Articles | Volume 22, issue 5
https://doi.org/10.5194/nhess-22-1559-2022
https://doi.org/10.5194/nhess-22-1559-2022
Research article
 | 
10 May 2022
Research article |  | 10 May 2022

Assessing flooding impact to riverine bridges: an integrated analysis

Maria Pregnolato, Andrew O. Winter, Dakota Mascarenas, Andrew D. Sen, Paul Bates, and Michael R. Motley

Related authors

Indirect flood impacts and cascade risk across interdependent linear infrastructures
Chiara Arrighi, Maria Pregnolato, and Fabio Castelli
Nat. Hazards Earth Syst. Sci., 21, 1955–1969, https://doi.org/10.5194/nhess-21-1955-2021,https://doi.org/10.5194/nhess-21-1955-2021, 2021
Short summary

Related subject area

Hydrological Hazards
Review article: Towards improved drought prediction in the Mediterranean region – modeling approaches and future directions
Bouchra Zellou, Nabil El Moçayd, and El Houcine Bergou
Nat. Hazards Earth Syst. Sci., 23, 3543–3583, https://doi.org/10.5194/nhess-23-3543-2023,https://doi.org/10.5194/nhess-23-3543-2023, 2023
Short summary
Assessing typhoon-induced compound flood drivers: a case study in Ho Chi Minh City, Vietnam
Francisco Rodrigues do Amaral, Nicolas Gratiot, Thierry Pellarin, and Tran Anh Tu
Nat. Hazards Earth Syst. Sci., 23, 3379–3405, https://doi.org/10.5194/nhess-23-3379-2023,https://doi.org/10.5194/nhess-23-3379-2023, 2023
Short summary
Assessing the ability of a new seamless short-range ensemble rainfall product to anticipate flash floods in the French Mediterranean area
Juliette Godet, Olivier Payrastre, Pierre Javelle, and François Bouttier
Nat. Hazards Earth Syst. Sci., 23, 3355–3377, https://doi.org/10.5194/nhess-23-3355-2023,https://doi.org/10.5194/nhess-23-3355-2023, 2023
Short summary
Sentinel-1-based analysis of the severe flood over Pakistan 2022
Florian Roth, Bernhard Bauer-Marschallinger, Mark Edwin Tupas, Christoph Reimer, Peter Salamon, and Wolfgang Wagner
Nat. Hazards Earth Syst. Sci., 23, 3305–3317, https://doi.org/10.5194/nhess-23-3305-2023,https://doi.org/10.5194/nhess-23-3305-2023, 2023
Short summary
Sensitivity analysis of erosion on the landward slope of an earthen flood defense located in southern France submitted to wave overtopping
Clément Houdard, Adrien Poupardin, Philippe Sergent, Abdelkrim Bennabi, and Jena Jeong
Nat. Hazards Earth Syst. Sci., 23, 3111–3124, https://doi.org/10.5194/nhess-23-3111-2023,https://doi.org/10.5194/nhess-23-3111-2023, 2023
Short summary

Cited articles

AASHTO (American Association of State Highway and Transportation Officials): Standard specifications for highway bridges, 7th Edition, American Association of State Highway Officials and Transportation Officials, Washington, DC, ISBN 156051-171-0, 2002. 
AASHTO (American Association of State Highway and Transportation Officials): AASHTO LRFD Bridge Design Specifications, 8th Edition, American Association of State Highway Officials and Transportation Officials, Washington, DC, ISBN 978-1-56051-654-5, 2017. 
Ahamed, T., Duan, J. G., and Jo, H.: Flood-fragility analysis of instream bridges–consideration of flow hydraulics, geotechnical uncertainties, and variable scour depth, Struct. Infrastruct. E., 17, 1–14, https://doi.org/10.1080/15732479.2020.1815226, 2020. 
Alabbad, Y., Mount, J., Campbell, A. M., and Demir, I.: Assessment of transportation system disruption and accessibility to critical amenities during flooding: Iowa case study, Sci. Total Environ., 793, 148476, https://doi.org/10.1016/j.scitotenv.2021.148476, 2021. 
Argyroudis, S. A., Mitoulis, S. A., Winter, M. G., and Kaynia, A. M.: Fragility of transport assets exposed to multiple hazards: State-of-the-art review toward infrastructural resilience, Reliab. Eng. Syst. Safe., 191, 106567, https://doi.org/10.1016/j.ress.2019.106567, 2019. 
Download
Short summary
The interaction of flow, structure and network is complex, and yet to be fully understood. This study aims to establish rigorous practices of computational fluid dynamics (CFD) for modelling hydrodynamic forces on inundated bridges, and understanding the consequences of such impacts on the surrounding network. The objectives of this study are to model hydrodynamic forces as the demand on the bridge structure, to advance a structural reliability and network-level analysis.
Altmetrics
Final-revised paper
Preprint