Articles | Volume 22, issue 5
https://doi.org/10.5194/nhess-22-1559-2022
https://doi.org/10.5194/nhess-22-1559-2022
Research article
 | 
10 May 2022
Research article |  | 10 May 2022

Assessing flooding impact to riverine bridges: an integrated analysis

Maria Pregnolato, Andrew O. Winter, Dakota Mascarenas, Andrew D. Sen, Paul Bates, and Michael R. Motley

Related authors

Indirect flood impacts and cascade risk across interdependent linear infrastructures
Chiara Arrighi, Maria Pregnolato, and Fabio Castelli
Nat. Hazards Earth Syst. Sci., 21, 1955–1969, https://doi.org/10.5194/nhess-21-1955-2021,https://doi.org/10.5194/nhess-21-1955-2021, 2021
Short summary

Related subject area

Hydrological Hazards
Precursors and pathways: dynamically informed extreme event forecasting demonstrated on the historic Emilia-Romagna 2023 flood
Joshua Dorrington, Marta Wenta, Federico Grazzini, Linus Magnusson, Frederic Vitart, and Christian M. Grams
Nat. Hazards Earth Syst. Sci., 24, 2995–3012, https://doi.org/10.5194/nhess-24-2995-2024,https://doi.org/10.5194/nhess-24-2995-2024, 2024
Short summary
Demonstrating the use of UNSEEN climate data for hydrological applications: case studies for extreme floods and droughts in England
Alison L. Kay, Nick Dunstone, Gillian Kay, Victoria A. Bell, and Jamie Hannaford
Nat. Hazards Earth Syst. Sci., 24, 2953–2970, https://doi.org/10.5194/nhess-24-2953-2024,https://doi.org/10.5194/nhess-24-2953-2024, 2024
Short summary
Exploring the use of seasonal forecasts to adapt flood insurance premiums
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024,https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Are 2D shallow-water solvers fast enough for early flood warning? A comparative assessment on the 2021 Ahr valley flood event
Shahin Khosh Bin Ghomash, Heiko Apel, and Daniel Caviedes-Voullième
Nat. Hazards Earth Syst. Sci., 24, 2857–2874, https://doi.org/10.5194/nhess-24-2857-2024,https://doi.org/10.5194/nhess-24-2857-2024, 2024
Short summary
Water depth estimate and flood extent enhancement for satellite-based inundation maps
Andrea Betterle and Peter Salamon
Nat. Hazards Earth Syst. Sci., 24, 2817–2836, https://doi.org/10.5194/nhess-24-2817-2024,https://doi.org/10.5194/nhess-24-2817-2024, 2024
Short summary

Cited articles

AASHTO (American Association of State Highway and Transportation Officials): Standard specifications for highway bridges, 7th Edition, American Association of State Highway Officials and Transportation Officials, Washington, DC, ISBN 156051-171-0, 2002. 
AASHTO (American Association of State Highway and Transportation Officials): AASHTO LRFD Bridge Design Specifications, 8th Edition, American Association of State Highway Officials and Transportation Officials, Washington, DC, ISBN 978-1-56051-654-5, 2017. 
Ahamed, T., Duan, J. G., and Jo, H.: Flood-fragility analysis of instream bridges–consideration of flow hydraulics, geotechnical uncertainties, and variable scour depth, Struct. Infrastruct. E., 17, 1–14, https://doi.org/10.1080/15732479.2020.1815226, 2020. 
Alabbad, Y., Mount, J., Campbell, A. M., and Demir, I.: Assessment of transportation system disruption and accessibility to critical amenities during flooding: Iowa case study, Sci. Total Environ., 793, 148476, https://doi.org/10.1016/j.scitotenv.2021.148476, 2021. 
Argyroudis, S. A., Mitoulis, S. A., Winter, M. G., and Kaynia, A. M.: Fragility of transport assets exposed to multiple hazards: State-of-the-art review toward infrastructural resilience, Reliab. Eng. Syst. Safe., 191, 106567, https://doi.org/10.1016/j.ress.2019.106567, 2019. 
Download
Short summary
The interaction of flow, structure and network is complex, and yet to be fully understood. This study aims to establish rigorous practices of computational fluid dynamics (CFD) for modelling hydrodynamic forces on inundated bridges, and understanding the consequences of such impacts on the surrounding network. The objectives of this study are to model hydrodynamic forces as the demand on the bridge structure, to advance a structural reliability and network-level analysis.
Altmetrics
Final-revised paper
Preprint