R.: A recommendation on standardized surface resistance for hourly
calculation of reference ETo by the FAO56 Penman-Monteith method,
Agr. Water Manage., 1–2, 1–22,
https://doi.org/10.1016/j.agwat.2005.03.007, 2006.
Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., v. d. Hurk, B., Hirschi, M., and Betts, A. K.: A Revised Hydrology for the ECMWF Model: Verification from Field
Site to Terrestrial Water Storage and Impact in the Integrated Forecast System, J. Hydrometeorol., 10, 623–643,
https://doi.org/10.1175/2008JHM1068.1, 2009.
Bastos, A., Ciais, P., Friedlingstein, P., Sitch, S., Pongratz, J., Fan, L.,
Wigneron, J. P., Weber, U., Reichstein, M., Fu, Z., Anthoni, P., Arneth, A.,
Haverd, V., Jain, A. K., Joetzjer, E., Knauer, J., Lienert, S., Loughran,
T., McGuire, P. C., Tian, H., Viovy, N., and Zaehle, S.: Direct and seasonal
legacy effects of the 2018 heat wave and drought on European ecosystem
productivity, Science Advances, 24, eaba2724,
https://doi.org/10.1126/sciadv.aba2724, 2020.
Bechtold, P., Bazile, E., Guichard, F., Mascart, P., and Richard, E.: A
mass-flux convection scheme for regional and global models, Q.
J. Roy. Meteor. Soc., 573, 869–886,
https://doi.org/10.1002/qj.49712757309, 2001.
Beguería, S. and Vicente-Serrano, S. M.: SPEI: Calculation of
Standardized Precipitation-Evapotranspiration Index, R package version 1.6.,
http://cran.r-project.org/package=SPEI (last access: 10 January 2022), 2013.
Boergens, E., Güntner, A., Dobslaw, H., and Dahle, C.: Quantifying the
Central European Droughts in 2018 and 2019 With GRACE Follow-On, Geophys.
Res. Lett., 47, e2020GL087285, https://doi.org/10.1029/2020GL087285, 2020.
Bretherton, C. S., McCaa, J. R., and Grenier, H.: A New Parameterization for
Shallow Cumulus Convection and Its Application to Marine Subtropical
Cloud-Topped Boundary Layers. Part I: Description and 1D Results, Mon. Weather
Rev., 4, 864–882, https://doi.org/10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2, 2004.
Casanueva, A., Kotlarski, S., Herrera, S., Fernández, J., Gutiérrez,
J. M., Boberg, F., Colette, A., Christensen, O. B., Goergen, K., Jacob, D.,
Keuler, K., Nikulin, G., Teichmann, C., and Vautard, R.: Daily precipitation
statistics in a EURO-CORDEX RCM ensemble: added value of raw and
bias-corrected high-resolution simulations, Clim. Dynam., 3–4, 719–737,
https://doi.org/10.1007/s00382-015-2865-x, 2016.
Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface–Hydrology Model
with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation
and Sensitivity, Mon. Weather Rev., 4, 569–585,
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001a.
Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface–Hydrology Model
with the Penn State–NCAR MM5 Modeling System. Part II: Preliminary Model
Validation, Mon. Weather Rev., 4, 587–604,
https://doi.org/10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2, 2001b.
Chowdhury, S. and Jahan, N.: Drought Analysis of Rajshahi of Bangladesh
Using CORDEX data by Palmer Method, Journal of Modern Science and
Technology, 2, 10–18, 2018.
Christensen, J. H. and Christensen, O. B.: A summary of the PRUDENCE model
projections of changes in European climate by the end of this century,
Climatic Change, S1, 7–30, https://doi.org/10.1007/s10584-006-9210-7, 2007.
Crausbay, S. D., Ramirez, A. R., Carter, S. L., Cross, M. S., Hall, K. R.,
Bathke, D. J., Betancourt, J. L., Colt, S., Cravens, A. E., Dalton, M. S.,
Dunham, J. B., Hay, L. E., Hayes, M. J., McEvoy, J., McNutt, C. A., Moritz,
M. A., Nislow, K. H., Raheem, N., and Sanford, T.: Defining Ecological
Drought for the Twenty-First Century, B. Am.
Meteorol. Soc., 12, 2543–2550,
https://doi.org/10.1175/BAMS-D-16-0292.1, 2017.
Cuxart, J., Bougeault, P., and Redelsperger, J.-L.: A turbulence scheme
allowing for mesoscale and large-eddy simulations, Q. J. Roy. Meteor. Soc., 562,
1–30, https://doi.org/10.1002/qj.49712656202, 2000.
Dai, A.: Drought under global warming: a review, Wiley Interdisciplinary
Reviews: Climate Change, 1, 45–65, https://doi.org/10.1002/wcc.81, 2011.
Dai, A.: Increasing drought under global warming in observations and models,
Nat. Clim. Change, 1, 52–58, https://doi.org/10.1038/nclimate1633, 2013.
Daniel, M., Lemonsu, A., Déqué, M., Somot, S., Alias, A., and
Masson, V.: Benefits of explicit urban parameterization in regional climate
modeling to study climate and city interactions, Clim. Dynam., 5–6,
2745–2764, https://doi.org/10.1007/s00382-018-4289-x, 2019.
Das, J. and Umamahesh, N. V.: Spatio-Temporal Variation of Water
Availability in a River Basin under CORDEX Simulated Future Projections,
Water Resour. Manag., 4, 1399–1419,
https://doi.org/10.1007/s11269-017-1876-2, 2018.
Dascălu, S. I., Gothard, M., Bojariu, R., Birsan, M.-V., Cică, R.,
Vintilă, R., Adler, M.-J., Chendeș, V., and Mic, R.-P.: Drought-related
variables over the Bârlad basin (Eastern Romania) under climate change
scenarios, CATENA, 141, 92–99, https://doi.org/10.1016/j.catena.2016.02.018,
2016.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., Rosnay, P. de, Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteor. Soc., 656, 553–597, https://doi.org/10.1002/qj.828, 2011.
Demirel, M. C., Mai, J., Mendiguren, G., Koch, J., Samaniego, L., and Stisen, S.: Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model, Hydrol. Earth Syst. Sci., 22, 1299–1315, https://doi.org/10.5194/hess-22-1299-2018, 2018.
DWD: Deutscher Wetterdienst (DWD) zur Trockenheit im Sommerhalbjahr 2020:
https://www.dwd.de/DE/presse/pressemitteilungen/DE/2020/20201014_agrarwetter_sommer2020_news.html (last access:
25 May 2022), 2020.
Diasso, U. and Abiodun, B. J.: Drought modes in West Africa and how well
CORDEX RCMs simulate them, Theor. Appl. Climatol., 1–2, 223–240,
https://doi.org/10.1007/s00704-015-1705-6, 2017.
Dieng, D., Smiatek, G., Bliefernicht, J., Heinzeller, D., Sarr, A., Gaye, A.
T., and Kunstmann, H.: Evaluation of the COSMO-CLM high-resolution climate
simulations over West Africa, J. Geophys. Res.-Atmos., 3, 1437–1455,
https://doi.org/10.1002/2016JD025457, 2017.
Di Luca, A., de Elía, R., and Laprise, R.: Potential for added value in
temperature simulated by high-resolution nested RCMs in present climate and
in the climate change signal, Clim. Dynam., 1–2, 443–464,
https://doi.org/10.1007/s00382-012-1384-2, 2013.
Doms, G., Förstner, J., Heise, E., Herzog, H. J., Mironov, D., Raschendorfer, M., Reinhardt, T., Ritter, B., Schrodin, R., Schulz, J.-P., and Vofel, G.: A Description of the
Nonhydrostatic Regional COSMO-Model – Part II: Physical Parameterizations,
Deutscher Wetterdienst DWD, Offenbach, 2013.
Droogers, P. and Allen, R. G.: Estimating Reference Evapotranspiration
Under Inaccurate Data Conditions, Irrigation and Drainage Systems, 1,
33–45, https://doi.org/10.1023/A:1015508322413, 2002.
ECA&D: European Climate Assessment & Dataset project, https://www.ecad.eu/, last access: 2 December 2022.
ECMWF: IFS Documentation CY31R1 – Part IV: Physical Processes, European Centre for Medium-Range Weather Forecasts, https://www.ecmwf.int/sites/default/files/elibrary/2012/9239-part-iv-physical-processes.pdf (last access; 15 February 2022), 2012.
EURO-CORDEX: EURO-CORDEX – Coordinated Downscaling Experiment – European Domain, https://www.euro-cordex.net/, last access: 2 December 2022.
European Environment Agency (EEA): Mapping the impacts of natural hazards
and technological accidents in Europe: an overview of the last decade,
Publications Office of the European Union, Luxembourg, 2010.
Fink, A. H., Brücher, T., Krüger, A., Leckebusch, G. C., Pinto, J.
G., and Ulbrich, U.: The 2003 European summer heatwaves and drought-synoptic diagnosis and impacts, Weather, 8, 209–216,
https://doi.org/10.1256/wea.73.04, 2004.
Fouquart, Y. and Bonnel, B.: Computations of solar heating of the earth's
atmosphere – A new parameterization, Beitraege zur Physik der Atmosphaere,
53, 35–62, 1980.
García-Valdecasas Ojeda, M., Gámiz-Fortis, S. R., Castro-Díez,
Y., and Esteban-Parra, M. J.: Evaluation of WRF capability to detect dry and
wet periods in Spain using drought indices, J. Geophys. Res., 122,
1569–1594, 2017.
Giorgi, F., Colin Jones, and Ghassem R. Asrar: Addressing climate
information needs at the regional level: the CORDEX framework, World
Meteorological Organization (WMO) Bulletin, 3, 175–183, 2009.
Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. B., Bi, X.,
Elguindi, N., Diro, G. T., Nair, V., Giuliani, G., Turuncoglu, U. U.,
Cozzini, S., Güttler, I., O'Brien, T. A., Tawfik, A. B., Shalaby, A.,
Zakey, A. S., Steiner, A. L., Stordal, F., Sloan, L. C., and Brankovic, C.:
RegCM4: model description and preliminary tests over multiple CORDEX
domains, Clim. Res., 52, 7–29, https://doi.org/10.3354/cr01018, 2012.
Grell, G. A. and Freitas, S. R.: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, 2014.
Grenier, H. and Bretherton, C. S.: A Moist PBL Parameterization for
Large-Scale Models and Its Application to Subtropical Cloud-Topped Marine
Boundary Layers, Mon. Weather Rev., 3, 357–377,
https://doi.org/10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2, 2001.
Guérémy, J. F.: A continuous buoyancy based convection scheme:
one-and three-dimensional validation, Tellus A, 4, 687–706, https://doi.org/10.1111/j.1600-0870.2011.00521.x,
2011.
Hagemann, S.: An improved land surface parameter dataset for global and
regional climate models, Max Planck Institute for Meteorology, Report No. 336, 2002.
Hamed, K. H.: Trend detection in hydrologic data: The Mann–Kendall trend
test under the scaling hypothesis, J. Hydrol., 3–4, 350–363,
https://doi.org/10.1016/j.jhydrol.2007.11.009, 2008.
Hannaford, J., Buys, G., Stahl, K., and Tallaksen, L. M.: The influence of decadal-scale variability on trends in long European streamflow records, Hydrol. Earth Syst. Sci., 17, 2717–2733, https://doi.org/10.5194/hess-17-2717-2013, 2013.
Hari, V., Rakovec, O., Markonis, Y., Hanel, M., and Kumar, R.: Increased
future occurrences of the exceptional 2018–2019 Central European drought
under global warming, Sci. Rep.-UK, 1, 12207,
https://doi.org/10.1038/s41598-020-68872-9, 2020.
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P.
D., and New, M.: A European daily high-resolution gridded data set of
surface temperature and precipitation for 1950–2006, J. Geophys. Res., 113, D20119,
https://doi.org/10.1029/2008JD010201, 2008.
Heim, R. R.: A Review of Twentieth-Century Drought Indices Used in the
United States, B. Am. Meteorol. Soc., 8, 1149–1166,
https://doi.org/10.1175/1520-0477-83.8.1149, 2002.
Hong, S. Y. and Lim, J. O. J.: The WRF single-moment 6-class microphysics
scheme (WSM6), Asia-Pac. J. Atmos. Sci., 42, 129–151,
2006.
Hong, S.-Y., Noh, Y., and Dudhia, J.: A New Vertical Diffusion Package with
an Explicit Treatment of Entrainment Processes, Mon. Weather Rev., 9,
2318–2341, https://doi.org/10.1175/MWR3199.1, 2006.
Hoy, A., Hänsel, S., Skalak, P., Ustrnul, Z., and Bochníček,
O.: The extreme European summer of 2015 in a long-term perspective, Int. J.
Climatol., 2, 943–962, https://doi.org/10.1002/joc.4751, 2017.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S.
A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res., 113, D13103,
https://doi.org/10.1029/2008JD009944, 2008.
Ionita, M., Tallaksen, L. M., Kingston, D. G., Stagge, J. H., Laaha, G., Van Lanen, H. A. J., Scholz, P., Chelcea, S. M., and Haslinger, K.: The European 2015 drought from a climatological perspective, Hydrol. Earth Syst. Sci., 21, 1397–1419, https://doi.org/10.5194/hess-21-1397-2017, 2017.
Ionita, M., Dima, M., Nagavciuc, V., Scholz, P., and Lohmann, G.: Past
megadroughts in central Europe were longer, more severe and less warm than
modern droughts, Commun. Earth Environ., 2, 61,
https://doi.org/10.1038/s43247-021-00130-w, 2021.
Kendall, M. G.: Rank Correlation Methods, Griffin, London, 1975.
Kiehl, J. T., Hack, J. J., Bonan, G. B., Boville, B. A., and Briegleb, B.
P.: Description of the NCAR community climate model (CCM3), Technical Note
(No. PB-97-131528/XAB; NCAR/TN-420-STR), National Center for Atmospheric
Research, Boulder, CO (United States), Climate and Global Dynamics Div.,
1996.
Koch, J., Demirel, M. C., and Stisen, S.: The SPAtial EFficiency metric (SPAEF): multiple-component evaluation of spatial patterns for optimization of hydrological models, Geosci. Model Dev., 11, 1873–1886, https://doi.org/10.5194/gmd-11-1873-2018, 2018.
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014.
Kumar, R., Samaniego, L., and Attinger, S.: The effects of spatial
discretization and model parameterization on the prediction of extreme
runoff characteristics, J. Hydrol., 1–2, 54–69,
https://doi.org/10.1016/j.jhydrol.2010.07.047, 2010.
Laaha, G., Gauster, T., Tallaksen, L. M., Vidal, J.-P., Stahl, K., Prudhomme, C., Heudorfer, B., Vlnas, R., Ionita, M., Van Lanen, H. A. J., Adler, M.-J., Caillouet, L., Delus, C., Fendekova, M., Gailliez, S., Hannaford, J., Kingston, D., Van Loon, A. F., Mediero, L., Osuch, M., Romanowicz, R., Sauquet, E., Stagge, J. H., and Wong, W. K.: The European 2015 drought from a hydrological perspective, Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, 2017.
Lee, J.-W. and Hong, S.-Y.: Potential for added value to downscaled climate
extremes over Korea by increased resolution of a regional climate model,
Theor. Appl. Climatol., 3–4, 667–677,
https://doi.org/10.1007/s00704-013-1034-6, 2014.
Le Moigne, P., Boone, A., Belamari, S., Brun, E., Calvet, J.-C., Decharme,
B., Faroux, S., Gibelin, A.-L., Giordani, H., Lafont, S., Lebeaupin, C.,
Mahfouf, J.-F., Martin, E., Masson, V., Mironov, D., Morin, S., Noilhan, J.,
Tulet, P., Van Den Hurk, B., and Vionnet, V.: SURFEX scientific documentation,
Note de centre (CNRM/GMME), Météo-France, Toulouse, France, 2012.
Lenderink, G. and Holtslag, A.: An updated length-scale formulation for
turbulent mixing in clear and cloudy boundary layers, Q. J. Roy. Meteor.
Soc., 604, 3405–3427, https://doi.org/10.1256/qj.03.117, 2004.
Lloyd-Hughes, B.: The impracticality of a universal drought definition,
Theor. Appl. Climatol., 3–4, 607–611,
https://doi.org/10.1007/s00704-013-1025-7, 2014.
Lohmann, U. and Roeckner, E.: Design and performance of a new cloud
microphysics scheme developed for the ECHAM general circulation model,
Clim. Dynam., 8, 557–572, https://doi.org/10.1007/BF00207939, 1996.
Lopez, P.: Implementation and validation of a new prognostic large-scale
cloud and precipitation scheme for climate and data-assimilation purposes,
Q. J. Roy. Meteor. Soc., 579, 229–257,
https://doi.org/10.1256/00359000260498879, 2002.
Louis, J.-F.: A parametric model of vertical eddy fluxes in the atmosphere,
Bound.-Lay. Meteorol., 2, 187–202, https://doi.org/10.1007/BF00117978, 1979.
Mann, H. B.: Nonparametric Tests Against Trend, Econometrica, 3, 245,
https://doi.org/10.2307/1907187, 1945.
Marcos-Garcia, P., Lopez-Nicolas, A., and Pulido-Velazquez, M.: Combined use
of relative drought indices to analyze climate change impact on
meteorological and hydrological droughts in a Mediterranean basin, J.
Hydrol., 554, 292–305, 2017.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought
frequency and duration of time scales, in: Eighth Conference on Applied
Climatology, American Meteorological Society, 17–23 January, Anaheim CA,
179–186, 1993.
Meresa, H., Osuch, M., and Romanowicz, R.: Hydro-Meteorological Drought
Projections into the 21-st Century for Selected Polish Catchments, Water, 5,
206, https://doi.org/10.3390/w8050206, 2016.
Mishra, A. K. and Singh, V. P.: A review of drought concepts, J.
Hydrol., 1–2, 202–216, https://doi.org/10.1016/j.jhydrol.2010.07.012,
2010.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S.
A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res., 102, 16663–16682,
https://doi.org/10.1029/97JD00237, 1997.
Mooney, P. A., Mulligan, F. J., and Fealy, R.: Evaluation of the Sensitivity
of the Weather Research and Forecasting Model to Parameterization Schemes
for Regional Climates of Europe over the Period 1990–95, J.
Climate, 3, 1002–1017, https://doi.org/10.1175/JCLI-D-11-00676.1, 2013.
Nasrollahi, N., AghaKouchak, A., Cheng, L., Damberg, L., Phillips, T. J., Miao, C., Hsu, K., and Sorooshian, S.: How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts?, Water Resour. Res., 4, 2847–2864, https://doi.org/10.1002/2014WR016318, 2015.
Nguyen-Ngoc-Bich, P., Phan-Van, T., Ngo-Duc, T., Vu-Minh, T., Trinh-Tuan,
L., Tangang, F. T., Juneng, L., Cruz, F., Santisirisomboon, J., Narisma, G.,
and Aldrian, E.: Projected evolution of drought characteristics in Vietnam
based on CORDEX-SEA downscaled CMIP5 data, Int. J. Climatol., 41, 1–19, https://doi.org/10.1002/joc.7150, 2021.
Oikonomou, P. D., Karavitis, C. A., Tsesmelis, D. E., Kolokytha, E., and
Maia, R.: Drought Characteristics Assessment in Europe over the Past 50
Years, Water Resour. Manag., 15, 4757–4772,
https://doi.org/10.1007/s11269-020-02688-0, 2020.
Olsson, J., Berg, P., and Kawamura, A.: Impact of RCM Spatial Resolution on
the Reproduction of Local, Subdaily Precipitation, J.
Hydrometeorol., 2, 534–547, https://doi.org/10.1175/JHM-D-14-0007.1,
2015.
Pal, J. S., Small, E. E., and Eltahir, E. A. B.: Simulation of
regional-scale water and energy budgets: Representation of subgrid cloud and
precipitation processes within RegCM, J. Geophys. Res., 105, 29579–29594,
https://doi.org/10.1029/2000JD900415, 2000.
Peres, D. J., Senatore, A., Nanni, P., Cancelliere, A., Mendicino, G., and Bonaccorso, B.: Evaluation of EURO-CORDEX (Coordinated Regional Climate Downscaling Experiment for the Euro-Mediterranean area) historical simulations by high-quality observational datasets in southern Italy: insights on drought assessment, Nat. Hazards Earth Syst. Sci., 20, 3057–3082, https://doi.org/10.5194/nhess-20-3057-2020, 2020.
Petrovic, D.: WRF model configuration and data used for the NHESS manuscript “Droughts in Germany: Performance of Regional Climate Models in reproducing observed characteristics”, Zenodo [data set], https://doi.org/10.5281/zenodo.6577187, 2022.
Pietikäinen, J.-P., Markkanen, T., Sieck, K., Jacob, D., Korhonen, J., Räisänen, P., Gao, Y., Ahola, J., Korhonen, H., Laaksonen, A., and Kaurola, J.: The regional climate model REMO (v2015) coupled with the 1-D freshwater lake model FLake (v1): Fenno-Scandinavian climate and lakes, Geosci. Model Dev., 11, 1321–1342, https://doi.org/10.5194/gmd-11-1321-2018, 2018.
Piriou, J. M., Redelsperger, J. L., Geleyn, J. F., Lafore, J. P., and
Guichard, F.: An approach for convective parameterization with memory:
Separating microphysics and transport in grid-scale equations, J. Atmos. Sci.,
64, 4127–4139, https://doi.org/10.1175/2007JAS2144.1, 2007.
Potopová, V., Štěpánek, P., Zahradníček, P., Farda,
A., Türkott, L., and Soukup, J.: Projected changes in the evolution of
drought on various timescales over the Czech Republic according to
Euro-CORDEX models, Int. J. Climatol., 38, e939–e954,
https://doi.org/10.1002/joc.5421, 2018.
Prein, A. F., Gobiet, A., Truhetz, H., Keuler, K., Goergen, K., Teichmann,
C., Fox Maule, C., van Meijgaard, E., Déqué, M., Nikulin, G.,
Vautard, R., Colette, A., Kjellström, E., and Jacob, D.: Precipitation
in the EURO-CORDEX 0.11∘ and 0.44∘ simulations: high resolution, high
benefits?, Clim. Dynam., 1–2, 383–412,
https://doi.org/10.1007/s00382-015-2589-y, 2016.
Rasch, P. J. and Kristjánsson, J. E.: A Comparison of the CCM3 Model
Climate Using Diagnosed and Predicted Condensate Parameterizations, J.
Climate, 7, 1587–1614, https://doi.org/10.1175/1520-0442(1998)011<1587:ACOTCM>2.0.CO;2, 1998.
Rauscher, S. A., Coppola, E., Piani, C., and Giorgi, F.: Resolution effects
on regional climate model simulations of seasonal precipitation over Europe,
Clim. Dynam., 4, 685–711, https://doi.org/10.1007/s00382-009-0607-7, 2010.
Rauscher, S. A., O'Brien, T. A., Piani, C., Coppola, E., Giorgi, F.,
Collins, W. D., and Lawston, P. M.: A multimodel intercomparison of
resolution effects on precipitation: simulations and theory, Clim. Dynam., 7–8,
2205–2218, https://doi.org/10.1007/s00382-015-2959-5, 2016.
Rebetez, M., Mayer, H., Dupont, O., Schindler, D., Gartner, K., Kropp, J.
P., and Menzel, A.: Heat and drought 2003 in Europe: a climate synthesis,
Ann. Forest Sci., 6, 569–577, https://doi.org/10.1051/forest:2006043, 2006.
Rechid, D., Hagemann, S., and Jacob, D.: Sensitivity of climate models to
seasonal variability of snow-free land surface albedo, Theor. Appl. Climatol.,
1–2, 197–221, https://doi.org/10.1007/s00704-007-0371-8, 2009.
Ritter, B. and Geleyn, J.-F.: A Comprehensive Radiation Scheme for
Numerical Weather Prediction Models with Potential Applications in Climate
Simulations, Mon. Weather Rev., 2, 303–325,
https://doi.org/10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2, 1992.
Rockel, B., Will, A., and Hense, A.: The Regional Climate Model COSMO-CLM
(CCLM), Metz, 4, 347–348, https://doi.org/10.1127/0941-2948/2008/0309,
2008.
Samuelsson, P., Gollvik, S., Kupiainen, M., Kourzeneva, E., and van de Berg,
W. J.: The surface processes of the Rossby Centre regional atmospheric
climate model (RCA4), Swedish Meteorological and Hydrological Institute (SMHI), 2015.
Savijärvi, H.: Fast Radiation Parameterization Schemes for Mesoscale and
Short-Range Forecast Models, J. Appl. Meteorol. Clim.,
6, 437–447, https://doi.org/10.1175/1520-0450(1990)029<0437:FRPSFM>2.0.CO;2, 1990.
Senatore, A., Hejabi, S., Mendicino, G., Bazrafshan, J., and Irannejad, P.:
Climate conditions and drought assessment with the Palmer Drought Severity
Index in Iran: evaluation of CORDEX South Asia climate projections
(2070–2099), Clim. Dynam., 1–2, 865–891,
https://doi.org/10.1007/s00382-018-4171-x, 2019.
Sheffield, J., Wood, E. F., and Roderick, M. L.: Little change in global
drought over the past 60 years, Nature, 7424, 435–438,
https://doi.org/10.1038/nature11575, 2012.
Siebesma, A. P., Soares, P. M. M., and Teixeira, J.: A Combined
Eddy-Diffusivity Mass-Flux Approach for the Convective Boundary Layer,
J. Atmos. Sci., 4, 1230–1248,
https://doi.org/10.1175/JAS3888.1, 2007.
Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Duda, M., Huang,
X., Wang, W., and Powers, J. A.: Description of the Advanced Research WRF
Version 3; Tech. Rep. NCAR/TN-475+STR, NCAR TECHNICAL NOTE, University
Corporation for Atmospheric Research: Boulder, CO, USA, p. 113, 2008.
Spinoni, J., Naumann, G., Carrao, H., Barbosa, P., and Vogt, J.: World
drought frequency, duration, and severity for 1951–2010, Int. J. Climatol.,
8, 2792–2804, https://doi.org/10.1002/joc.3875, 2014.
Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., and Dosio, A.: Will
drought events become more frequent and severe in Europe?, Int. J. Climatol,
4, 1718–1736, https://doi.org/10.1002/joc.5291, 2018.
Spinoni, J., Barbosa, P., Jager, A. de, McCormick, N., Naumann, G., Vogt, J.
V., Magni, D., Masante, D., and Mazzeschi, M.: A new global database of
meteorological drought events from 1951 to 2016, J. Hydrol.-Regional Studies, 22, 100593, https://doi.org/10.1016/j.ejrh.2019.100593, 2019.
Spinoni, J., Barbosa, P., Bucchignani, E., Cassano, J., Cavazos, T.,
Christensen, J. H., Christensen, O. B., Coppola, E., Evans, J., Geyer, B.,
Giorgi, F., Hadjinicolaou, P., Jacob, D., Katzfey, J., Koenigk, T., Laprise,
R., Lennard, C. J., Kurnaz, M. L., Li, D., Llopart, M., McCormick, N.,
Naumann, G., Nikulin, G., Ozturk, T., Panitz, H.-J., Da Porfirio Rocha, R.,
Rockel, B., Solman, S. A., Syktus, J., Tangang, F., Teichmann, C., Vautard,
R., Vogt, J. V., Winger, K., Zittis, G., and Dosio, A.: Future Global
Meteorological Drought Hot Spots: A Study Based on CORDEX Data, J.
Climate, 9, 3635–3661, https://doi.org/10.1175/JCLI-D-19-0084.1, 2020.
Steiner, A. L., Pal, J. S., Rauscher, S. A., Bell, J. L., Diffenbaugh, N.
S., Boone, A., Sloan, L. C., and Giorgi, F.: Land surface coupling in
regional climate simulations of the West African monsoon, Clim. Dynam.,
6, 869–892, https://doi.org/10.1007/s00382-009-0543-6, 2009.
Štepánek, P., Zahradnícek, P., Farda, A., Skalák, P.,
Trnka, M., Meitner, J., and Rajdl, K.: Projection of drought-inducing
climate conditions in the Czech Republic according to Euro-CORDEX models,
Clim. Res., 2, 179–193, https://doi.org/10.3354/cr01424, 2016.
Stoelinga, M. T., Hobbs, P. V., Mass, C. F., Locatelli, J. D., Colle, B. A., Houze, R. A., Rangno, A. L., Bond, N. A., Smull, B. F., Rasmussen, R. M., Thompson, G., and Colman, B. R.: Improvement of Microphysical Parameterization through Observational Verification Experiment, B. Am. Meteorol. Soc., 12, 1807–1826, https://doi.org/10.1175/BAMS-84-12-1807, 2003.
Tamoffo, A. T., Moufouma-Okia, W., Dosio, A., James, R., Pokam, W. M.,
Vondou, D. A., Fotso-Nguemo, T. C., Guenang, G. M., Kamsu-Tamo, P. H.,
Nikulin, G., Longandjo, G.-N., Lennard, C. J., Bell, J.-P., Takong, R. R.,
Haensler, A., Tchotchou, L. A. D., and Nouayou, R.: Process-oriented
assessment of RCA4 regional climate model projections over the Congo Basin
under 1.5 ∘C and 2 ∘C global warming levels: influence
of regional moisture fluxes, Clim. Dynam., 3–4, 1911–1935,
https://doi.org/10.1007/s00382-019-04751-y, 2019.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res., 106, 7183–7192, 2001.
Thompson, R. L., Broquet, G., Gerbig, C., Koch, T., Lang, M., Monteil, G.,
Munassar, S., Nickless, A., Scholze, M., Ramonet, M., Karstens, U., van
Schaik, E., Wu, Z., and Rödenbeck, C.: Changes in net ecosystem exchange
over Europe during the 2018 drought based on atmospheric observations,
Philos. T. R. Soc. B, 1810, 20190512, https://doi.org/10.1098/rstb.2019.0512,
2020.
Tiedtke, M.: A Comprehensive Mass Flux Scheme for Cumulus Parameterization
in Large-Scale Models, Mon. Weather Rev., 8, 1779–1800,
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2, 1989.
Tiedtke, M.: Representation of Clouds in Large-Scale Models, Mon. Weather Rev.,
11, 3040–3061, https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2, 1993.
Tompkins, A. M., Gierens, K., and Rädel, G.: Ice supersaturation in the
ECMWF integrated forecast system, Q. J. Roy. Meteor. Soc., 622, 53–63,
https://doi.org/10.1002/qj.14, 2007.
Torma, C., Giorgi, F., and Coppola, E.: Added value of regional climate
modeling over areas characterized by complex terrain-Precipitation over the
Alps, J. Geophys. Res.-Atmos., 9, 3957–3972,
https://doi.org/10.1002/2014JD022781, 2015.
Tripathi, O. P. and Dominguez, F.: Effects of spatial resolution in the
simulation of daily and subdaily precipitation in the southwestern US, J.
Geophys. Res.-Atmos., 14, 7591–7605, https://doi.org/10.1002/jgrd.50590,
2013.
Trnka, M., Balek, J., Štěpánek, P., Zahradníček, P.,
Možný, M., Eitzinger, J., Žalud, Z., Formayer, H., Turňa,
M., Nejedlík, P., Semerádová, D., Hlavinka, P., and
Brázdil, R.: Drought trends over part of Central Europe between 1961 and
2014, Clim. Res., 2, 143–160, https://doi.org/10.3354/cr01420, 2016.
Um, M.-J., Kim, Y., and Kim, J.: Evaluating historical drought
characteristics simulated in CORDEX East Asia against observations, Int. J.
Climatol., 13, 4643–4655, https://doi.org/10.1002/joc.5112, 2017.
Umweltbundesamt: Trockenheit – aktuelle Situation,
https://www.umweltbundesamt.de/themen/trockenheit-in-deutschland-fragen-antworten
(last access: 25 May 2022), 2021.
van der Linden, P., and Mitchell, J. F. B.: ENSEMBLES: climate change and
its impacts: summary of research and results from the ENSEMBLES project,
Tech Rep. Met Office Hadley Centre, Exeter, Exeter EX1 3PB, UK 160, 2009.
van Meijgaard, E., van Ulft, L. H., Lenderink, G., Roode, S. R. de, Wipfler,
E. L., Boers, R. and van Timmermans, R. M. A.: Refinement and application of a
regional atmospheric model for climate scenario calculations of Western
Europe, KvR report number KvR 054/12, National Research Programme Climate
changes Spatial Planning, 2012.
Vautard, R., Gobiet, A., Jacob, D., Belda, M., Colette, A., Déqué,
M., Fernández, J., García-Díez, M., Goergen, K., Güttler,
I., Halenka, T., Karacostas, T., Katragkou, E., Keuler, K., Kotlarski, S.,
Mayer, S., van Meijgaard, E., Nikulin, G., Patarčić, M., Scinocca,
J., Sobolowski, S., Suklitsch, M., Teichmann, C., Warrach-Sagi, K.,
Wulfmeyer, V., and Yiou, P.: The simulation of European heat waves from an
ensemble of regional climate models within the EURO-CORDEX project, Clim.
Dynam., 9–10, 2555–2575, https://doi.org/10.1007/s00382-013-1714-z, 2013.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
Multiscalar Drought Index Sensitive to Global Warming: The Standardized
Precipitation Evapotranspiration Index, J. Climate, 7, 1696–1718,
https://doi.org/10.1175/2009JCLI2909.1, 2010.
Vicente-Serrano, S. M., Azorin-Molina, C., Sanchez-Lorenzo, A., Revuelto,
J., Morán-Tejeda, E., López-Moreno, J. I., and Espejo, F.:
Sensitivity of reference evapotranspiration to changes in meteorological
parameters in Spain (1961–2011), Water Resour. Res., 11, 8458–8480,
https://doi.org/10.1002/2014WR015427, 2014.
Vicente-Serrano, S. M.: Foreword: Drought complexity and assessment under
climate change conditions, CIG, 1, 7–11, https://doi.org/10.18172/cig.2961,
2016.
Vicente-Serrano, S. M., Domínguez-Castro, F., Murphy, C., Hannaford,
J., Reig, F., Peña-Angulo, D., Tramblay, Y., Trigo, R. M., Mac Donald,
N., Luna, M. Y., Mc Carthy, M., van der Schrier, G., Turco, M., Camuffo, D.,
Noguera, I., García-Herrera, R., Becherini, F., Della Valle, A.,
Tomas-Burguera, M., and El Kenawy, A.: Long-term variability and trends in
meteorological droughts in Western Europe (1851–2018), Int. J. Climatol., 41, 690–717,
https://doi.org/10.1002/joc.6719, 2021.
Vichot-Llano, A., Martinez-Castro, D., Giorgi, F., Bezanilla-Morlot, A., and
Centella-Artola, A.: Comparison of GCM and RCM simulated precipitation and
temperature over Central America and the Caribbean, Theor. Appl. Climatol.,
1–2, 389–402, https://doi.org/10.1007/s00704-020-03400-3, 2021.
Wagner, S. and Kunstmann, H.: High resolution precipitation fields for the
planning of urban drainage systems using WRF, SCC Annual Report, 2016.
Warscher, M., Wagner, S., Marke, T., Laux, P., Smiatek, G., Strasser, U.,
and Kunstmann, H.: A 5 km Resolution Regional Climate Simulation for Central
Europe: Performance in High Mountain Areas and Seasonal, Regional and
Elevation-Dependent Variations, Atmosphere, 11, 682,
https://doi.org/10.3390/atmos10110682, 2019.
Wilhite, D. A. and Glantz, M. H.: Understanding: the Drought Phenomenon:
The Role of Definitions, Water Int., 3, 111–120,
https://doi.org/10.1080/02508068508686328, 1985.
Wilhite, D. A. and Pulwarty, R. S.: Drought as hazard: understanding the natural and social context, in: Drought and Water Crises: Integrating Science, Management and Policy, Boca Raton, CRC Press, 3, ISBN 0-847-2771-1, 2017.
Yevjevich, V. M.: An objective approach to definitions and investigations of
continental hydrologic droughts (Doctoral dissertation), Colorado State
University. Libraries, 1967.
Zeng, X.-M., Wang, M., Zhang, Y., Wang, Y., and Zheng, Z.: Assessing the
Effects of Spatial Resolution on Regional Climate Model Simulated Summer
Temperature and Precipitation in China: A Case Study, Adv.
Meteorol., 2016, 7639567, https://doi.org/10.1155/2016/7639567, 2016.
Ziernicka-Wojtaszek, A.: Summer Drought in 2019 on Polish Territory – A Case
Study, Atmosphere, 11, 1475, https://doi.org/10.3390/atmos12111475, 2021.
Short summary
The influence of model resolution and settings on drought reproduction in Germany between 1980–2009 is investigated here. Outputs from a high-resolution model with settings tailored to the target region are compared to those from coarser-resolution models with more general settings. Gridded observational data sets serve as reference. Regarding the reproduction of drought characteristics, all models perform on a similar level, while for trends, only the modified model produces reliable outputs.
The influence of model resolution and settings on drought reproduction in Germany between...
Altmetrics
Final-revised paper
Preprint