Articles | Volume 22, issue 1
Nat. Hazards Earth Syst. Sci., 22, 23–40, 2022
https://doi.org/10.5194/nhess-22-23-2022
Nat. Hazards Earth Syst. Sci., 22, 23–40, 2022
https://doi.org/10.5194/nhess-22-23-2022
Research article
05 Jan 2022
Research article | 05 Jan 2022

Evaluation of Mei-yu heavy-rainfall quantitative precipitation forecasts in Taiwan by a cloud-resolving model for three seasons of 2012–2014

Chung-Chieh Wang et al.

Related authors

A modelling study of an extreme rainfall event along the northern coast of Taiwan on 2 June 2017
Chung-Chieh Wang, Ting-Yu Yeh, Ming-Siang Li, Kazuhisa Tsuboki, and Ching-Hwang Liu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-377,https://doi.org/10.5194/acp-2022-377, 2022
Preprint under review for ACP
Short summary
Idealized simulations of Mei-yu rainfall in Taiwan under uniform southwesterly flow using a cloud-resolving model
Chung-Chieh Wang, Pi-Yu Chuang, Shi-Ting Chen, Dong-In Lee, and Kazuhisa Tsuboki
Nat. Hazards Earth Syst. Sci., 22, 1795–1817, https://doi.org/10.5194/nhess-22-1795-2022,https://doi.org/10.5194/nhess-22-1795-2022, 2022
Short summary
Investigation of An Extreme Rainfall Event during 8–12 December 2018 over Central Vietnam. Part I: Analysis and Cloud-Resolving Simulation
Chung-Chieh Wang and Duc Van Nguyen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-82,https://doi.org/10.5194/nhess-2022-82, 2022
Preprint under review for NHESS
Short summary
A numerical study of back-building process in a quasistationary rainband with extreme rainfall over northern Taiwan during 11–12 June 2012
Chung-Chieh Wang, Bing-Kui Chiou, George Tai-Jen Chen, Hung-Chi Kuo, and Ching-Hwang Liu
Atmos. Chem. Phys., 16, 12359–12382, https://doi.org/10.5194/acp-16-12359-2016,https://doi.org/10.5194/acp-16-12359-2016, 2016
Short summary
Characteristics of mesoscale-convective-system-produced extreme rainfall over southeastern South Korea: 7 July 2009
Jong-Hoon Jeong, Dong-In Lee, Chung-Chieh Wang, and In-Seong Han
Nat. Hazards Earth Syst. Sci., 16, 927–939, https://doi.org/10.5194/nhess-16-927-2016,https://doi.org/10.5194/nhess-16-927-2016, 2016
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Idealized simulations of Mei-yu rainfall in Taiwan under uniform southwesterly flow using a cloud-resolving model
Chung-Chieh Wang, Pi-Yu Chuang, Shi-Ting Chen, Dong-In Lee, and Kazuhisa Tsuboki
Nat. Hazards Earth Syst. Sci., 22, 1795–1817, https://doi.org/10.5194/nhess-22-1795-2022,https://doi.org/10.5194/nhess-22-1795-2022, 2022
Short summary
Hotspots for warm and dry summers in Romania
Viorica Nagavciuc, Patrick Scholz, and Monica Ionita
Nat. Hazards Earth Syst. Sci., 22, 1347–1369, https://doi.org/10.5194/nhess-22-1347-2022,https://doi.org/10.5194/nhess-22-1347-2022, 2022
Short summary
Development of a forecast-oriented kilometre-resolution ocean–atmosphere coupled system for western Europe and sensitivity study for a severe weather situation
Joris Pianezze, Jonathan Beuvier, Cindy Lebeaupin Brossier, Guillaume Samson, Ghislain Faure, and Gilles Garric
Nat. Hazards Earth Syst. Sci., 22, 1301–1324, https://doi.org/10.5194/nhess-22-1301-2022,https://doi.org/10.5194/nhess-22-1301-2022, 2022
Short summary
Tropical cyclone storm surge probabilities for the east coast of the United States: a cyclone-based perspective
Katherine L. Towey, James F. Booth, Alejandra Rodriguez Enriquez, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 22, 1287–1300, https://doi.org/10.5194/nhess-22-1287-2022,https://doi.org/10.5194/nhess-22-1287-2022, 2022
Short summary
Hydrometeorological analysis of the 12 and 13 September 2019 widespread flash flooding in eastern Spain
Arnau Amengual
Nat. Hazards Earth Syst. Sci., 22, 1159–1179, https://doi.org/10.5194/nhess-22-1159-2022,https://doi.org/10.5194/nhess-22-1159-2022, 2022
Short summary

Cited articles

Barnes, L. R., Schultz, D. M., Gruntfest, E. C., Hayden, M. H., and Benight, C. C.: Corrigendum: False alarm rate or false alarm ratio?, Weather Forecast., 24, 1452–1454, https://doi.org/10.1175/2009WAF2222300.1, 2009. 
Bryan, G. H., Wyngaard, J. C., and Fritsch, J. M.: Resolution requirements for the simulation of deep moist convection, Mon. Weather Rev., 131, 2394–2416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2, 2003. 
Chang, C.-P., Yeh, T.-C., and Chen, J.-M.: Effects of terrain on the surface structure of typhoons over Taiwan, Mon. Weather Rev., 121, 734–752, https://doi.org/10.1175/1520-0493(1993)121<0734:EOTOTS>2.0.CO;2, 1993. 
Chang, C.-P., Yang, Y.-T., and Kuo, H.-C.: Large increasing trend of tropical cyclone rainfall in Taiwan and the roles of terrain, J. Climate, 26, 4138–4147, https://doi.org/10.1175/JCLI-D-12-00463.1, 2013. 
Chen, C.-S. and Chen, Y.-L.: The rainfall characteristics of Taiwan, Mon. Weather Rev., 131, 1324–1341, 2003. 
Download
Short summary
This study indicated that the Cloud-Resolving Storm Simulator (CReSS) model significantly improved heavy-rainfall quantitative precipitation forecasts in the Taiwan Mei-yu season. At high resolution, the model has higher threat scores and is more skillful in predicting larger rainfall events compared to smaller ones. And the strength of the model mainly lies in the topographic rainfall rather than less predictable and migratory events due to nonlinearity.
Altmetrics
Final-revised paper
Preprint