Articles | Volume 21, issue 2
https://doi.org/10.5194/nhess-21-823-2021
https://doi.org/10.5194/nhess-21-823-2021
Research article
 | 
02 Mar 2021
Research article |  | 02 Mar 2021

Land subsidence due to groundwater pumping: hazard probability assessment through the combination of Bayesian model and fuzzy set theory

Huijun Li, Lin Zhu, Gaoxuan Guo, Yan Zhang, Zhenxue Dai, Xiaojuan Li, Linzhen Chang, and Pietro Teatini

Related authors

National-Scale Sub-meter Mapping of Spartina alterniflora in Mainland China 2020
Bingfeng Zhou, Meng Xu, Jinyan Tian, Mingming Jia, Dehua Mao, Kai Cheng, Xiumin Zhu, Haoyue Jiang, Jie Song, Yinghai Ke, Zhenxin Zhang, Yue Huang, Miaojing Wei, Lin Zhu, Xiaojuan Li, and Huili Gong
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-436,https://doi.org/10.5194/essd-2025-436, 2025
Preprint under review for ESSD
Short summary
Land subsidence dynamics and their interplay with spatial and temporal land-use transitions in the Douala coastland, Cameroon
Gergino Chounna Yemele, Philip S. J. Minderhoud, Leonard Osadebamwen Ohenhen, Katharina Seeger, Manoochehr Shirzaei, and Pietro Teatini
EGUsphere, https://doi.org/10.5194/egusphere-2025-336,https://doi.org/10.5194/egusphere-2025-336, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Enhancing Inverse Modeling in Groundwater Systems through Machine Learning: A Comprehensive Comparative Study
Junjun Chen, Zhenxue Dai, Shangxian Yin, Mingkun Zhang, and Mohamad Reza Soltanian
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-315,https://doi.org/10.5194/hess-2024-315, 2024
Revised manuscript accepted for HESS
Short summary
Advance prediction of coastal groundwater levels with temporal convolutional and long short-term memory networks
Xiaoying Zhang, Fan Dong, Guangquan Chen, and Zhenxue Dai
Hydrol. Earth Syst. Sci., 27, 83–96, https://doi.org/10.5194/hess-27-83-2023,https://doi.org/10.5194/hess-27-83-2023, 2023
Short summary

Cited articles

Bhattarai, R. and Kondoh, A.: Risk Assessment of Land Subsidence in Kathmandu Valley, Nepal, Using Remote Sensing and GIS, Adv. Remote Sens., 6, 132–146, 2017. 
Bonì, R., Meisina, C., Teatini, P., Zucca, F., Zoccarato, C., Franceschini, A., Ezquerro, P., Bejar, M., Fernandez-Merofo, J. A., Guardiola-Albert, C., Pastor Navarro, J., Tomás, R., and Herrera, G.: 3D groundwater flow and deformation modelling of Madrid aquifer, J. Hydrol., 585, 124773, https://doi.org/10.1016/j.jhydrol.2020.124773, 2020. 
Chaussard, E., Wdowinski, S., Cabral-Cano, E., and Amelung, F.: Land subsidence in central Mexico detected by ALOS InSAR time-series, Remote Sens. Environ., 140, 94–106, 2014. 
Chen, M., Tomás, R., Li, Z. H., Motagh, M., Li, T., Hu, L., Gong, H., Li, X., Yu, J., and Gong, X.: Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry, Remote Sens., 8, 468–489, 2016. 
Chen, Y., Shu, L. C., and Burbey, T.: An Integrated Risk Assessment Model of Township-Scaled Land Subsidence Based on an Evidential Reasoning Algorithm and Fuzzy Set Theory, Risk Anal., 34, 656–669, 2014. 
Download
Short summary
We propose a method that integrates fuzzy set theory and a weighted Bayesian model to evaluate the hazard probability of land subsidence based on Interferometric Synthetic Aperture Radar technology. The proposed model can represent the uncertainty and ambiguity in the evaluation process, and results can be compared to traditional qualitative methods.
Share
Altmetrics
Final-revised paper
Preprint