Articles | Volume 22, issue 4
https://doi.org/10.5194/nhess-22-1287-2022
https://doi.org/10.5194/nhess-22-1287-2022
Research article
 | 
12 Apr 2022
Research article |  | 12 Apr 2022

Tropical cyclone storm surge probabilities for the east coast of the United States: a cyclone-based perspective

Katherine L. Towey, James F. Booth, Alejandra Rodriguez Enriquez, and Thomas Wahl

Related authors

Influence of storm type on compound flood drivers of a mid-latitude coastal urban environment
Ziyu Chen, Philip M. Orton, James F. Booth, Thomas Wahl, Arthur DeGaetano, Joel Kaatz, and Radley M. Horton
Hydrol. Earth Syst. Sci., 29, 3101–3117, https://doi.org/10.5194/hess-29-3101-2025,https://doi.org/10.5194/hess-29-3101-2025, 2025
Short summary
Large discrepancies between event- and response-based compound flood hazard estimates
Sara Santamaria-Aguilar, Pravin Maduwantha, Alejandra R. Enriquez, and Thomas Wahl
EGUsphere, https://doi.org/10.5194/egusphere-2025-1938,https://doi.org/10.5194/egusphere-2025-1938, 2025
Short summary
Generating Boundary Conditions for Compound Flood Modeling in a Probabilistic Framework
Pravin Maduwantha, Thomas Wahl, Sara Santamaria-Aguilar, Robert Jane, Sönke Dangendorf, Hanbeen Kim, and Gabriele Villarini
EGUsphere, https://doi.org/10.5194/egusphere-2025-1557,https://doi.org/10.5194/egusphere-2025-1557, 2025
Short summary
Review article: A comprehensive review of compound flooding literature with a focus on coastal and estuarine regions
Joshua Green, Ivan D. Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
Nat. Hazards Earth Syst. Sci., 25, 747–816, https://doi.org/10.5194/nhess-25-747-2025,https://doi.org/10.5194/nhess-25-747-2025, 2025
Short summary
Identifying Synoptic Controls on Boundary Layer Thermodynamic and Cloud Properties in a Regional Forecast Model
Jordan Eissner, David Mechem, Yi Jin, Virendra Ghate, and James Booth
EGUsphere, https://doi.org/10.5194/egusphere-2024-3438,https://doi.org/10.5194/egusphere-2024-3438, 2025
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Invited perspectives: Thunderstorm intensification from mountains to plains
Jannick Fischer, Pieter Groenemeijer, Alois Holzer, Monika Feldmann, Katharina Schröer, Francesco Battaglioli, Lisa Schielicke, Tomáš Púčik, Bogdan Antonescu, Christoph Gatzen, and TIM Partners
Nat. Hazards Earth Syst. Sci., 25, 2629–2656, https://doi.org/10.5194/nhess-25-2629-2025,https://doi.org/10.5194/nhess-25-2629-2025, 2025
Short summary
Is considering (in)consistency between runs so useless for weather forecasting?
Hugo Marchal, François Bouttier, and Olivier Nuissier
Nat. Hazards Earth Syst. Sci., 25, 2613–2628, https://doi.org/10.5194/nhess-25-2613-2025,https://doi.org/10.5194/nhess-25-2613-2025, 2025
Short summary
Review article: The growth in compound weather and climate event research in the decade since SREX
Lou Brett, Christopher J. White, Daniela I. V. Domeisen, Bart van den Hurk, Philip Ward, and Jakob Zscheischler
Nat. Hazards Earth Syst. Sci., 25, 2591–2611, https://doi.org/10.5194/nhess-25-2591-2025,https://doi.org/10.5194/nhess-25-2591-2025, 2025
Short summary
Exploring the interplay between observed warming, atmospheric circulation, and soil–atmosphere feedbacks on heatwaves in a temperate mountain region
Marc Lemus-Canovas, Sergi Gonzalez-Herrero, Laura Trapero, Anna Albalat, Damian Insua-Costa, Martin Senande-Rivera, and Gonzalo Miguez-Macho
Nat. Hazards Earth Syst. Sci., 25, 2503–2518, https://doi.org/10.5194/nhess-25-2503-2025,https://doi.org/10.5194/nhess-25-2503-2025, 2025
Short summary
Temporal dynamic vulnerability – impact of antecedent events on residential building losses to wind storm events in Germany
Andreas Trojand, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 25, 2331–2350, https://doi.org/10.5194/nhess-25-2331-2025,https://doi.org/10.5194/nhess-25-2331-2025, 2025
Short summary

Cited articles

Akbar, M. K., Kanjanda, S., and Musinguzi, A.: Effect of bottom friction, wind drag coefficient, and meteorological forcing in hindcast of hurricane Rita storm surge using SWAN + ADCIRC model, J. Mar. Sci. Eng., 5, 38, https://doi.org/10.3390/jmse5030038, 2017. 
Bauer, M., Tselioudis, G., and Rossow, W. B.: A new climatology for investigating storm influences in and on the extratropics, J. Appl. Meteorol. Clim., 55, 1287–1303, https://doi.org/10.1175/JAMC-D-15-0245.1, 2016. 
Bloemendaal, N., Muis, S., Haarsma, R. J., Verlaan, M., Apecechea, M. I., de Moel, H., Ward, P. J., and Aerts, J. C. J. H.: Global modeling of tropical cyclone storm surges using high-resolution forecasts, Clim. Dynam., 52, 5031–5044, https://doi.org/10.1007/s00382-018-4430-x, 2019. 
Booth, J. F., Rieder, H. E., and Kushnir, Y.: Comparing hurricane extratropical storm surge for the Mid-Atlantic and Northeast coast of the United States from 1979–2013, Environ. Res. Lett., 11, 094004, https://doi.org/10.1088/1748-9326/11/9/094004, 2016. 
Camelo, J., Mayo, T. L., and Gutmann, E. D.: Projected climate change impacts on hurricane storm surge inundation in the coastal United States, Front. Built Environ., 6, 588049, https://doi.org/10.3389/fbuil.2020.588049, 2020. 
Download
Short summary
Coastal flooding due to storm surge from tropical cyclones is a significant hazard. The influence of tropical cyclone characteristics, including its proximity, intensity, path angle, and speed, on the magnitude of storm surge is examined along the eastern United States. No individual characteristic was found to be strongly related to how much surge occurred at a site, though there is an increased likelihood of high surge occurring when tropical cyclones are both strong and close to a location.
Share
Altmetrics
Final-revised paper
Preprint