Articles | Volume 22, issue 10
https://doi.org/10.5194/nhess-22-3285-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-3285-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sensitivity of simulating Typhoon Haiyan (2013) using WRF: the role of cumulus convection, surface flux parameterizations, spectral nudging, and initial and boundary conditions
Rafaela Jane Delfino
CORRESPONDING AUTHOR
Department of Meteorology, University of Reading, Reading, United
Kingdom
Institute of Environmental Science and Meteorology, University of
the Philippines Diliman, Quezon City, Philippines
Gerry Bagtasa
Institute of Environmental Science and Meteorology, University of
the Philippines Diliman, Quezon City, Philippines
Kevin Hodges
Department of Meteorology, University of Reading, Reading, United
Kingdom
Pier Luigi Vidale
Department of Meteorology, University of Reading, Reading, United
Kingdom
Related authors
No articles found.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Malcolm John Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2582, https://doi.org/10.5194/egusphere-2024-2582, 2024
Short summary
Short summary
HighResMIP2 is a model intercomparison project focussing on high resolution global climate models, that is those with grid spacings of 25 km or less in atmosphere and ocean, using simulations of decades to a century or so in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present day and future projections, and to build links with other communities to provide more robust climate information.
Henri Rossi Pinheiro, Kevin Ivan Hodges, and Manoel Alonso Gan
Weather Clim. Dynam., 5, 881–894, https://doi.org/10.5194/wcd-5-881-2024, https://doi.org/10.5194/wcd-5-881-2024, 2024
Short summary
Short summary
Cut-off lows (COLs) are weather systems with varied structures and lifecycles, from upper atmospheric to deep vortices. Deep, strong COLs are common around Australia and the southwestern Pacific in autumn and spring, while shallow, weak COLs occur more in summer near the Equator. Jet streams play a crucial role in COL development, with different jets influencing its depth and strength. The study also emphasizes the need for better representation of diabatic processes in reanalysis data.
Alexander Frank Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Nat. Hazards Earth Syst. Sci., 24, 2115–2132, https://doi.org/10.5194/nhess-24-2115-2024, https://doi.org/10.5194/nhess-24-2115-2024, 2024
Short summary
Short summary
The risk posed to ships by Arctic cyclones has seldom been quantified due to the lack of publicly available historical Arctic ship track data. This study investigates historical Arctic ship tracks, cyclone tracks, and shipping incident reports to determine the number of shipping incidents caused by the passage of Arctic cyclones. Results suggest that Arctic cyclones have not been hazardous to ships and that ships are resilient to the rough sea conditions caused by Arctic cyclones.
Omar V. Müller, Patrick C. McGuire, Pier Luigi Vidale, and Ed Hawkins
Hydrol. Earth Syst. Sci., 28, 2179–2201, https://doi.org/10.5194/hess-28-2179-2024, https://doi.org/10.5194/hess-28-2179-2024, 2024
Short summary
Short summary
This work evaluates how rivers are projected to change in the near future compared to the recent past in the context of a warming world. We show that important rivers of the world will notably change their flows, mainly during peaks, exceeding the variations that rivers used to exhibit. Such large changes may produce more frequent floods, alter hydropower generation, and potentially affect the ocean's circulation.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Jon Seddon, Ag Stephens, Matthew S. Mizielinski, Pier Luigi Vidale, and Malcolm J. Roberts
Geosci. Model Dev., 16, 6689–6700, https://doi.org/10.5194/gmd-16-6689-2023, https://doi.org/10.5194/gmd-16-6689-2023, 2023
Short summary
Short summary
The PRIMAVERA project aimed to develop a new generation of advanced global climate models. The large volume of data generated was uploaded to a central analysis facility (CAF) and was analysed by 100 PRIMAVERA scientists there. We describe how the PRIMAVERA project used the CAF's facilities to enable users to analyse this large dataset. We believe that similar, multi-institute, big-data projects could also use a CAF to efficiently share, organise and analyse large volumes of data.
Charlie C. Suitters, Oscar Martínez-Alvarado, Kevin I. Hodges, Reinhard K. H. Schiemann, and Duncan Ackerley
Weather Clim. Dynam., 4, 683–700, https://doi.org/10.5194/wcd-4-683-2023, https://doi.org/10.5194/wcd-4-683-2023, 2023
Short summary
Short summary
Atmospheric blocking describes large and persistent high surface pressure. In this study, the relationship between block persistence and smaller-scale systems is examined. Persistent blocks result from more interactions with small systems, but a block's persistence does not depend as strongly on the strength of these smaller features. This work is important because it provides more knowledge as to how blocks can be allowed to persist, which is something we still do not fully understand.
Elliott Michael Sainsbury, Reinhard K. H. Schiemann, Kevin I. Hodges, Alexander J. Baker, Len C. Shaffrey, Kieran T. Bhatia, and Stella Bourdin
Weather Clim. Dynam., 3, 1359–1379, https://doi.org/10.5194/wcd-3-1359-2022, https://doi.org/10.5194/wcd-3-1359-2022, 2022
Short summary
Short summary
Post-tropical cyclones (PTCs) can bring severe weather to Europe. By tracking and identifying PTCs in five global climate models, we investigate how the frequency and intensity of PTCs may change across Europe by 2100. We find no robust change in the frequency or intensity of Europe-impacting PTCs in the future. This study indicates that large uncertainties surround future Europe-impacting PTCs and provides a framework for evaluating PTCs in future generations of climate models.
Alexander F. Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Weather Clim. Dynam., 3, 1097–1112, https://doi.org/10.5194/wcd-3-1097-2022, https://doi.org/10.5194/wcd-3-1097-2022, 2022
Short summary
Short summary
Understanding the location and intensity of hazardous weather across the Arctic is important for assessing risks to infrastructure, shipping, and coastal communities. This study describes the typical lifetime and structure of intense winter and summer Arctic cyclones. Results show the composite development and structure of intense summer Arctic cyclones are different from intense winter Arctic and North Atlantic Ocean extra-tropical cyclones and from conceptual models.
Rebecca J. Oliver, Lina M. Mercado, Doug B. Clark, Chris Huntingford, Christopher M. Taylor, Pier Luigi Vidale, Patrick C. McGuire, Markus Todt, Sonja Folwell, Valiyaveetil Shamsudheen Semeena, and Belinda E. Medlyn
Geosci. Model Dev., 15, 5567–5592, https://doi.org/10.5194/gmd-15-5567-2022, https://doi.org/10.5194/gmd-15-5567-2022, 2022
Short summary
Short summary
We introduce new representations of plant physiological processes into a land surface model. Including new biological understanding improves modelled carbon and water fluxes for the present in tropical and northern-latitude forests. Future climate simulations demonstrate the sensitivity of photosynthesis to temperature is important for modelling carbon cycle dynamics in a warming world. Accurate representation of these processes in models is necessary for robust predictions of climate change.
Ambrogio Volonté, Andrew G. Turner, Reinhard Schiemann, Pier Luigi Vidale, and Nicholas P. Klingaman
Weather Clim. Dynam., 3, 575–599, https://doi.org/10.5194/wcd-3-575-2022, https://doi.org/10.5194/wcd-3-575-2022, 2022
Short summary
Short summary
In this study we analyse the complex seasonal evolution of the East Asian summer monsoon. Using reanalysis data, we show the importance of the interaction between tropical and extratropical air masses converging at the monsoon front, particularly during its northward progression. The upper-level flow pattern (e.g. the westerly jet) controls the balance between the airstreams and thus the associated rainfall. This framework provides a basis for studies of extreme events and climate variability.
Eduardo Moreno-Chamarro, Louis-Philippe Caron, Saskia Loosveldt Tomas, Javier Vegas-Regidor, Oliver Gutjahr, Marie-Pierre Moine, Dian Putrasahan, Christopher D. Roberts, Malcolm J. Roberts, Retish Senan, Laurent Terray, Etienne Tourigny, and Pier Luigi Vidale
Geosci. Model Dev., 15, 269–289, https://doi.org/10.5194/gmd-15-269-2022, https://doi.org/10.5194/gmd-15-269-2022, 2022
Short summary
Short summary
Climate models do not fully reproduce observations: they show differences (biases) in regional temperature, precipitation, or cloud cover. Reducing model biases is important to increase our confidence in their ability to reproduce present and future climate changes. Model realism is set by its resolution: the finer it is, the more physical processes and interactions it can resolve. We here show that increasing resolution of up to ~ 25 km can help reduce model biases but not remove them entirely.
Suzanne L. Gray, Kevin I. Hodges, Jonathan L. Vautrey, and John Methven
Weather Clim. Dynam., 2, 1303–1324, https://doi.org/10.5194/wcd-2-1303-2021, https://doi.org/10.5194/wcd-2-1303-2021, 2021
Short summary
Short summary
This research demonstrates, using feature identification and tracking, that anticlockwise rotating vortices at about 7 km altitude called tropopause polar vortices frequently interact with storms developing in the Arctic region, affecting their structure and where they occur. This interaction has implications for the predictability of Arctic weather, given the long lifetime but a relatively small spatial scale of these vortices compared with the density of the polar observation network.
Mark R. Muetzelfeldt, Reinhard Schiemann, Andrew G. Turner, Nicholas P. Klingaman, Pier Luigi Vidale, and Malcolm J. Roberts
Hydrol. Earth Syst. Sci., 25, 6381–6405, https://doi.org/10.5194/hess-25-6381-2021, https://doi.org/10.5194/hess-25-6381-2021, 2021
Short summary
Short summary
Simulating East Asian Summer Monsoon (EASM) rainfall poses many challenges because of its multi-scale nature. We evaluate three setups of a 14 km global climate model against observations to see if they improve simulated rainfall. We do this over catchment basins of different sizes to estimate how model performance depends on spatial scale. Using explicit convection improves rainfall diurnal cycle, yet more model tuning is needed to improve mean and intensity biases in simulated summer rainfall.
Frederick W. Letson, Rebecca J. Barthelmie, Kevin I. Hodges, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci., 21, 2001–2020, https://doi.org/10.5194/nhess-21-2001-2021, https://doi.org/10.5194/nhess-21-2001-2021, 2021
Short summary
Short summary
Windstorms during the last 40 years in the US Northeast are identified and characterized using the spatial extent of extreme wind speeds at 100 m height from the ERA5 reanalysis. During all of the top 10 windstorms, wind speeds exceeding the local 99.9th percentile cover at least one-third of the land area in this high-population-density region. These 10 storms followed frequently observed cyclone tracks but have intensities 5–10 times the mean values for cyclones affecting this region.
Gabriel M. P. Perez, Pier Luigi Vidale, Nicholas P. Klingaman, and Thomas C. M. Martin
Weather Clim. Dynam., 2, 475–488, https://doi.org/10.5194/wcd-2-475-2021, https://doi.org/10.5194/wcd-2-475-2021, 2021
Short summary
Short summary
Much of the rainfall in tropical regions comes from organised cloud bands called convergence zones (CZs). These bands have hundreds of kilometers. In South America (SA), they cause intense rain for long periods of time. To study these systems, we need to define and identify them with computer code. We propose a definition of CZs based on the the pathways of air, selecting regions where air masses originated in separated regions meet. This method identifies important mechanisms of rain in SA.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Liang Guo, Ruud J. van der Ent, Nicholas P. Klingaman, Marie-Estelle Demory, Pier Luigi Vidale, Andrew G. Turner, Claudia C. Stephan, and Amulya Chevuturi
Geosci. Model Dev., 13, 6011–6028, https://doi.org/10.5194/gmd-13-6011-2020, https://doi.org/10.5194/gmd-13-6011-2020, 2020
Short summary
Short summary
Precipitation over East Asia simulated in the Met Office Unified Model is compared with observations. Moisture sources of EA precipitation are traced using a moisture tracking model. Biases in moisture sources are linked to biases in precipitation. Using the tracking model, changes in moisture sources can be attributed to changes in SST, circulation and associated evaporation. This proves that the method used in this study is useful to identify the causes of biases in regional precipitation.
Hirofumi Ohyama, Isamu Morino, Voltaire A. Velazco, Theresa Klausner, Gerry Bagtasa, Matthäus Kiel, Matthias Frey, Akihiro Hori, Osamu Uchino, Tsuneo Matsunaga, Nicholas M. Deutscher, Joshua P. DiGangi, Yonghoon Choi, Glenn S. Diskin, Sally E. Pusede, Alina Fiehn, Anke Roiger, Michael Lichtenstern, Hans Schlager, Pao K. Wang, Charles C.-K. Chou, Maria Dolores Andrés-Hernández, and John P. Burrows
Atmos. Meas. Tech., 13, 5149–5163, https://doi.org/10.5194/amt-13-5149-2020, https://doi.org/10.5194/amt-13-5149-2020, 2020
Short summary
Short summary
Column-averaged dry-air mole fractions of CO2 and CH4 measured by a solar viewing portable Fourier transform spectrometer (EM27/SUN) were validated with in situ profile data obtained during the transfer flights of two aircraft campaigns. Atmospheric dynamical properties based on ERA5 and WRF-Chem were used as criteria for selecting the best aircraft profiles for the validation. The resulting air-mass-independent correction factors for the EM27/SUN data were 0.9878 for CO2 and 0.9829 for CH4.
Reinhard Schiemann, Panos Athanasiadis, David Barriopedro, Francisco Doblas-Reyes, Katja Lohmann, Malcolm J. Roberts, Dmitry V. Sein, Christopher D. Roberts, Laurent Terray, and Pier Luigi Vidale
Weather Clim. Dynam., 1, 277–292, https://doi.org/10.5194/wcd-1-277-2020, https://doi.org/10.5194/wcd-1-277-2020, 2020
Short summary
Short summary
In blocking situations the westerly atmospheric flow in the midlatitudes is blocked by near-stationary high-pressure systems. Blocking can be associated with extremes such as cold spells and heat waves. Climate models are known to underestimate blocking occurrence. Here, we assess the latest generation of models and find improvements in simulated blocking, partly due to increases in model resolution. These new models are therefore more suitable for studying climate extremes related to blocking.
Malcolm J. Roberts, Alex Baker, Ed W. Blockley, Daley Calvert, Andrew Coward, Helene T. Hewitt, Laura C. Jackson, Till Kuhlbrodt, Pierre Mathiot, Christopher D. Roberts, Reinhard Schiemann, Jon Seddon, Benoît Vannière, and Pier Luigi Vidale
Geosci. Model Dev., 12, 4999–5028, https://doi.org/10.5194/gmd-12-4999-2019, https://doi.org/10.5194/gmd-12-4999-2019, 2019
Short summary
Short summary
We investigate the role that horizontal grid spacing plays in global coupled climate model simulations, together with examining the efficacy of a new design of simulation experiments that is being used by the community for multi-model comparison. We found that finer grid spacing in both atmosphere and ocean–sea ice models leads to a general reduction in bias compared to observations, and that once eddies in the ocean are resolved, several key climate processes are greatly improved.
Daniel T. McCoy, Paul R. Field, Gregory S. Elsaesser, Alejandro Bodas-Salcedo, Brian H. Kahn, Mark D. Zelinka, Chihiro Kodama, Thorsten Mauritsen, Benoit Vanniere, Malcolm Roberts, Pier L. Vidale, David Saint-Martin, Aurore Voldoire, Rein Haarsma, Adrian Hill, Ben Shipway, and Jonathan Wilkinson
Atmos. Chem. Phys., 19, 1147–1172, https://doi.org/10.5194/acp-19-1147-2019, https://doi.org/10.5194/acp-19-1147-2019, 2019
Short summary
Short summary
The largest single source of uncertainty in the climate sensitivity predicted by global climate models is how much low-altitude clouds change as the climate warms. Models predict that the amount of liquid within and the brightness of low-altitude clouds increase in the extratropics with warming. We show that increased fluxes of moisture into extratropical storms in the midlatitudes explain the majority of the observed trend and the modeled increase in liquid water within these storms.
Matthew D. K. Priestley, Helen F. Dacre, Len C. Shaffrey, Kevin I. Hodges, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 18, 2991–3006, https://doi.org/10.5194/nhess-18-2991-2018, https://doi.org/10.5194/nhess-18-2991-2018, 2018
Short summary
Short summary
This study investigates the role of the clustering of extratropical cyclones in driving wintertime wind losses across a large European region. To do this over 900 years of climate model data have been used and analysed. The main conclusion of this work is that cyclone clustering acts to increase wind-driven losses in the winter by 10 %–20 % when compared to the losses from a random series of cyclones, with this specifically being for the higher loss years.
Claudia Christine Stephan, Nicholas P. Klingaman, Pier Luigi Vidale, Andrew G. Turner, Marie-Estelle Demory, and Liang Guo
Geosci. Model Dev., 11, 3215–3233, https://doi.org/10.5194/gmd-11-3215-2018, https://doi.org/10.5194/gmd-11-3215-2018, 2018
Short summary
Short summary
Summer precipitation over China in the MetUM reaches twice its observed values. Increasing the horizontal resolution of the model and adding air–sea coupling have little effect on these biases. Nevertheless, MetUM correctly simulates spatial patterns of temporally coherent precipitation and the associated large-scale processes. This suggests that the model may provide useful predictions of summer intraseasonal variability despite the substantial biases in overall intraseasonal variance.
Reinhard Schiemann, Pier Luigi Vidale, Len C. Shaffrey, Stephanie J. Johnson, Malcolm J. Roberts, Marie-Estelle Demory, Matthew S. Mizielinski, and Jane Strachan
Hydrol. Earth Syst. Sci., 22, 3933–3950, https://doi.org/10.5194/hess-22-3933-2018, https://doi.org/10.5194/hess-22-3933-2018, 2018
Short summary
Short summary
A new generation of global climate models with resolutions between 50 and 10 km is becoming available. Here, we assess how well one such model simulates European precipitation. We find clear improvements in the mean precipitation pattern, and importantly also for extreme daily precipitation over 30 major European river basins. Despite remaining limitations, new high-resolution global models hold great promise for improved climate predictions of European precipitation at impact-relevant scales.
Claudia Christine Stephan, Nicholas P. Klingaman, Pier Luigi Vidale, Andrew G. Turner, Marie-Estelle Demory, and Liang Guo
Geosci. Model Dev., 11, 1823–1847, https://doi.org/10.5194/gmd-11-1823-2018, https://doi.org/10.5194/gmd-11-1823-2018, 2018
Short summary
Short summary
Climate simulations are evaluated for their ability to reproduce year-to-year variability of precipitation over China. Mean precipitation and variability are too high in all simulations but improve with finer resolution and coupling. Simulations reproduce the observed spatial patterns of rainfall variability. However, not all of these patterns are associated with observed mechanisms. For example, simulations do not reproduce summer rainfall along the Yangtze valley in response to El Niño.
Gerry Bagtasa, Mylene G. Cayetano, and Chung-Shin Yuan
Atmos. Chem. Phys., 18, 4965–4980, https://doi.org/10.5194/acp-18-4965-2018, https://doi.org/10.5194/acp-18-4965-2018, 2018
Short summary
Short summary
Monsoon seasons are known to affect weather and climate in the Philippines. These shifting winds also cause the movement of pollutants in Asia. In this study, we found that during the northeast monsoon, pollution emissions from northern East Asia reach the northern part of the Philippines. On average, these transported pollutants make up a third of observed pollutants in the region.
K. Emma Knowland, Ruth M. Doherty, Kevin I. Hodges, and Lesley E. Ott
Atmos. Chem. Phys., 17, 12421–12447, https://doi.org/10.5194/acp-17-12421-2017, https://doi.org/10.5194/acp-17-12421-2017, 2017
Short summary
Short summary
First study to our knowledge to quantify the influence extratropical cyclones have on the temporal variability of springtime surface ozone (O3) measured on the west coast of Europe when cyclones are nearby. We show passing cyclones have a discernible influence on surface O3 concentrations. In-depth findings from four case studies, using a combination of reanalyses and a modeled tracer, demonstrate there are several transport pathways before O3-rich air eventually reaches the surface.
David Walters, Ian Boutle, Malcolm Brooks, Thomas Melvin, Rachel Stratton, Simon Vosper, Helen Wells, Keith Williams, Nigel Wood, Thomas Allen, Andrew Bushell, Dan Copsey, Paul Earnshaw, John Edwards, Markus Gross, Steven Hardiman, Chris Harris, Julian Heming, Nicholas Klingaman, Richard Levine, James Manners, Gill Martin, Sean Milton, Marion Mittermaier, Cyril Morcrette, Thomas Riddick, Malcolm Roberts, Claudio Sanchez, Paul Selwood, Alison Stirling, Chris Smith, Dan Suri, Warren Tennant, Pier Luigi Vidale, Jonathan Wilkinson, Martin Willett, Steve Woolnough, and Prince Xavier
Geosci. Model Dev., 10, 1487–1520, https://doi.org/10.5194/gmd-10-1487-2017, https://doi.org/10.5194/gmd-10-1487-2017, 2017
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application.
We describe a recent iteration of these configurations: GA6/GL6. This includes ENDGame: a new dynamical core designed to improve the model's accuracy, stability and scalability. GA6 is now operational in a variety of Met Office and UM collaborators applications and hence its documentation is important.
We describe a recent iteration of these configurations: GA6/GL6. This includes ENDGame: a new dynamical core designed to improve the model's accuracy, stability and scalability. GA6 is now operational in a variety of Met Office and UM collaborators applications and hence its documentation is important.
Reindert J. Haarsma, Malcolm J. Roberts, Pier Luigi Vidale, Catherine A. Senior, Alessio Bellucci, Qing Bao, Ping Chang, Susanna Corti, Neven S. Fučkar, Virginie Guemas, Jost von Hardenberg, Wilco Hazeleger, Chihiro Kodama, Torben Koenigk, L. Ruby Leung, Jian Lu, Jing-Jia Luo, Jiafu Mao, Matthew S. Mizielinski, Ryo Mizuta, Paulo Nobre, Masaki Satoh, Enrico Scoccimarro, Tido Semmler, Justin Small, and Jin-Song von Storch
Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, https://doi.org/10.5194/gmd-9-4185-2016, 2016
Short summary
Short summary
Recent progress in computing power has enabled climate models to simulate more processes in detail and on a smaller scale. Here we present a common protocol for these high-resolution runs that will foster the analysis and understanding of the impact of model resolution on the simulated climate. These runs will also serve as a more reliable source for assessing climate risks that are associated with small-scale weather phenomena such as tropical cyclones.
M. S. Mizielinski, M. J. Roberts, P. L. Vidale, R. Schiemann, M.-E. Demory, J. Strachan, T. Edwards, A. Stephens, B. N. Lawrence, M. Pritchard, P. Chiu, A. Iwi, J. Churchill, C. del Cano Novales, J. Kettleborough, W. Roseblade, P. Selwood, M. Foster, M. Glover, and A. Malcolm
Geosci. Model Dev., 7, 1629–1640, https://doi.org/10.5194/gmd-7-1629-2014, https://doi.org/10.5194/gmd-7-1629-2014, 2014
D. N. Walters, K. D. Williams, I. A. Boutle, A. C. Bushell, J. M. Edwards, P. R. Field, A. P. Lock, C. J. Morcrette, R. A. Stratton, J. M. Wilkinson, M. R. Willett, N. Bellouin, A. Bodas-Salcedo, M. E. Brooks, D. Copsey, P. D. Earnshaw, S. C. Hardiman, C. M. Harris, R. C. Levine, C. MacLachlan, J. C. Manners, G. M. Martin, S. F. Milton, M. D. Palmer, M. J. Roberts, J. M. Rodríguez, W. J. Tennant, and P. L. Vidale
Geosci. Model Dev., 7, 361–386, https://doi.org/10.5194/gmd-7-361-2014, https://doi.org/10.5194/gmd-7-361-2014, 2014
Related subject area
Atmospheric, Meteorological and Climatological Hazards
Reconstructing hail days in Switzerland with statistical models (1959–2022)
GTDI: a game-theory-based integrated drought index implying hazard-causing and hazard-bearing impact change
Insurance loss model vs. meteorological loss index – how comparable are their loss estimates for European windstorms?
Intense rains in Israel associated with the train effect
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
On the potential of using smartphone sensors for wildfire hazard estimation through citizen science
Global estimates of 100-year return values of daily precipitation from ensemble weather prediction data
Exploring the sensitivity of extreme event attribution of two recent extreme weather events in Sweden using long-running meteorological observations
Probabilistic short-range forecasts of high-precipitation events: optimal decision thresholds and predictability limits
Surprise floods: the role of our imagination in preparing for disasters
Brief Communication: Training of AI-based nowcasting models for rainfall early warning should take into account user requirements
Modelling crop hail damage footprints with single-polarization radar: the roles of spatial resolution, hail intensity, and cropland density
Insights into ground strike point properties in Europe through the EUCLID lightning location system
The role of citizen science in assessing the spatiotemporal pattern of rainfall events in urban areas: a case study in the city of Genoa, Italy
Precipitation extremes in Ukraine from 1979 to 2019: climatology, large-scale flow conditions, and moisture sources
Characterizing hail-prone environments using convection-permitting reanalysis and overshooting top detections over south-central Europe
Aircraft engine dust ingestion at global airports
Catchment-scale assessment of drought impact on environmental flow in the Indus Basin, Pakistan
The risk of synoptic-scale Arctic cyclones to shipping
Classification of North Atlantic and European extratropical cyclones using multiple measures of intensity
Estimation of future rainfall extreme values by temperature-dependent disaggregation of climate model data
Climatic characteristics of the Jianghuai cyclone and its linkage with precipitation during the Meiyu period from 1961 to 2020
Application of the teaching–learning-based optimization algorithm to an analytical model of thunderstorm outflows to analyze the variability of the downburst kinematic and geometric parameters
Examining the Eastern European heatwave of 2023 from a long-term perspective: the role of natural variability vs. anthropogenic factors
Projections and uncertainties of winter windstorm damage in Europe in a changing climate
Improving seasonal predictions of German Bight storm activity
A satellite view of the exceptionally warm summer of 2022 over Europe
Demographic yearbooks as a source of weather-related fatalities: the Czech Republic, 1919–2022
FOREWARNS: development and multifaceted verification of enhanced regional-scale surface water flood forecasts
Assessment of wind–damage relations for Norway using 36 years of daily insurance data
Interannual variations in the seasonal cycle of extreme precipitation in Germany and the response to climate change
Climatology of large hail in Europe: characteristics of the European Severe Weather Database
Amplified potential for vegetation stress under climate-change-induced intensifying compound extreme events in the Greater Mediterranean Region
Assimilation of surface pressure observations from personal weather stations in AROME-France
An open-source radar-based hail damage model for buildings and cars
Linkages between atmospheric rivers and humid heat across the United States
Evaluating pySTEPS optical flow algorithms for convection nowcasting over the Maritime Continent using satellite data
Climate change impacts on regional fire weather in heterogeneous landscapes of central Europe
High-resolution projections of ambient heat for major European cities using different heat metrics
Heat wave characteristics: evaluation of regional climate model performances for Germany
Rain-on-snow responses to warmer Pyrenees: a sensitivity analysis using a physically based snow hydrological model
Spatial identification of regions at risk to multi-hazards at pan European level: an implemented methodological approach
Return levels of extreme European windstorms, their dependency on the North Atlantic Oscillation, and potential future risks
Wind as a natural hazard in Poland
Climatological occurrences of hail and tornadoes associated with mesoscale convective systems in the United States
Characteristics of cloud-to-ground lightning (CG) and differences between +CG and −CG strokes in China regarding the China National Lightning Detection Network
The climatology and nature of warm-season convective cells in cold-frontal environments over Germany
Forecasting large hail and lightning using additive logistic regression models and the ECMWF reforecasts
The anomalous thundery month of June 1925 in SW Iberia: description and synoptic analysis
The impact of global navigation satellite system (GNSS) zenith total delay data assimilation on the short-term precipitable water vapor and precipitation forecast over Italy using the Weather Research and Forecasting (WRF) model
Lena Wilhelm, Cornelia Schwierz, Katharina Schröer, Mateusz Taszarek, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 3869–3894, https://doi.org/10.5194/nhess-24-3869-2024, https://doi.org/10.5194/nhess-24-3869-2024, 2024
Short summary
Short summary
In our study we used statistical models to reconstruct past hail days in Switzerland from 1959–2022. This new time series reveals a significant increase in hail day occurrences over the last 7 decades. We link this trend to increases in moisture and instability variables in the models. This time series can now be used to unravel the complexities of Swiss hail occurrence and to understand what drives its year-to-year variability.
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci., 24, 3479–3495, https://doi.org/10.5194/nhess-24-3479-2024, https://doi.org/10.5194/nhess-24-3479-2024, 2024
Short summary
Short summary
To effectively track and identify droughts, we developed a novel integrated drought index that combines the effects of precipitation, temperature, and soil moisture on drought. After comparison and verification, the integrated drought index shows superior performance compared to a single meteorological drought index or agricultural drought index in terms of drought identification.
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024, https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Short summary
European windstorms regularly cause damage to natural and human-made environments, leading to high socio-economic losses. For the first time, we compare estimates of these losses using a meteorological loss index (LI) and the insurance loss (catastrophe) model of Aon Impact Forecasting. We find that LI underestimates high-impact windstorms compared to the insurance model. Nonetheless, due to its simplicity, LI is an effective index, suitable for estimating impacts and ranking storm events.
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci., 24, 3267–3277, https://doi.org/10.5194/nhess-24-3267-2024, https://doi.org/10.5194/nhess-24-3267-2024, 2024
Short summary
Short summary
The train effect is related to convective cells that pass over the same place. Trains produce heavy rainfall and sometimes floods and are reported in North America during spring and summer. In Israel, 17 trains associated with Cyprus lows were identified by radar images and were found within the cold sector south of the low center and in the left flank of a maximum wind belt; they cross the Israeli coast, with a mean length of 45 km; last 1–3 h; and yield 35 mm of rainfall up to 60 mm.
Andrew Brown, Andrew Dowdy, and Todd P. Lane
Nat. Hazards Earth Syst. Sci., 24, 3225–3243, https://doi.org/10.5194/nhess-24-3225-2024, https://doi.org/10.5194/nhess-24-3225-2024, 2024
Short summary
Short summary
A computer model that simulates the climate of southeastern Australia is shown here to represent extreme wind events associated with convective storms. This is useful as it allows us to investigate possible future changes in the occurrences of these events, and we find in the year 2050 that our model simulates a decrease in the number of occurrences. However, the model also simulates too many events in the historical climate compared with observations, so these future changes are uncertain.
Hofit Shachaf, Colin Price, Dorita Rostkier-Edelstein, and Cliff Mass
Nat. Hazards Earth Syst. Sci., 24, 3035–3047, https://doi.org/10.5194/nhess-24-3035-2024, https://doi.org/10.5194/nhess-24-3035-2024, 2024
Short summary
Short summary
We have used the temperature and relative humidity sensors in smartphones to estimate the vapor pressure deficit (VPD), an important atmospheric parameter closely linked to fuel moisture and wildfire risk. Our analysis for two severe wildfire case studies in Israel and Portugal shows the potential for using smartphone data to compliment the regular weather station network while also providing high spatial resolution of the VPD index.
Florian Ruff and Stephan Pfahl
Nat. Hazards Earth Syst. Sci., 24, 2939–2952, https://doi.org/10.5194/nhess-24-2939-2024, https://doi.org/10.5194/nhess-24-2939-2024, 2024
Short summary
Short summary
High-impact river floods are often caused by extreme precipitation. Flood protection relies on reliable estimates of the return values. Observational time series are too short for a precise calculation. Here, 100-year return values of daily precipitation are estimated on a global grid based on a large set of model-generated precipitation events from ensemble weather prediction. The statistical uncertainties in the return values can be substantially reduced compared to observational estimates.
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024, https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Short summary
Associating extreme weather events with changes in the climate remains difficult. We have explored two ways these relationships can be investigated: one using a more common method and one relying solely on long-running records of meteorological observations.
Our results show that while both methods lead to similar conclusions for two recent weather events in Sweden, the commonly used method risks underestimating the strength of the connection between the event and changes to the climate.
François Bouttier and Hugo Marchal
Nat. Hazards Earth Syst. Sci., 24, 2793–2816, https://doi.org/10.5194/nhess-24-2793-2024, https://doi.org/10.5194/nhess-24-2793-2024, 2024
Short summary
Short summary
Weather prediction uncertainties can be described as sets of possible scenarios – a technique called ensemble prediction. Our machine learning technique translates them into more easily interpretable scenarios for various users, balancing the detection of high precipitation with false alarms. Key parameters are precipitation intensity and space and time scales of interest. We show that the approach can be used to facilitate warnings of extreme precipitation.
Joy Ommer, Jessica Neumann, Milan Kalas, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024, https://doi.org/10.5194/nhess-24-2633-2024, 2024
Short summary
Short summary
What’s the worst that could happen? Recent floods are often claimed to be beyond our imagination. Imagination is the picturing of a situation in our mind and the emotions that we connect with this situation. But why is this important for disasters? This survey found that when we cannot imagine a devastating flood, we are not preparing in advance. Severe-weather forecasts and warnings need to advance in order to trigger our imagination of what might happen and enable us to start preparing.
Georgy Ayzel and Maik Heistermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1945, https://doi.org/10.5194/egusphere-2024-1945, 2024
Short summary
Short summary
Forecasting rainfall over the next hour is an essential feature of early warning systems. Deep learning has emerged as a powerful alternative to conventional nowcasting technologies, but it still struggles to adequately predict impact-relevant heavy rainfall. We think that DL could do much better if the training tasks were defined more specifically, and that such a specification presents an opportunity to better align the output of nowcasting models with actual user requirements.
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024, https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Short summary
The study presents an open-source model to determine the occurrence of hail damage to field crops and grapevines after hailstorms in Switzerland based on radar, agricultural land use data, and insurance damage reports. The model performs best at 8 km resolution for field crops and 1 km for grapevine and in the main production areas. Highlighting performance trade-offs and the relevance of user needs, the study is a first step towards the assessment of risk and damage for crops in Switzerland.
Dieter Roel Poelman, Hannes Kohlmann, and Wolfgang Schulz
Nat. Hazards Earth Syst. Sci., 24, 2511–2522, https://doi.org/10.5194/nhess-24-2511-2024, https://doi.org/10.5194/nhess-24-2511-2024, 2024
Short summary
Short summary
EUCLID's lightning data unveil distinctive ground strike point (GSP) patterns in Europe. Over seas, GSPs per flash surpass inland, reaching a minimum in the Alps. Mountainous areas like the Alps and Pyrenees have the closest GSP separation, highlighting terrain elevation's impact. The daily peak current correlates with average GSPs per flash. These findings could significantly influence lightning protection measures, urging a focus on GSP density rather than flash density for risk assessment.
Nicola Loglisci, Giorgio Boni, Arianna Cauteruccio, Francesco Faccini, Massimo Milelli, Guido Paliaga, and Antonio Parodi
Nat. Hazards Earth Syst. Sci., 24, 2495–2510, https://doi.org/10.5194/nhess-24-2495-2024, https://doi.org/10.5194/nhess-24-2495-2024, 2024
Short summary
Short summary
We analyse the meteo-hydrological features of the 27 and 28 August 2023 event that occurred in Genoa. Rainfall observations were made using rain gauge networks based on either official networks or citizen science networks. The merged analysis stresses the spatial variability in the precipitation, which cannot be captured by the current spatial density of authoritative stations. Results show that at minimal distances the variations in cumulated rainfall over a sub-hourly duration are significant.
Ellina Agayar, Franziska Aemisegger, Moshe Armon, Alexander Scherrmann, and Heini Wernli
Nat. Hazards Earth Syst. Sci., 24, 2441–2459, https://doi.org/10.5194/nhess-24-2441-2024, https://doi.org/10.5194/nhess-24-2441-2024, 2024
Short summary
Short summary
This study presents the results of a climatological investigation of extreme precipitation events (EPEs) in Ukraine for the period 1979–2019. During all seasons EPEs are associated with pronounced upper-level potential vorticity (PV) anomalies. In addition, we find distinct seasonal and regional differences in moisture sources. Several extreme precipitation cases demonstrate the importance of these processes, complemented by a detailed synoptic analysis.
Antonio Giordani, Michael Kunz, Kristopher M. Bedka, Heinz Jürgen Punge, Tiziana Paccagnella, Valentina Pavan, Ines M. L. Cerenzia, and Silvana Di Sabatino
Nat. Hazards Earth Syst. Sci., 24, 2331–2357, https://doi.org/10.5194/nhess-24-2331-2024, https://doi.org/10.5194/nhess-24-2331-2024, 2024
Short summary
Short summary
To improve the challenging representation of hazardous hailstorms, a proxy for hail frequency based on satellite detections, convective parameters from high-resolution reanalysis, and crowd-sourced reports is tested and presented. Hail likelihood peaks in mid-summer at 15:00 UTC over northern Italy and shows improved agreement with observations compared to previous estimates. By separating ambient signatures based on hail severity, enhanced appropriateness for large-hail occurrence is found.
Claire L. Ryder, Clément Bézier, Helen F. Dacre, Rory Clarkson, Vassilis Amiridis, Eleni Marinou, Emmanouil Proestakis, Zak Kipling, Angela Benedetti, Mark Parrington, Samuel Rémy, and Mark Vaughan
Nat. Hazards Earth Syst. Sci., 24, 2263–2284, https://doi.org/10.5194/nhess-24-2263-2024, https://doi.org/10.5194/nhess-24-2263-2024, 2024
Short summary
Short summary
Desert dust poses a hazard to aircraft via degradation of engine components. This has financial implications for the aviation industry and results in increased fuel burn with climate impacts. Here we quantify dust ingestion by aircraft engines at airports worldwide. We find Dubai and Delhi in summer are among the dustiest airports, where substantial engine degradation would occur after 1000 flights. Dust ingestion can be reduced by changing take-off times and the altitude of holding patterns.
Khalil Ur Rahman, Songhao Shang, Khaled Saeed Balkhair, Hamza Farooq Gabriel, Khan Zaib Jadoon, and Kifayat Zaman
Nat. Hazards Earth Syst. Sci., 24, 2191–2214, https://doi.org/10.5194/nhess-24-2191-2024, https://doi.org/10.5194/nhess-24-2191-2024, 2024
Short summary
Short summary
This paper assesses the impact of drought (meteorological drought) on the hydrological alterations in major rivers of the Indus Basin. Threshold regression and range of variability analysis are used to determine the drought severity and times where drought has caused low flows and extreme low flows (identified using indicators of hydrological alterations). Moreover, this study also examines the degree of alterations in river flows due to drought using the hydrological alteration factor.
Alexander Frank Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Nat. Hazards Earth Syst. Sci., 24, 2115–2132, https://doi.org/10.5194/nhess-24-2115-2024, https://doi.org/10.5194/nhess-24-2115-2024, 2024
Short summary
Short summary
The risk posed to ships by Arctic cyclones has seldom been quantified due to the lack of publicly available historical Arctic ship track data. This study investigates historical Arctic ship tracks, cyclone tracks, and shipping incident reports to determine the number of shipping incidents caused by the passage of Arctic cyclones. Results suggest that Arctic cyclones have not been hazardous to ships and that ships are resilient to the rough sea conditions caused by Arctic cyclones.
Joona Samuel Cornér, Clément Gael Francis Bouvier, Benjamin Doiteau, Florian Pantillon, and Victoria Anne Sinclair
EGUsphere, https://doi.org/10.5194/egusphere-2024-1749, https://doi.org/10.5194/egusphere-2024-1749, 2024
Short summary
Short summary
Classification reduces the considerable variability between extratropical cyclones (ETC) and thus simplifies studying their representation in climate models and changes in the future climate. In this paper we present an objective classification of ETCs using measures of ETC intensity. This is motivated by the aim of finding a set of ETC intensity measures which together comprehensively describe both the dynamical and impact-relevant nature of ETC intensity.
Niklas Ebers, Kai Schröter, and Hannes Müller-Thomy
Nat. Hazards Earth Syst. Sci., 24, 2025–2043, https://doi.org/10.5194/nhess-24-2025-2024, https://doi.org/10.5194/nhess-24-2025-2024, 2024
Short summary
Short summary
Future changes in sub-daily rainfall extreme values are essential in various hydrological fields, but climate scenarios typically offer only daily resolution. One solution is rainfall generation. With a temperature-dependent rainfall generator climate scenario data were disaggregated to 5 min rainfall time series for 45 locations across Germany. The analysis of the future 5 min rainfall time series showed an increase in the rainfall extremes values for rainfall durations of 5 min and 1 h.
Ran Zhu and Lei Chen
Nat. Hazards Earth Syst. Sci., 24, 1937–1950, https://doi.org/10.5194/nhess-24-1937-2024, https://doi.org/10.5194/nhess-24-1937-2024, 2024
Short summary
Short summary
There is a positive correlation between the frequency of Jianghuai cyclone activity and precipitation during the Meiyu period. Its occurrence frequency has an obvious decadal variation, which corresponds well with the quasi-periodic and decadal variation in precipitation during the Meiyu period. This study provides a reference for the long-term and short-term forecasting of precipitation during the Meiyu period.
Andi Xhelaj and Massimiliano Burlando
Nat. Hazards Earth Syst. Sci., 24, 1657–1679, https://doi.org/10.5194/nhess-24-1657-2024, https://doi.org/10.5194/nhess-24-1657-2024, 2024
Short summary
Short summary
The study provides an in-depth analysis of a severe downburst event in Sânnicolau Mare, Romania, utilizing an analytical model and optimization algorithm. The goal is to explore a multitude of generating solutions and to identify potential alternatives to the optimal solution. Advanced data analysis techniques help to discern three main distinct storm scenarios. For this particular event, the best overall solution from the optimization algorithm shows promise in reconstructing the downburst.
Monica Ionita, Petru Vaideanu, Bogdan Antonescu, Catalin Roibu, Qiyun Ma, and Viorica Nagavciuc
EGUsphere, https://doi.org/10.5194/egusphere-2024-1207, https://doi.org/10.5194/egusphere-2024-1207, 2024
Short summary
Short summary
Eastern Europe's heatwave history is explored from 1885 to 2023, with a focus on pre-1960 events. The study reveals two periods with more frequent and intense heatwaves (HW): 1920s–1960s and 1980s–present. The research highlights the importance of a long-term perspective, revealing that extreme heat events have occurred throughout the entire study period and it emphasizes the combined influence of climate change and natural variations on increasing HW severity.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Daniel Krieger, Sebastian Brune, Johanna Baehr, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 1539–1554, https://doi.org/10.5194/nhess-24-1539-2024, https://doi.org/10.5194/nhess-24-1539-2024, 2024
Short summary
Short summary
Previous studies found that climate models can predict storm activity in the German Bight well for averages of 5–10 years but struggle in predicting the next winter season. Here, we improve winter storm activity predictions by linking them to physical phenomena that occur before the winter. We guess the winter storm activity from these phenomena and discard model solutions that stray too far from the guess. The remaining solutions then show much higher prediction skill for storm activity.
João P. A. Martins, Sara Caetano, Carlos Pereira, Emanuel Dutra, and Rita M. Cardoso
Nat. Hazards Earth Syst. Sci., 24, 1501–1520, https://doi.org/10.5194/nhess-24-1501-2024, https://doi.org/10.5194/nhess-24-1501-2024, 2024
Short summary
Short summary
Over Europe, 2022 was truly exceptional in terms of extreme heat conditions, both in terms of temperature anomalies and their temporal and spatial extent. The satellite all-sky land surface temperature (LST) is used to provide a climatological context to extreme heat events. Where drought conditions prevail, LST anomalies are higher than 2 m air temperature anomalies. ERA5-Land does not represent this effect correctly due to a misrepresentation of vegetation anomalies.
Rudolf Brázdil, Kateřina Chromá, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 1437–1457, https://doi.org/10.5194/nhess-24-1437-2024, https://doi.org/10.5194/nhess-24-1437-2024, 2024
Short summary
Short summary
The official mortality data in the Czech Republic in 1919–2022 are used to show long-term fluctuations in the number of fatalities caused by excessive natural cold and heat, lightning, natural disasters, and falls on ice/snow, as well as the sex and age of the deceased, based on certain meteorological, historical, and socioeconomic factors that strongly influence changes in the number and structure of such fatalities. Knowledge obtained is usable in risk management for the preservation of lives.
Ben Maybee, Cathryn E. Birch, Steven J. Böing, Thomas Willis, Linda Speight, Aurore N. Porson, Charlie Pilling, Kay L. Shelton, and Mark A. Trigg
Nat. Hazards Earth Syst. Sci., 24, 1415–1436, https://doi.org/10.5194/nhess-24-1415-2024, https://doi.org/10.5194/nhess-24-1415-2024, 2024
Short summary
Short summary
This paper presents the development and verification of FOREWARNS, a novel method for regional-scale forecasting of surface water flooding. We detail outcomes from a workshop held with UK forecast users, who indicated they valued the forecasts and would use them to complement national guidance. We use results of objective forecast tests against flood observations over northern England to show that this confidence is justified and that FOREWARNS meets the needs of UK flood responders.
Ashbin Jaison, Asgeir Sorteberg, Clio Michel, and Øyvind Breivik
Nat. Hazards Earth Syst. Sci., 24, 1341–1355, https://doi.org/10.5194/nhess-24-1341-2024, https://doi.org/10.5194/nhess-24-1341-2024, 2024
Short summary
Short summary
The present study uses daily insurance losses and wind speeds to fit storm damage functions at the municipality level of Norway. The results show that the damage functions accurately estimate losses associated with extreme damaging events and can reconstruct their spatial patterns. However, there is no single damage function that performs better than another. A newly devised damage–no-damage classifier shows some skill in predicting extreme damaging events.
Madlen Peter, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 24, 1261–1285, https://doi.org/10.5194/nhess-24-1261-2024, https://doi.org/10.5194/nhess-24-1261-2024, 2024
Short summary
Short summary
The paper introduces a statistical modeling approach describing daily extreme precipitation in Germany more accurately by including changes within the year and between the years simultaneously. The changing seasonality over years is regionally divergent and mainly weak. However, some regions stand out with a more pronounced linear rise of summer intensities, indicating a possible climate change signal. Improved modeling of extreme precipitation is beneficial for risk assessment and adaptation.
Faye Hulton and David M. Schultz
Nat. Hazards Earth Syst. Sci., 24, 1079–1098, https://doi.org/10.5194/nhess-24-1079-2024, https://doi.org/10.5194/nhess-24-1079-2024, 2024
Short summary
Short summary
Large hail devastates crops and property and can injure and kill people and livestock. Hail reports are collected by individual countries, so understanding where and when large hail occurs across Europe is an incomplete undertaking. We use the European Severe Weather Database to evaluate the quality of reports by year and by country since 2000. Despite its short record, the dataset appears to represent aspects of European large-hail climatology reliably.
Patrick Olschewski, Mame Diarra Bousso Dieng, Hassane Moutahir, Brian Böker, Edwin Haas, Harald Kunstmann, and Patrick Laux
Nat. Hazards Earth Syst. Sci., 24, 1099–1134, https://doi.org/10.5194/nhess-24-1099-2024, https://doi.org/10.5194/nhess-24-1099-2024, 2024
Short summary
Short summary
We applied a multivariate and dependency-preserving bias correction method to climate model output for the Greater Mediterranean Region and investigated potential changes in false-spring events (FSEs) and heat–drought compound events (HDCEs). Results project an increase in the frequency of FSEs in middle and late spring as well as increases in frequency, intensity, and duration for HDCEs. This will potentially aggravate the risk of crop loss and failure and negatively impact food security.
Alan Demortier, Marc Mandement, Vivien Pourret, and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 24, 907–927, https://doi.org/10.5194/nhess-24-907-2024, https://doi.org/10.5194/nhess-24-907-2024, 2024
Short summary
Short summary
Improvements in numerical weather prediction models make it possible to warn of hazardous weather situations. The incorporation of new observations from personal weather stations into the French limited-area model is evaluated. It leads to a significant improvement in the modelling of the surface pressure field up to 9 h ahead. Their incorporation improves the location and intensity of the heavy precipitation event that occurred in the South of France in September 2021.
Timo Schmid, Raphael Portmann, Leonie Villiger, Katharina Schröer, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 847–872, https://doi.org/10.5194/nhess-24-847-2024, https://doi.org/10.5194/nhess-24-847-2024, 2024
Short summary
Short summary
Hailstorms cause severe damage to buildings and cars, which motivates a detailed risk assessment. Here, we present a new open-source hail damage model based on radar data in Switzerland. The model successfully estimates the correct order of magnitude of car and building damages for most large hail events over 20 years. However, large uncertainty remains in the geographical distribution of modelled damages, which can be improved for individual events by using crowdsourced hail reports.
Colin Raymond, Anamika Shreevastava, Emily Slinskey, and Duane Waliser
Nat. Hazards Earth Syst. Sci., 24, 791–801, https://doi.org/10.5194/nhess-24-791-2024, https://doi.org/10.5194/nhess-24-791-2024, 2024
Short summary
Short summary
How can we systematically understand what causes high levels of atmospheric humidity and thus heat stress? Here we argue that atmospheric rivers can be a useful tool, based on our finding that in several US regions, atmospheric rivers and humid heat occur close together in space and time. Most typically, an atmospheric river transports moisture which heightens heat stress, with precipitation following a day later. These effects tend to be larger for stronger and more extensive systems.
Joseph Smith, Cathryn Birch, John Marsham, Simon Peatman, Massimo Bollasina, and George Pankiewicz
Nat. Hazards Earth Syst. Sci., 24, 567–582, https://doi.org/10.5194/nhess-24-567-2024, https://doi.org/10.5194/nhess-24-567-2024, 2024
Short summary
Short summary
Nowcasting uses observations to make predictions of the atmosphere on short timescales and is particularly applicable to the Maritime Continent, where storms rapidly develop and cause natural disasters. This paper evaluates probabilistic and deterministic satellite nowcasting algorithms over the Maritime Continent. We show that the probabilistic approach is most skilful at small scales (~ 60 km), whereas the deterministic approach is most skilful at larger scales (~ 200 km).
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024, https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary
Short summary
We assess the impacts of climate change on fire danger for 1980–2099 in different landscapes of central Europe, using the Canadian Forest Fire Weather Index (FWI) as a fire danger indicator. We find that today's 100-year FWI event will occur every 30 years by 2050 and every 10 years by 2099. High fire danger (FWI > 21.3) becomes the mean condition by 2099 under an RCP8.5 scenario. This study highlights the potential for severe fire events in central Europe from a meteorological perspective.
Clemens Schwingshackl, Anne Sophie Daloz, Carley Iles, Kristin Aunan, and Jana Sillmann
Nat. Hazards Earth Syst. Sci., 24, 331–354, https://doi.org/10.5194/nhess-24-331-2024, https://doi.org/10.5194/nhess-24-331-2024, 2024
Short summary
Short summary
Ambient heat in European cities will substantially increase under global warming, as projected by three heat metrics calculated from high-resolution climate model simulations. While the heat metrics consistently project high levels of ambient heat for several cities, in other cities the projected heat levels vary considerably across the three heat metrics. Using complementary heat metrics for projections of ambient heat is thus important for assessments of future risks from heat stress.
Dragan Petrovic, Benjamin Fersch, and Harald Kunstmann
Nat. Hazards Earth Syst. Sci., 24, 265–289, https://doi.org/10.5194/nhess-24-265-2024, https://doi.org/10.5194/nhess-24-265-2024, 2024
Short summary
Short summary
The influence of model resolution and settings on the reproduction of heat waves in Germany between 1980–2009 is analyzed. Outputs from a high-resolution model with settings tailored to the target region are compared to those from coarser-resolution models with more general settings. Neither the increased resolution nor the tailored model settings are found to add significant value to the heat wave simulation. The models exhibit a large spread, indicating that the choice of model can be crucial.
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024, https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary
Short summary
Climate warming is changing mountain snowpack patterns, leading in some cases to rain-on-snow (ROS) events. Here we analyzed near-present ROS and its sensitivity to climate warming across the Pyrenees. ROS increases during the coldest months of the year but decreases in the warmest months and areas under severe warming due to snow cover depletion. Faster snow ablation is anticipated in the coldest and northern slopes of the range. Relevant implications in mountain ecosystem are anticipated.
Tiberiu-Eugen Antofie, Stefano Luoni, Alois Tilloy, Andrea Sibilia, Sandro Salari, Gustav Eklund, Davide Rodomonti, Christos Bountzouklis, and Christina Corbane
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-220, https://doi.org/10.5194/nhess-2023-220, 2024
Preprint under review for NHESS
Short summary
Short summary
This is the first study that uses spatial patterns (clusters/hot-spots) and meta-analysis in order to identify the regions at European level at risk to multi-hazards. The findings point out the socio-economic dimension as determinant factor for the risk potential to multi-hazard. The outcome provides valuable input for the Disaster Risk Management policy support and will assist national authorities on the implementation of a multi-hazard approach in the National Risk Assessments preparation.
Matthew D. K. Priestley, David B. Stephenson, Adam A. Scaife, Daniel Bannister, Christopher J. T. Allen, and David Wilkie
Nat. Hazards Earth Syst. Sci., 23, 3845–3861, https://doi.org/10.5194/nhess-23-3845-2023, https://doi.org/10.5194/nhess-23-3845-2023, 2023
Short summary
Short summary
This research presents a model for estimating extreme gusts associated with European windstorms. Using observed storm footprints we are able to calculate the return level of events at the 200-year return period. The largest gusts are found across NW Europe, and these are larger when the North Atlantic Oscillation is positive. Using theoretical future climate states we find that return levels are likely to increase across NW Europe to levels that are unprecedented compared to historical storms.
Tadeusz Chmielewski and Piotr A. Bońkowski
Nat. Hazards Earth Syst. Sci., 23, 3839–3844, https://doi.org/10.5194/nhess-23-3839-2023, https://doi.org/10.5194/nhess-23-3839-2023, 2023
Short summary
Short summary
The paper deals with wind speeds of extreme wind events in Poland and the descriptions of their effects. Two recent estimations developed by the Institute of Meteorology and Water Management in Warsaw and by Halina Lorenc are presented and briefly described. The 37 annual maximum gusts of wind speeds measured between 1971 and 2007 are analysed. Based on the measured and estimated wind speeds, the authors suggest new estimations for extreme winds that may occur in Poland.
Jingyu Wang, Jiwen Fan, and Zhe Feng
Nat. Hazards Earth Syst. Sci., 23, 3823–3838, https://doi.org/10.5194/nhess-23-3823-2023, https://doi.org/10.5194/nhess-23-3823-2023, 2023
Short summary
Short summary
Hail and tornadoes are devastating hazards responsible for significant property damage and economic losses in the United States. Quantifying the connection between hazard events and mesoscale convective systems (MCSs) is of great significance for improving predictability, as well as for better understanding the influence of the climate-scale perturbations. A 14-year statistical dataset of MCS-related hazard production is presented.
Ruijiao Jiang, Guoping Zhang, Shudong Wang, Bing Xue, Zhengshuai Xie, Tingzhao Yu, Kuoyin Wang, Jin Ding, and Xiaoxiang Zhu
Nat. Hazards Earth Syst. Sci., 23, 3747–3759, https://doi.org/10.5194/nhess-23-3747-2023, https://doi.org/10.5194/nhess-23-3747-2023, 2023
Short summary
Short summary
Lightning activity in China is analyzed. Low latitudes, undulating terrain, seaside, and humid surfaces are beneficial for lightning occurrence. Summer of the year or afternoon of the day is the high period. Large cloud-to-ground lightning frequency always corresponds to a small ratio and weak intensity of positive cloud-to-ground lightning on either a temporal or spatial scale. Interestingly, the discharge intensity difference between the two types of lightning shrinks on the Tibetan Plateau.
George Pacey, Stephan Pfahl, Lisa Schielicke, and Kathrin Wapler
Nat. Hazards Earth Syst. Sci., 23, 3703–3721, https://doi.org/10.5194/nhess-23-3703-2023, https://doi.org/10.5194/nhess-23-3703-2023, 2023
Short summary
Short summary
Cold fronts are often associated with areas of intense precipitation (cells) and sometimes with hazards such as flooding, hail and lightning. We find that cold-frontal cell days are associated with higher cell frequency and cells are typically more intense. We also show both spatially and temporally where cells are most frequent depending on their cell-front distance. These results are an important step towards a deeper understanding of cold-frontal storm climatology and improved forecasting.
Francesco Battaglioli, Pieter Groenemeijer, Ivan Tsonevsky, and Tomàš Púčik
Nat. Hazards Earth Syst. Sci., 23, 3651–3669, https://doi.org/10.5194/nhess-23-3651-2023, https://doi.org/10.5194/nhess-23-3651-2023, 2023
Short summary
Short summary
Probabilistic models for lightning and large hail were developed across Europe using lightning observations and hail reports. These models accurately predict the occurrence of lightning and large hail several days in advance. In addition, the hail model was shown to perform significantly better than the state-of-the-art forecasting methods. These results suggest that the models developed in this study may help improve forecasting of convective hazards and eventually limit the associated risks.
Francisco Javier Acero, Manuel Antón, Alejandro Jesús Pérez Aparicio, Nieves Bravo-Paredes, Víctor Manuel Sánchez Carrasco, María Cruz Gallego, José Agustín García, Marcelino Núñez, Irene Tovar, Javier Vaquero-Martínez, and José Manuel Vaquero
EGUsphere, https://doi.org/10.5194/egusphere-2023-2522, https://doi.org/10.5194/egusphere-2023-2522, 2023
Short summary
Short summary
The month of June 1925 was detected as exceptional in the SW interior of Iberia due to the large number of thunderstorms and the significant impacts that caused, with serious losses in human lives and material resources. We analyzed this event from different, complementary perspectives: the reconstruction of the history of the events from newspapers; the study of monthly meteorological variables of the longest series available in Iberia; and the analysis of the meteorological synoptic situation.
Rosa Claudia Torcasio, Alessandra Mascitelli, Eugenio Realini, Stefano Barindelli, Giulio Tagliaferro, Silvia Puca, Stefano Dietrich, and Stefano Federico
Nat. Hazards Earth Syst. Sci., 23, 3319–3336, https://doi.org/10.5194/nhess-23-3319-2023, https://doi.org/10.5194/nhess-23-3319-2023, 2023
Short summary
Short summary
This work shows how local observations can improve precipitation forecasting for severe weather events. The improvement lasts for at least 6 h of forecast.
Cited articles
Adeniyi, M. O.: Sensitivities of the Tiedtke and Kain-Fritsch Convection
Schemes for RegCM4.5 over West Africa, Meteorology Hydrology and Water
Management, 7, 27–37, https://doi.org/10.26491/mhwm/103797, 2019.
Alaka Jr., G. J., Zhang, X., aand Gopalakrishnan, S. G.: High-Definition
Hurricanes: Improving Forecasts with Storm-Following Nests, B.
Am. Meteorol. Soc., 103, E680–E703, https://doi.org/10.1175/BAMS-D-20-0134.1, 2022.
Aragon, L. G. B. and Pura, A. G.: Analysis of the displacement error of the
WRF–ARW model in predicting tropical cyclone tracks over the Philippines,
Meteorol. Appl., 23, 401–408, https://doi.org/10.1002/met.1564, 2016.
Bagtasa, G.: Contribution of Tropical Cyclones to Rainfall in the
Philippines, J. Climate, 30, 3621–3633, https://doi.org/10.1175/JCLI-D-16-0150.1,
2017.
Bagtasa, G.: Influence of Madden–Julian oscillation on the intraseasonal
variability of summer and winter monsoon rainfall in the Philippines, J.
Climate, 33, 9581–9594, https://doi.org/10.1175/JCLI-D-20-0305.1, 2020.
Bagtasa, G.: Analog forecasting of tropical cyclone rainfall in the
Philippines, Weather and Climate Extremes, 32, 100323,
https://doi.org/10.1016/j.wace.2021.100323, 2021.
Biswas, M. K., Bernardet, L., and Dudhia, J.: Sensitivity of hurricane
forecasts to cumulus parameterizations in the HWRF model, Geophys. Res.
Lett., 41, 9113–9119, https://doi.org/10.1002/2014GL062071, 2014.
Bopape, M.-J. M., Cardoso, H., Plant, R. S., Phaduli, E., Chikoore, H.,
Ndarana, T., Khalau, L., and Rakate, E.: Sensitivity of Tropical Cyclone Idai
Simulations to Cumulus Parametrization Schemes, Atmosphere, 12, 932,
https://doi.org/10.3390/atmos12080932, 2021.
Brucal, A., Roezer, V., Dookie, D. S., Byrnes, R., Ravago, M. V., and Cruz,
F.: Disaster impacts and financing: local insights from the Philippines,
https://www.lse.ac.uk/granthaminstitute/publication/disaster-
impacts-and-financing-local-insights-from-the-philippines/
(last access: 28 June 2021), 9 June 2020.
Brutsaert, W.: A theory for local evaporation (or heat transfer) from rough
and smooth surfaces at ground level, Water Resour. Res., 11, 543–550,
https://doi.org/10.1029/WR011i004p00543, 1975a.
Brutsaert, W.: The Roughness Length for Water Vapor, Sensible Heat, and
other Scalars, J. Atmos. Sci., 32, 2028–2031,
https://doi.org/10.1175/1520-0469(1975)032<2029:TRLFWV>2.0.CO;2, 1975b.
Cha, D.-H., Jin, C.-S., Lee, D.-K., and Kuo, Y.-H.: Impact of intermittent
spectral nudging on regional climate simulation using Weather Research and
Forecasting model, J. Geophys. Res., 116, D10103, https://doi.org/10.1029/2010JD015069,
2011.
Charnock, H.: Wind stress on a water surface, Q. J. Roy. Meteor. Soc., 81,
639–640, https://doi.org/10.1002/qj.49708135027, 1955.
Chen, F. and Dudhia, J.: Coupling an advanced land-surface/ hydrology model
with the Penn State/NCAR MM5 modeling system. Part I: model description and
implementation, Mon. Weather Rev., 129, 569–585,
https://doi.org/10.1175/1520-0493(2001)129>0569:CAALSH>2.0.CO;2, 2001.
Chen, S., Campbell, T. J., Jin, H., Gaberšek, S., Hodur, R. M., and Martin,
P.: Effect of two-way air–sea coupling in high and low wind speed
regimes, Mon. Weather Rev., 138, 3579–3602, https://doi.org/10.1175/2009MWR3119.1,
2010.
Cinco, T. A., de Guzman, R. G., Ortiz, A. M. D., Delfino, R. J. P., Lasco,
R. D., Hilario, F. D., and Ares, E. D.: Observed trends and impacts of
tropical cyclones in the Philippines, Int. J. Climatol., 36, 4638–4650,
https://doi.org/10.1002/joc.4659, 2016.
Comiso, J. C., Perez, G. P., and Stock, L. V.: Enhanced Pacific Ocean Sea
Surface Temperature and Its Relation to Typhoon Haiyan, J. Environ. Sci.
Manag., 18, 1–10 https://doi.org/10.47125/jesam/2015_1/01, 2015.
Cruz, F. and Narisma, G.: WRF simulation of the heavy rainfall over
Metropolitan Manila, Philippines during tropical cyclone Ketsana: a
sensitivity study, Meteorol. Atmos. Phys., 128, 415–428,
https://doi.org/10.1007/s00703-015-0425-x, 2016.
Davis, C., Wang, W., Chen, S. S., Chen, Y., Corbosiero, K., DeMaria, M.,
Dudhia, J., Holland, G., Klemp, J., Michalakes, J., Reeves, H., Rotunno, R.,
Snyder, C., and Xiao, Q.: Prediction of Landfalling Hurricanes with the
Advanced Hurricane WRF Model, Mon. Weather Rev., 136, 1990–2005,
https://doi.org/10.1175/2007MWR2085.1, 2008.
Di, Z., Gong, W., Gan, Y., She, C., and Duan, Q.: Combinatorial Optimization
for WRF Physical Parameterization Schemes : A Case Study of Three-Day
Typhoon Simulations over the Northwest Pacific Ocean, Atmosphere, 10, 233,
https://doi.org/10.3390/atmos10050233, 2019.
Donelan, M. A., Haus, B. K., Reul, N., Plant, W. J., Sti- assnie, M.,
Graber, H. C., Brown, O. B., and Saltzman, E. S.: On the limiting
aerodynamic roughness of the ocean in very strong winds, Geophys. Res.
Lett., 31, L18306, https://doi.org/10.1029/2004GL019460, 2004.
Dudhia, J.: Numerical study of convection observed during the Winter Monsoon
Experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46,
3077–3107, https://doi.org/10.1175/1520-0469(1989)046>3077:NSOCOD>2.0.CO;2, 1989.
Du Duc, T., Hoang Duc, H., Hole, L. R., Hoang, L., Luong, H., Thanh, T., and
Khanh, H. M.: Impacts of Different Physical Parameterization Configurations
on Widespread Heavy Rain Forecast over the Northern Area of Vietnam in
WRF-ARW Model, Adv. Meteorol., 2019, 1010858, https://doi.org/10.1155/2019/1010858,
2019.
Eckstein, D., Künzel, V., Schäfer, L., and Winges, M.: Global Climate
Risk Index 2020, Who Suffers Most from Extreme Weather Events?
Weather-Related Loss Events in 2018 and 1999 to 2018, Germanwatch,
ISBN 978-3-943704-77-8, https://www.germanwatch.org/en/17307, 2020.
Emanuel, K. A.: The finite-amplitude nature of tropical cyclogenesis, J.
Atmos. Sci., 46, 3431–3456, 1989.
Emanuel, K: Increasing destructiveness of tropical cyclones over the past
30 years, Nature, 436, 686–688, https://doi.org/10.1038/nature03906, 2005.
Emanuel, K. A.: An Air-Sea Interaction Theory for Tropical Cyclones. Part I:
Steady-State Maintenance, J. Atmos. Sci., 43, 585–605,
https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2, 1986.
EM-DAT: The Emergency Events Database, Université Catholique de Louvain
(UCL), CRED, edited by: Guha-Sapir, D., Below, R., and Hoyois, Ph., Brussels,
Belgium, last database update: 30 June 2020, https://www.emdat.be/,
last access: 20 December 2020.
Floors, R., Batchvarova, E., Gryning, S.-E., Hahmann, A. N., Peña, A., and
Mikkelsen, T.: Atmospheric boundary layer wind profile at a flat coastal site
– wind speed lidar measurements and mesoscale modeling results, Adv. Sci.
Res., 6, 155–159, https://doi.org/10.5194/asr-6-155-2011, 2011.
Flores, R. A. A.: Geo-visual analytics on the verification of the PAGASA operational numerical weather prediction model rainfall forecast, Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W19, 215–222,
https://doi.org/10.5194/isprs-archives-XLII-4-W19-215-2019, 2019.
Gallo, F., Daron, J., Macadam, I., Cinco, T., Villafuerte II, M., Buonomo,
E., Tucker, S., Hein-Griggs, D., and Jones, R. G.: High-resolution regional
climate model projections of future tropical cyclone activity in the
Philippines, Int. J. Climatol., 39, 1181–1194, https://doi.org/10.1002/joc.5870, 2019.
Gao, K., Harris, L., Chen, J.-H., Lin, S.-J., and Hazelton, A.: Improving
AGCM hurricane structure with two-way nesting, J. Adv. Model. Earth Sy., 11,
278–292, https://doi.org/10.1029/2018MS001359, 2019.
Glisan, J. M., Gutowski Jr., W. J., Cassano, J. J., and Higgins, M. E.:
Effects of Spectral Nudging in WRF on Arctic Temperature and Precipitation
Simulations, J. Climate, 26, 3985–3999, https://doi.org/10.1175/JCLI-D-12-00318.1,
2013.
Green, B. W. and Zhang F.: Impacts of Air–Sea Flux Parameterizations on
the Intensity and Structure of Tropical Cyclones, Mon. Weather Rev., 141,
2308–2324, https://doi.org/10.1175/MWR-D-12-00274.1, 2013.
Guo, X. and Zhong, W.: The Use of a Spectral Nudging Technique to Determine
the Impact of Environmental Factors on the Track of Typhoon Megi (2010),
Atmosphere, 8, 257, https://doi.org/10.3390/atmos8120257, 2017.
Gutmann, E. D., Rasmussen, R. M., Liu, C., Ikeda, K., Bruyere, C. L., Done,
J. M., Garrè, L., Friis-Hansen, P., and Veldore, V.: Changes in Hurricanes
from a 13-Yr Convection-Permitting Pseudo–Global Warming Simulation, J.
Climate, 31, 3643–3657, https://doi.org/10.1175/JCLI-D-17-0391.1, 2018.
Harris, L. M.: On the relative performance of one-way and two-way grid
nesting, PhD thesis, University of Washington ProQuest Dissertations
Publishing, UMI Number: 3406128, 2010.
Harris, L. M. and Durran, D. R.: An Idealized Comparison of One-Way and
Two-Way Grid Nesting, Mon. Weather Rev., 138, 2174–2187,
https://doi.org/10.1175/2010MWR3080.1, 2010.
Hashimoto, A., Done, J. M., Fowler, L. D., and Bruyère, C. L.: Tropical
cyclone activity in nested regional and global grid-refined simulations,
Clim. Dynam., 47, 497–508, https://doi.org/10.1007/s00382-015-2852-2, 2015.
Heming, J. T.: Tropical cyclone tracking and verification techniques for Met
Office numerical weather prediction models, Meteorol. Appl., 24, 1–8,
https://doi.org/10.1002/met.1599, 2017.
Hennermann, K.: ERA5: uncertainty estimation, European Centre for
Medium-Range Weather Forecasts,
https://confluence.ecmwf.int/display/CKB/ERA5%3A+uncertainty+estimation (last access: 7 June 2020), 2018.
Hersbach, H., Bell, B., Berrisford, P., et al.: The ERA5 global reanalysis,
Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hodges, K. I.: Feature tracking on the unit sphere, Mon. Weather Rev., 123,
3458–3465, https://doi.org/10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2, 1995.
Hodges, K. I. and Klingaman, N. P.: Prediction errors of tropical cyclones
in the western north Pacific in the Met Office global forecast model,
Weather Forecast., 34, 1189–1209, https://doi.org/10.1175/WAF-D-19-0005.1, 2019.
Hodges, K., Cobb, A., and Vidale, P. L.: How well are Tropical Cyclones
represented in reanalysis data sets?, J. Climate, 30,
5243–5264,https://doi.org/10.1175/JCLI-D-16-0557.1, 2017.
Hong, S.-Y. and Lim, J.-O.: The WRF single-moment 6-class microphysics scheme
(WSM6), ournal of the Korean Meteorological Society, 42, 129–151, 2006.
Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with
an explicit treatment of entrainment processes, Mon. Weather Rev., 134,
2318–2341, 2006.
Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J., and Tan, J.:
GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06,
Goddard Earth Sciences Data and Information Services Center
(GES DISC) [data set], Greenbelt, MD, https://doi.org/10.5067/GPM/IMERG/3B-HH/06, 2019.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A.,
Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L.,
Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R.,
Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp.,
https://doi.org/10.1017/9781009157896, 2021.
Isaksen, L., Bonavita, M., Buizza, R., Fisher, M., Haseler, J., Leutbecher,
M., and Raynaud, L.: Ensemble of Data Assimilations at ECMWF, Technical
Memorandum No. 636, ECMWF, Reading, UK, https://doi.org/10.21957/obke4k60, 2010.
Islam, T., Srivastava, P. K., Rico-Ramirez, M. A., Dai, Q., Gupta, M., and
Singh, S. K.: Tracking a tropical cyclone through WRF–ARW simulation and
sensitivity of model physics, Nat. Hazards, 76, 1473–1495,
https://doi.org/10.1007/s11069-014-1494-8, 2015.
Jin, C. S., Cha, D. H., Lee, D. K., Suh, M.-S., Hong, S. Y., Kang, H. S., and
Ho, C. H.: Evaluation of climatological tropical cyclone activity over the
western North Pacific in the CORDEX-East Asia multi-RCM simulations, Clim.
Dynam., 47, 765–778, https://doi.org/10.1007/s00382-015-2869-6, 2015.
JMA (Japan Meteorological Agency): Annual Report 2013, JMA,
https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/AnnualReport/2013/Text/Text2013.pdf
(last access: 6 August 2020), 2013.
Judt, F., Klocke, D., Rios-Berrios, R., Vanniere, B., Ziemen, F., Auger, L.,
Biercamp, J., Bretherton, C., Chen, X., Düben, P., Hohenegger, C.,
Khairoutdinov, M., Kodama, C., Kornblueh, L., Lin, S.-J., Nakano, M.,
Neumann, P., Putman, W., Röber, N., Roberts, M., Satoh, M., Shibuya, R.,
Stevens, B., Vidale, P. L., and Wedi, N.: Tropical Cyclones in Global
Storm-Resolving Models, J. Meteorol. Soc. Jpn., 99, 579–602,
https://doi.org/10.2151/jmsj.2021-029, 2021.
Kain, J. S.: The Kain–Fritsch convective parameterization: an update, J.
Appl. Meteorol. Clim., 43, 170–181,
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004.
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C.
J.: The International Best Track Archive for Climate Stewardship (IBTrACS),
B. Am. Meteorol. Soc., 91, 363–376, https://doi.org/10.1175/2009BAMS2755.1, 2010.
Kueh, M.-T., Chen, W.-M., Sheng, Y.-F., Lin, S. C., Wu, T.-R., Yen, E., Tsai,
Y.-L., and Lin, C.-Y.: Effects of horizontal resolution and air–sea flux
parameterization on the intensity and structure of simulated Typhoon Haiyan
(2013), Nat. Hazards Earth Syst. Sci., 19, 1509–1539,
https://doi.org/10.5194/nhess-19-1509-2019, 2019.
Lackmann, G. M.: Hurricane Sandy before 1900 and after 2100, B. Am. Meteorol.
Soc., 96, 547–560, https://doi.org/10.1175/BAMS-D-14-00123.1, 2015.
Lagmay, A. M. F., Agaton, R. P., Bahala, M. A. C., Briones, J. B. L. T.,
Cabacaba, K. M. C., Caro, C. V. C., Dasallas, L. L., Gonzalo, L. A. L.,
Ladiero, C. N., Lapidez, J. P., Mungcal, M. T. F., Puno, J. V. R., Ramos, M.
M. A. C., Santiago, J., Suarez, J. K., and Tablazon, J. P.: Devastating storm
surges of Typhoon Haiyan, Int. J. Disast. Risk Re., 11, 1–12,
https://doi.org/10.1016/j.ijdrr.2014.10.006, 2015.
Lander, M., Guard, C., and Camargo, S.: Super Typhoon Haiyan, in: State of
the Climate in 2013, B. Am. Meteorol. Soc., 95, S112– S114, 2014.
Lauwaet, D., Viaene, P., Brisson, E., Van Noije, T., Strunk, A., Van Looy,
Maiheu, B., Veldeman, N., Blyth, L., De Ridder, K. S., and Janssen, S.:
Impact of nesting resolution jump on dynamical downscaling ozone
concentrations over Belgium, Atmos. Environ., 67, 46–52,
https://doi.org/10.1016/j.atmosenv.2012.10.034, 2013.
Lee, J. and Wu, C.: The Role of Polygonal Eyewalls in Rapid Intensification
of Typhoon Megi (2010), 75, 4175–4199, https://doi.org/10.1175/JAS-D-18-0100.1, 2018.
Li, F., Song, J., and Li, X.: A preliminary evaluation of the necessity of
using a cumulus parameterization scheme in high-resolution simulations of
Typhoon Haiyan (2013), Nat. Hazards, 92, 647–671,
https://doi.org/10.1007/s11069-018-3218-y, 2018.
Li, X. and Pu, Z.: Sensitivity of Numerical Simulations of the Early Rapid
Intensification of Hurricane Emily to Cumulus Parameterization Schemes in
Different Model Horizontal Resolutions, J. Meteorol. Soc. Jpn. Ser. II, 87,
403–421, https://doi.org/10.2151/jmsj.87.403, 2009.
Liu, L., Wang, G., Zhang, Z., and Wang, H.: Effects of Drag Coefficients on
Surface Heat Flux during Typhoon Kalmaegi (2014), Adv. Atmos. Sci., 39,
1501–1518, https://doi.org/10.1007/s00376-022-1285-1, 2022.
Liu, P., Tsimpidi, A. P., Hu, Y., Stone, B., Russell, A. G., and Nenes, A.:
Differences between downscaling with spectral and grid nudging using WRF,
Atmos. Chem. Phys., 12, 3601–3610, https://doi.org/10.5194/acp-12-3601-2012, 2012.
Lucas-Picher, P., Argüeso, D., Brisson, E., Tramblay, Y., Berg, P.,
Lemonsu, A., Kotlarski, S., & Caillaud, C.: Convection-permitting
modeling with regional climate models: Latest developments and next steps.
WIREs Clim. Change, 12, e731, https://doi.org/10.1002/wcc.731, 2021.
Lyon, B, and Camargo, S. J.: The seasonally-varying influence of ENSO on
rainfall and tropical cyclone activity in the Philippines, Clim. Dynam.,
32, 125–141, https://doi.org/10.1007/s00382-008-0380-z, 2009.
Manganello, J. V., Hodges, K. I., Kinter III, J. L., Cash , B. A., Marx, L.,
Jung, T., Achuthavarier, D., Adams, J. M., Altshuler, E. L., Huang, B., Jin,
E. K., Stan, C., Towers, P., and Wedi, N.: Tropical cyclone climatology in a
10-km global atmospheric GCM: toward weather-resolving climate modeling, J.
Climate, 25, 3867–3893, https://doi.org/10.1175/JCLI-D-11-00346.1, 2012.
Matte, D., Laprise, R., and Thériault, J. M.: Comparison between
high-resolution climate simulations using single- and double-nesting
approaches within the Big-Brother experimental protocol, Clim. Dynam., 47,
3613–3626, https://doi.org/doi.org/10.1007/s00382-016-3031-9, 2016.
McSweeney, C., Jones, R., Lee, R., and Rowell, D.: Selecting CMIP5 GCMs for
downscaling over multiple regions, Clim. Dynam., 44, 3237–3260,
https://doi.org/10.1007/s00382-014-2418-8, 2015.
Mehra, A., Tallapragada, V., Zhang, Z., Liu, B., Zhu, L., Wang, W., and Kim,
H.-S.: Advancing the State of the Art in Operational Tropical Cyclone
Forecasting at Ncep, Tropical Cyclone Research and Review, 7, 51–56,
2019.
Mittal, R., Tewari, M., Radhakrishnan, C., Ray, P., and Singh, T.: Response
of tropical cyclone Phailin (2013) in the Bay of Bengal to climate
perturbations, Clim. Dynam., 53, 2013–2030,
https://doi.org/10.1007/s00382-019-04761-w, 2019.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S.
A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res., 102, 16663–16682,
https://doi.org/10.1029/97JD00237, 1997.
MMML-NCAR (Mesoscale and Microscale Meteorology Laboratory – National Center
for Atmospheric Research): Weather Research & Forecasting Model (WRF), ARW
Version 4 Modeling System User's Guide, MMML-NCAR,
https://www.mmm.ucar.edu/weather-research-and-forecasting-model (last
access: 9 August 2021), 2019.
Mohandas, S. and Ashrit, R.: Sensitivity of different convective
parameterization schemes on tropical cyclone prediction using a mesoscale
model, Nat. Hazards, 73, 213–235, https://doi.org/10.1007/s11069-013-0824-6, 2014.
Mohanty, U. C., Osuri, K. K., Routray, A., Mohapatra, M., and Pattanayak,
S.: Simulation of bay of bengal tropical cyclones with wrf model: Impact of
initial and boundary conditions, Mar. Geod., 33, 294–314,
https://doi.org/10.1080/01490419.2010.518061, 2010.
Monin A. S. and Obukhov, A. M.: Basic laws of turbulent mixing in the
surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR,
151, 163–187,
https://gibbs.science/efd/handouts/monin_obukhov_1954.pdf (last access:
9 August 2021), 1954.
Montgomery, M. T., Smith, R. K., and Nguyen, S. V.: Sensitivity of
tropical-cyclone models to the surface drag coefficient, Q. J. Roy. Meteor.
Soc., 136, 1945–1953, https://doi.org/10.1002/qj.702, 2010.
Moon, J., Cha, D.-H., Lee, M., and Kim, J.: Impact of spectral nudging on
real-time tropical cyclone forecast, J. Geophys. Res.-Atmos., 123,
12647–12660, https://doi.org/10.1029/2018JD028550, 2018.
Mori, N., Kato, M., Kim, S., Mase, H., Shibutani, Y., Takemi, T., Tsuboki,
K., and Yasuda, T.: Local amplification of storm surge by Super Typhoon
Haiyan in Leyte Gulf, Geophys. Res. Lett., 41, 5106–5113,
https://doi.org/10.1002/2014GL060689, 2014.
Mure-Ravaud, M., Kavvas, M. L., and Dib, A.: Investigation of Intense
Precipitation from Tropical Cyclones during the 21st Century by Dynamical
Downscaling of CCSM4 RCP 4.5, Int. J. Environ. Res. Pu., 16, 687,
https://doi.org/10.3390/ijerph16050687, 2019.
Nakamura, R., Shibayama, T., Esteban, M., and Iwamoto, T.: Future typhoon and
storm surges under different global warming scenarios: case study of typhoon
Haiyan (2013), Nat. Hazards, 82, 1645–1681, https://doi.org/10.1007/s11069-016-2259-3,
2016.
NCAS: cf python package, NCAS [code], https://ncas-cms.github.io/cf-python/, last access: 15 March 2022.
NDRRMC (National Disaster Risk Reduction and Management Council): NDRRMC
situational reports, NDRRMC, http://www.ndrrmc.gov.ph/ (last access:
2 February 2020), 2014.
Parker, C. L., Lynch, A. H., and Mooney, P. A.: Factors affecting the
simulated track and intensification of Tropical Cyclone Yasi (2011), Atmos.
Res., 194, 27–42, https://doi.org/10.1016/j.atmosres.2017.04.002, 2017.
Parker, C. L., Bruyère, C. L., Mooney, P. A., and Lynch, A. H.: The response
of land-falling tropical cyclone characteristics to projected climate change
in northeast Australia, Clim. Dynam., 51, 3467–3485,
https://doi.org/10.1007/s00382-018-4091-9, 2018.
Patricola, C. M. and Wehner, M. F: Article Anthropogenic influences on
major tropical cyclone events, Nature, 563, 339–346,
https://doi.org/10.1038/s41586-018-0673-2, 2018.
Peng, X., Fei, J., Huang, X., and Cheng, X.: Evaluation and Error Analysis
of Official Forecasts of Tropical Cyclones during 2005–14 over the Western
North Pacific. Part I: Storm Tracks, Weather Forecast., 32, 689–712,
https://doi.org/10.1175/WAF-D-16-0043.1, 2017.
Powell, M. D., Vickery, P. J., and Reinhold, T. A.: Reduced drag coefficient
for high wind speeds in tropical cyclones, Nature, 24, 395–419,
https://doi.org/10.1038/nature01481, 2003.
Powers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C. A., Dudhia, J.,
Gill, D. O., Coen, J. L., Gochis, D. J., Ahmadov, R., Peckham, S. E., Grell,
G. A., Michalakes, J., Trahan, S., Benjamin, S. G., Alexander, C. R., Dimego,
G. J., Wang, W., Schwartz, C. S., Romine, G. S., Liu, Z., Snyder, C., Chen,
F., Barlage, M. J., Yu, W., and Duda, M. G.: The Weather Research and
Forecasting Model: Overview, System Efforts, and Future Directions, B. Am.
Meteorol. Soc., 98, 1717–1737, https://doi.org/10.1175/BAMS-D-15-00308.1, 2017.
Prater, B. and Evans, J.: Sensitivity of modeled tropical cyclone track and
structure of hurricane Irene (1999) to the convective parameterization
scheme, Meteorol. Atmos. Phys., 80, 103–115, https://doi.org/10.1007/s007030200018,
2002.
Raffa, M., Reder, A., Adinolfi, M., and Mercogliano, P.: A comparison between
one-step and two-step nesting strategy in the dynamical downscaling of
regional climate model COSMO-CLM at 2.2 km driven by ERA5 reanalysis,
Atmosphere, 12, 260, https://doi.org/10.3390/atmos12020260, 2021
Reddy, P., Sriram, D., Gunthe, S. S., and Balaji, C.: Impact of climate
change on intense Bay of Bengal tropical cyclones of the post-monsoom season:
a pseudo global warming approach, Clim. Dynam., 56, 2855–2879,
https://doi.org/10.1007/s00382-020-05618-3, 2021.
Satya, O. C., Mandailing, P. M., and Kaban, H.: Application of advanced
research WRF model using tropical (New TK) scheme and KF scheme in predicting
short-term weather in Palembang and its surrounding areas Application of
advanced research WRF model using tropical (New TK) scheme and KF scheme in
predicting short-term weather in Palembang and its surrounding areas, J.
Phys. Conf. Ser., 1282, 012025, https://doi.org/10.1088/1742-6596/1282/1/012025, 2019.
Shen, W., Tang, J., Wang, Y., Wang, S., and Niu, X.: Evaluation of WRF model
simulations of tropical cyclones in the western North Pacific over the
CORDEX East Asia domain, Clim. Dynam., 48, 2419–2435,
https://doi.org/10.1007/s00382-016-3213-5, 2017.
Shen, W., Song, J., Liu, G., Zhuang, Y., Wang, Y., and Tang, J.: The effect
of convection scheme on tropical cyclones simulations over the CORDEX East
Asia domain, Clim. Dynam., 52, 4695–4713, https://doi.org/10.1007/s00382-018-4405-y,
2019.
Shepherd, T. J. and Walsh, K. J.: Sensitivity of hurricane track to cumulus
parameterization schemes in the WRF model for three intense tropical
cyclones: impact of convective asymmetry, Meteorol. Atmos. Phys., 129,
345–374, https://doi.org/10.1007/s00703-016-0472-y, 2017.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda,
M., Huang, X.-Y., Wang, W., and Powers, J. G.: A description of the advanced
research WRF version 3, NCAR Technical Note, NCAR/TN-475+STR, National
Center for Atmospheric Research, Boulder, Colorado, 2008.
Smith, R. K., Montgomery, M. T., and Thomsen, G. L.: Sensitivity of
tropical-cyclone models to the surface drag coefficient in different
boundary-layer schemes, Q. J. Roy. Meteor. Soc., 140, 792–804,
https://doi.org/10.1002/qj.2057, 2014.
Smith, S. D.: Coefficients for Sea Surface Wind Stress, Heat Flux, and Wind
Profiles as a Function of Wind Speed and Temperature, J. Geophys. Res., 93,
15467–15472, https://doi.org/10.1029/JC093iC12p15467, 1988.
Soria, J. L. A., Switzer, A. D., Villanoy, C. L., Fritz, H. M., Bilgera, P.
H. T., Cabrera, O. C., Siringan, F. P., Maria, Y. Y., Ramos, R. D., and
Fernandez, I. Q.: Repeat Storm Surge Disasters of Typhoon Haiyan and Its
1897 Predecessor in the Philippines, B. Am. Meteorol. Soc., 97, 31–48,
https://doi.org/10.1175/BAMS-D-14-00245.1, 2016.
Spencer, P., Shaw, B., and Pajuelas, B.: Sensitivity of typhoon Parma to
various WRF model configurations, in: Technical Report on 92nd American
Meteorological Society Annual Meeting, 26 January 2012, New Orleans, LA,
American Meteorological Society, Boston, MA, 608–619, 2012.
Sun, Y., Zhong, Z., Lu, W., and Hu, Y.: Why are tropical cyclone tracks over
the western North Pacific sensitive to the cumulus parameterization scheme in
regional climate modeling? A case study for Megi (2010), Mon. Weather Rev.,
142, 1240–1249, https://doi.org/10.1175/MWR-D-13-00232.1, 2015.
Takayabu, I., Hibino, K., Sasaki, H., Shiogama, H., Mori, N., Shibutani, Y.,
and Takemi, T.: Climate change effects on the worst-case storm surge: a case
study of Typhoon Haiyan, Environ. Res. Lett. 10, 064011,
https://doi.org/10.1088/1748-9326/10/6/064011, 2015.
Tang, J., Wang, S., Niu, X., Hui, P., and Zong, P.: Impact of spectral
nudging on regional climate simulation over CORDEX East Asia using WRF,
Clim. Dynam., 48, 2339–2357, https://doi.org/10.1007/s00382-016-3208-2, 2017.
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Ek,
M., Gayno, G., Wegiel, J., and Cuenca, R. H.: Implementation and verification
of the unified NOAH land surface model in the WRF model, in: 20th Conference
on Weather Analysis and Forecasting/16th Conference on Numerical Weather
Prediction, 14 January 2004, 11–15,
https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm (last
access: 18 August 2021), 2004.
Tiedtke, M.: A Comprehensive Mass Flux Scheme for Cumulus Parameterization
in Large-Scale Models, Mon. Weather Rev., 117, 1779–1800,
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2, 1989.
Torn, R. D. and Davis, D. A.: The influence of shallow convection on tropical
cyclone track forecasts, Mon. Weather Rev., 140, 2188–2197,
https://doi.org/10.1175/MWR-D-11-00246.1, 2012.
University of Reading GitLab: TRACK, GitLab,
https://gitlab.act.reading.ac.uk/track/track (last access: 14 December 2021), 2022.
Villafuerte, M. Q., John, I. I., Lambrento, C. R., Hodges, K. I., Cruz, F.
T., Cinco, T. A., and Narisma, G. T.: Sensitivity of tropical cyclones to
convective parameterization schemes in RegCM4, Clim. Dynam., 56, 1625–1642,
https://doi.org/10.1007/s00382-020-05553-3, 2021.
WRF: WRF Source Codes and Graphics Software Downloads, WRF,
https://www2.mmm.ucar.edu/wrf/users/download/get_source.html (last access: 27 September 2021), 2022a.
WRF: WPS V4 Geographical Static Data Downloads Page, WRF,
https://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html#mandatory (last access: 27 September 2021), 2022b.
Wu, Z., Jiang, C., Deng, B., Chen, J., and Liu, X.: Sensitivity of WRF
simulated typhoon track and intensity over the South China Sea to horizontal
and vertical resolutions, Acta Oceanol. Sin., 38, 74–83,
https://doi.org/10.1007/s13131-019-1459-z, 2019.
Xu, Z., and Z.-L. Yang, 2015: A new dynamical downscaling approach with GCM
bias corrections and spectral nudging. J. Geophys. Res. Atmos., 120,
3063–3084, https://doi.org/10.1002/2014JD022958.
Xue, F., and Fan, F.: Anomalous western Pacific subtropical high during
late summer in weak La Niña years: Contrast between 1981 and 2013, Adv.
Atmos. Sci., 33, 1351–1360, https://doi.org/10.1007/s00376-016-5281-1, 2016.
Yonson, R., Gaillard, J. C., and Noy, I.: The measurement of disaster risk:
An example from tropical cyclones in the Philippines, Rev. Dev. Econ., 2,
736–765, 2016.
Zhang, C., Wang, Y., and Hamilton, K.: Improved representation of boundary
layer clouds over the Southeast Pacific in ARW-WRF using a modified TK
cumulus parameterization scheme, Mon. Weather Rev., 139, 3489–3513,
https://doi.org/10.1175/MWR-D-10-05091.1, 2011.
Zhang, D.-L. and Chen, H.: Importance of the upper-level warm core in the
rapid intensification of a tropical cyclone, Geophys. Res. Lett., 39,
L02806, https://doi.org/10.1029/2011GL050578, 2012.
Zhang, J. A. and Marks, F. D.: Effects of Horizontal Diffusion on Tropical
Cyclone Intensity Change and Structure in Idealized Three-Dimensional
Numerical Simulations, Mon. Weather Rev., 143, 3981–3995,
https://doi.org/10.1175/MWR-D-14-00341.1, 2015.
Zhang, X., Gopalakrishnan, S. G., Trahan, S., Quirino, T. S., Liu, Q., Zhang,
Z., Alaka, G., and Tallapragada, V.: Representing multiscale interactions in
the Hurricane Weather Research and Forecasting modeling system: Design of
multiple sets of movable multi-level nesting and the basin-scale HWRF
forecast application, Weather Forecast., 31, 2019–2034,
https://doi.org/10.1175/WAF-D-16-0087.1, 2016.
Short summary
We showed the effects of altering the choice of cumulus schemes, surface flux options, and spectral nudging with a high level of sensitivity to cumulus schemes in simulating an intense typhoon. We highlight the advantage of using an ensemble of cumulus parameterizations to take into account the uncertainty in simulating typhoons such as Haiyan in 2013. This study is useful in addressing the growing need to plan and prepare for as well as reduce the impacts of intense typhoons in the Philippines.
We showed the effects of altering the choice of cumulus schemes, surface flux options, and...
Altmetrics
Final-revised paper
Preprint