Articles | Volume 22, issue 1
https://doi.org/10.5194/nhess-22-23-2022
https://doi.org/10.5194/nhess-22-23-2022
Research article
 | 
05 Jan 2022
Research article |  | 05 Jan 2022

Evaluation of Mei-yu heavy-rainfall quantitative precipitation forecasts in Taiwan by a cloud-resolving model for three seasons of 2012–2014

Chung-Chieh Wang, Pi-Yu Chuang, Chih-Sheng Chang, Kazuhisa Tsuboki, Shin-Yi Huang, and Guo-Chen Leu

Related authors

Investigation of an extreme rainfall event during 8–12 December 2018 over central Vietnam – Part 2: An evaluation of predictability using a time-lagged cloud-resolving ensemble system​​​​​​​
Chung-Chieh Wang, Duc Van Nguyen, Thang Van Vu, Pham Thi Thanh Nga, Pi-Yu Chuang, and Kien Ba Truong
Nat. Hazards Earth Syst. Sci., 25, 2803–2822, https://doi.org/10.5194/nhess-25-2803-2025,https://doi.org/10.5194/nhess-25-2803-2025, 2025
Short summary
Investigation of an extreme rainfall event during 8–12 December 2018 over central Vietnam – Part 1: Analysis and cloud-resolving simulation
Chung-Chieh Wang and Duc Van Nguyen
Nat. Hazards Earth Syst. Sci., 23, 771–788, https://doi.org/10.5194/nhess-23-771-2023,https://doi.org/10.5194/nhess-23-771-2023, 2023
Short summary
A modeling study of an extreme rainfall event along the northern coast of Taiwan on 2 June 2017
Chung-Chieh Wang, Ting-Yu Yeh, Chih-Sheng Chang, Ming-Siang Li, Kazuhisa Tsuboki, and Ching-Hwang Liu
Atmos. Chem. Phys., 23, 501–521, https://doi.org/10.5194/acp-23-501-2023,https://doi.org/10.5194/acp-23-501-2023, 2023
Short summary
Idealized simulations of Mei-yu rainfall in Taiwan under uniform southwesterly flow using a cloud-resolving model
Chung-Chieh Wang, Pi-Yu Chuang, Shi-Ting Chen, Dong-In Lee, and Kazuhisa Tsuboki
Nat. Hazards Earth Syst. Sci., 22, 1795–1817, https://doi.org/10.5194/nhess-22-1795-2022,https://doi.org/10.5194/nhess-22-1795-2022, 2022
Short summary

Cited articles

Barnes, L. R., Schultz, D. M., Gruntfest, E. C., Hayden, M. H., and Benight, C. C.: Corrigendum: False alarm rate or false alarm ratio?, Weather Forecast., 24, 1452–1454, https://doi.org/10.1175/2009WAF2222300.1, 2009. 
Bryan, G. H., Wyngaard, J. C., and Fritsch, J. M.: Resolution requirements for the simulation of deep moist convection, Mon. Weather Rev., 131, 2394–2416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2, 2003. 
Chang, C.-P., Yeh, T.-C., and Chen, J.-M.: Effects of terrain on the surface structure of typhoons over Taiwan, Mon. Weather Rev., 121, 734–752, https://doi.org/10.1175/1520-0493(1993)121<0734:EOTOTS>2.0.CO;2, 1993. 
Chang, C.-P., Yang, Y.-T., and Kuo, H.-C.: Large increasing trend of tropical cyclone rainfall in Taiwan and the roles of terrain, J. Climate, 26, 4138–4147, https://doi.org/10.1175/JCLI-D-12-00463.1, 2013. 
Chen, C.-S. and Chen, Y.-L.: The rainfall characteristics of Taiwan, Mon. Weather Rev., 131, 1324–1341, 2003. 
Download
Short summary
This study indicated that the Cloud-Resolving Storm Simulator (CReSS) model significantly improved heavy-rainfall quantitative precipitation forecasts in the Taiwan Mei-yu season. At high resolution, the model has higher threat scores and is more skillful in predicting larger rainfall events compared to smaller ones. And the strength of the model mainly lies in the topographic rainfall rather than less predictable and migratory events due to nonlinearity.
Share
Altmetrics
Final-revised paper
Preprint