Articles | Volume 22, issue 9
https://doi.org/10.5194/nhess-22-3105-2022
https://doi.org/10.5194/nhess-22-3105-2022
Research article
 | 
26 Sep 2022
Research article |  | 26 Sep 2022

Rare flood scenarios for a rapidly growing high-mountain city: Pokhara, Nepal

Melanie Fischer, Jana Brettin, Sigrid Roessner, Ariane Walz, Monique Fort, and Oliver Korup

Related authors

Progress and challenges in glacial lake outburst flood research (2017–2021): a research community perspective
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022,https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Controls of outbursts of moraine-dammed lakes in the greater Himalayan region
Melanie Fischer, Oliver Korup, Georg Veh, and Ariane Walz
The Cryosphere, 15, 4145–4163, https://doi.org/10.5194/tc-15-4145-2021,https://doi.org/10.5194/tc-15-4145-2021, 2021
Short summary

Related subject area

Hydrological Hazards
Review article: Towards improved drought prediction in the Mediterranean region – modeling approaches and future directions
Bouchra Zellou, Nabil El Moçayd, and El Houcine Bergou
Nat. Hazards Earth Syst. Sci., 23, 3543–3583, https://doi.org/10.5194/nhess-23-3543-2023,https://doi.org/10.5194/nhess-23-3543-2023, 2023
Short summary
Assessing typhoon-induced compound flood drivers: a case study in Ho Chi Minh City, Vietnam
Francisco Rodrigues do Amaral, Nicolas Gratiot, Thierry Pellarin, and Tran Anh Tu
Nat. Hazards Earth Syst. Sci., 23, 3379–3405, https://doi.org/10.5194/nhess-23-3379-2023,https://doi.org/10.5194/nhess-23-3379-2023, 2023
Short summary
Assessing the ability of a new seamless short-range ensemble rainfall product to anticipate flash floods in the French Mediterranean area
Juliette Godet, Olivier Payrastre, Pierre Javelle, and François Bouttier
Nat. Hazards Earth Syst. Sci., 23, 3355–3377, https://doi.org/10.5194/nhess-23-3355-2023,https://doi.org/10.5194/nhess-23-3355-2023, 2023
Short summary
Sentinel-1-based analysis of the severe flood over Pakistan 2022
Florian Roth, Bernhard Bauer-Marschallinger, Mark Edwin Tupas, Christoph Reimer, Peter Salamon, and Wolfgang Wagner
Nat. Hazards Earth Syst. Sci., 23, 3305–3317, https://doi.org/10.5194/nhess-23-3305-2023,https://doi.org/10.5194/nhess-23-3305-2023, 2023
Short summary
Sensitivity analysis of erosion on the landward slope of an earthen flood defense located in southern France submitted to wave overtopping
Clément Houdard, Adrien Poupardin, Philippe Sergent, Abdelkrim Bennabi, and Jena Jeong
Nat. Hazards Earth Syst. Sci., 23, 3111–3124, https://doi.org/10.5194/nhess-23-3111-2023,https://doi.org/10.5194/nhess-23-3111-2023, 2023
Short summary

Cited articles

Arcement Jr., G. J. and Schneider, V. R.: Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water Supply Paper 2339, US Department of Transportation, Federal Highway Administration, https://doi.org/10.3133/wsp2339, 1984. 
Basnet, K. and Acharya, D.: Flood Analysis at Ramghat, Pokhara, Nepal Using HEC-RAS, Tech. J., 1, 41–53, https://doi.org/10.3126/tj.v1i1.27591, 2019. 
Bolch, T., Shea, J. M., Liu, S., Azam, F. M., Gao, Y., Gruber, S., Immerzeel, W. W., Kulkarni, A., Li, H., Tahir, A. A., Zhang, G., and Zhang, Y.: Status and Change of the Cryosphere in the Extended Hindu Kush Himalaya Region BT – The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People, 1st edn., edited by: Wester, P., Mishra, A., Mukherji, A., and Shrestha, A. B., 209–255, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-92288-1_7, 2019. 
Brunner, G. W.: HEC-RAS, River Analysis System – Hydraulic Reference Manual, 520, https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS%205.0%20Reference%20Manual.pdf (last access: 16 September 2022), 2020a. 
Brunner, G. W.: HEC-RAS River Analysis System – 2D Modeling User's Manual, 283, https://www.hec.usace.army.mil/confluence/rasdocs/r2dum/6.0 (last access: 16 September 2022), 2020b. 
Download
Short summary
Nepal’s second-largest city has been rapidly growing since the 1970s, although its valley has been affected by rare, catastrophic floods in recent and historic times. We analyse potential impacts of such floods on urban areas and infrastructure by modelling 10 physically plausible flood scenarios along Pokhara’s main river. We find that hydraulic effects would largely affect a number of squatter settlements, which have expanded rapidly towards the river by a factor of up to 20 since 2008.
Altmetrics
Final-revised paper
Preprint