Articles | Volume 21, issue 2
https://doi.org/10.5194/nhess-21-823-2021
https://doi.org/10.5194/nhess-21-823-2021
Research article
 | 
02 Mar 2021
Research article |  | 02 Mar 2021

Land subsidence due to groundwater pumping: hazard probability assessment through the combination of Bayesian model and fuzzy set theory

Huijun Li, Lin Zhu, Gaoxuan Guo, Yan Zhang, Zhenxue Dai, Xiaojuan Li, Linzhen Chang, and Pietro Teatini

Related authors

Spatial variation of three-dimensional deformation: a case study in the north-eastern Beijing plain, China
Jiahui Zhou, Lin Zhu, Huili Gong, Huijun Li, Liping Zheng, Rui Cheng, and Hanrui Sun
Proc. IAHS, 382, 391–396, https://doi.org/10.5194/piahs-382-391-2020,https://doi.org/10.5194/piahs-382-391-2020, 2020
Short summary
Land subsidence modelling using a long short-term memory algorithm based on time-series datasets
Huijun Li, Lin Zhu, Huili Gong, Hanrui Sun, and Jie Yu
Proc. IAHS, 382, 505–510, https://doi.org/10.5194/piahs-382-505-2020,https://doi.org/10.5194/piahs-382-505-2020, 2020

Related subject area

Hydrological Hazards
Modelling urban stormwater drainage overflows for assessing flood hazards: application to the urban area of Dakar (Senegal)
Laurent Pascal Malang Diémé, Christophe Bouvier, Ansoumana Bodian, and Alpha Sidibé
Nat. Hazards Earth Syst. Sci., 25, 1095–1112, https://doi.org/10.5194/nhess-25-1095-2025,https://doi.org/10.5194/nhess-25-1095-2025, 2025
Short summary
Dynamics and impacts of monsoon-induced geological hazards: a 2022 flood study along the Swat River in Pakistan
Nazir Ahmed Bazai, Mehtab Alam, Peng Cui, Wang Hao, Adil Poshad Khan, Muhammad Waseem, Yao Shunyu, Muhammad Ramzan, Li Wanhong, and Tashfain Ahmed
Nat. Hazards Earth Syst. Sci., 25, 1071–1093, https://doi.org/10.5194/nhess-25-1071-2025,https://doi.org/10.5194/nhess-25-1071-2025, 2025
Short summary
Monte Carlo-based sensitivity analysis of the RIM2D hydrodynamic model for the 2021 flood event in western Germany
Shahin Khosh Bin Ghomash, Patricio Yeste, Heiko Apel, and Viet Dung Nguyen
Nat. Hazards Earth Syst. Sci., 25, 975–990, https://doi.org/10.5194/nhess-25-975-2025,https://doi.org/10.5194/nhess-25-975-2025, 2025
Short summary
Mind the gap: misalignment between drought monitoring and community realities
Sarra Kchouk, Louise Cavalcante, Lieke A. Melsen, David W. Walker, Germano Ribeiro Neto, Rubens Gondim, Wouter J. Smolenaars, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 25, 893–912, https://doi.org/10.5194/nhess-25-893-2025,https://doi.org/10.5194/nhess-25-893-2025, 2025
Short summary
Post-wildfire sediment source and transport modeling, empirical observations, and applied mitigation: an Arizona, USA, case study
Edward R. Schenk, Alex Wood, Allen Haden, Gabriel Baca, Jake Fleishman, and Joe Loverich
Nat. Hazards Earth Syst. Sci., 25, 727–745, https://doi.org/10.5194/nhess-25-727-2025,https://doi.org/10.5194/nhess-25-727-2025, 2025
Short summary

Cited articles

Bhattarai, R. and Kondoh, A.: Risk Assessment of Land Subsidence in Kathmandu Valley, Nepal, Using Remote Sensing and GIS, Adv. Remote Sens., 6, 132–146, 2017. 
Bonì, R., Meisina, C., Teatini, P., Zucca, F., Zoccarato, C., Franceschini, A., Ezquerro, P., Bejar, M., Fernandez-Merofo, J. A., Guardiola-Albert, C., Pastor Navarro, J., Tomás, R., and Herrera, G.: 3D groundwater flow and deformation modelling of Madrid aquifer, J. Hydrol., 585, 124773, https://doi.org/10.1016/j.jhydrol.2020.124773, 2020. 
Chaussard, E., Wdowinski, S., Cabral-Cano, E., and Amelung, F.: Land subsidence in central Mexico detected by ALOS InSAR time-series, Remote Sens. Environ., 140, 94–106, 2014. 
Chen, M., Tomás, R., Li, Z. H., Motagh, M., Li, T., Hu, L., Gong, H., Li, X., Yu, J., and Gong, X.: Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry, Remote Sens., 8, 468–489, 2016. 
Chen, Y., Shu, L. C., and Burbey, T.: An Integrated Risk Assessment Model of Township-Scaled Land Subsidence Based on an Evidential Reasoning Algorithm and Fuzzy Set Theory, Risk Anal., 34, 656–669, 2014. 
Download
Short summary
We propose a method that integrates fuzzy set theory and a weighted Bayesian model to evaluate the hazard probability of land subsidence based on Interferometric Synthetic Aperture Radar technology. The proposed model can represent the uncertainty and ambiguity in the evaluation process, and results can be compared to traditional qualitative methods.
Share
Altmetrics
Final-revised paper
Preprint