Articles | Volume 21, issue 2
https://doi.org/10.5194/nhess-21-823-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-823-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Land subsidence due to groundwater pumping: hazard probability assessment through the combination of Bayesian model and fuzzy set theory
Huijun Li
Laboratory Cultivation Base of Environment Process and Digital Simulation, Beijing Laboratory of Water Resources Security, Key Laboratory
of 3-Dimensional Information Acquisition and Application, Capital Normal University, Beijing, 100048, China
Laboratory Cultivation Base of Environment Process and Digital Simulation, Beijing Laboratory of Water Resources Security, Key Laboratory
of 3-Dimensional Information Acquisition and Application, Capital Normal University, Beijing, 100048, China
Gaoxuan Guo
Beijing Institute of Hydrogeology and Engineering Geology, Beijing,
China
Yan Zhang
Key Laboratory of Earth Fissures Geological Disaster, Ministry of
Natural Resources, Geological Survey of Jiangsu Province, Jiangsu, China
Zhenxue Dai
College of Construction Engineering, Jilin University, Changchun,
130026, China
Xiaojuan Li
Laboratory Cultivation Base of Environment Process and Digital Simulation, Beijing Laboratory of Water Resources Security, Key Laboratory
of 3-Dimensional Information Acquisition and Application, Capital Normal University, Beijing, 100048, China
Linzhen Chang
Fourth Institute of Hydrogeology and Engineering Geology, Hebei Bureau of Geology and Mineral Resources Exploration, Hebei, China
Pietro Teatini
Department of Civil, Environmental and Architectural Engineering, University of Padua, Padua 35121, Italy
Land Subsidence International Initiative (UNESCO LaSII),
Querétaro, Mexico
Related authors
No articles found.
Bingfeng Zhou, Meng Xu, Jinyan Tian, Mingming Jia, Dehua Mao, Kai Cheng, Xiumin Zhu, Haoyue Jiang, Jie Song, Yinghai Ke, Zhenxin Zhang, Yue Huang, Miaojing Wei, Lin Zhu, Xiaojuan Li, and Huili Gong
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-436, https://doi.org/10.5194/essd-2025-436, 2025
Preprint under review for ESSD
Short summary
Short summary
This study produced the first sub-meter map of Spartina alterniflora in mainland China for 2020. Compared to the 10 m product, the sub-meter map achieved a 14.60% increase in overall accuracy, revealed a 57.73% discrepancy in spatial distribution, and detected 17 times more individual patches. The improved sensitivity to small patches significantly enhances early detection of Spartina alterniflora invasion. This finer mapping further refines soil carbon estimates and informs wetland management.
Gergino Chounna Yemele, Philip S. J. Minderhoud, Leonard Osadebamwen Ohenhen, Katharina Seeger, Manoochehr Shirzaei, and Pietro Teatini
EGUsphere, https://doi.org/10.5194/egusphere-2025-336, https://doi.org/10.5194/egusphere-2025-336, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study examines coastal land subsidence in Douala, Cameroon, revealing rates between −17.6 and 3.8 mm/year. Subsidence patterns correlate with natural and anthropogenic processes, including land-use changes and urbanisation. Recently urbanised areas show higher subsidence rates than older urban zones. The findings highlight the need for further investigation, ongoing monitoring, and adaptation measures to address this environmental challenge effectively.
Junjun Chen, Zhenxue Dai, Shangxian Yin, Mingkun Zhang, and Mohamad Reza Soltanian
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-315, https://doi.org/10.5194/hess-2024-315, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Balancing exploration and exploitation in conventional inversion algorithms is challenging. We evaluated the effectiveness of the tandem neural network architecture (TNNA) in addressing this challenge. Inversion problems with both low- and high-dimensional parameters were designed to compare TNNA with four metaheuristic algorithms. Results show that TNNA significantly improves computational efficiency and accuracy, offering a promising framework for developing robust inversion algorithms.
Xiaoying Zhang, Fan Dong, Guangquan Chen, and Zhenxue Dai
Hydrol. Earth Syst. Sci., 27, 83–96, https://doi.org/10.5194/hess-27-83-2023, https://doi.org/10.5194/hess-27-83-2023, 2023
Short summary
Short summary
In a data-driven framework, groundwater levels can generally only be calculated 1 time step ahead. We discuss the advance prediction with longer forecast periods rather than single time steps by constructing a model based on a temporal convolutional network. Model accuracy and efficiency were further compared with an LSTM-based model. The two models derived in this study can help people cope with the uncertainty of what might occur in hydrological scenarios under the threat of climate change.
Cited articles
Bhattarai, R. and Kondoh, A.: Risk Assessment of Land Subsidence in Kathmandu
Valley, Nepal, Using Remote Sensing and GIS, Adv. Remote Sens., 6, 132–146, 2017.
Bonì, R., Meisina, C., Teatini, P., Zucca, F., Zoccarato, C., Franceschini, A., Ezquerro, P., Bejar, M., Fernandez-Merofo, J. A., Guardiola-Albert, C., Pastor Navarro, J., Tomás, R., and Herrera, G.: 3D groundwater flow and deformation modelling of Madrid aquifer, J. Hydrol., 585, 124773, https://doi.org/10.1016/j.jhydrol.2020.124773, 2020.
Chaussard, E., Wdowinski, S., Cabral-Cano, E., and Amelung, F.: Land subsidence in central Mexico detected by ALOS InSAR time-series, Remote Sens. Environ., 140, 94–106, 2014.
Chen, M., Tomás, R., Li, Z. H., Motagh, M., Li, T., Hu, L., Gong, H., Li, X., Yu, J., and Gong, X.: Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry, Remote Sens., 8, 468–489, 2016.
Chen, Y., Shu, L. C., and Burbey, T.: An Integrated Risk Assessment Model of
Township-Scaled Land Subsidence Based on an Evidential Reasoning Algorithm and Fuzzy Set Theory, Risk Anal., 34, 656–669, 2014.
Dai, G., Pan, Q., Zhang, S., and Zhang, H.: The developments and problems in evidence reasoning, Contr. Theor. Appl., 16, 465–469, 1999.
Dai, Z., Viswanathan, H., Middleton, R., Middleton, R., Pan, F., Ampomah, W., Yang, C., Jia, W., Xiao, T., Lee, S. Y., Mcpherson, B., Balch, R., Grigg, R., and White, M.: CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites, Environ. Sci. Technol., 50, 7546–7554, 2016.
Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., and Rucci, A.: A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR, IEEE T. Geosci. Remote, 49, 3460–3470, 2011.
Galloway, D. L. and Burbey, T. J.: Review: Regional land subsidence accompanying groundwater extraction, Hydrogeol. J., 19, 1459–1486, 2011.
Gambolati, G. and Teatini, P.: Geomechanics of subsurface water withdrawal and injection, Water Resour. Res., 51, 3922–3955, 2015.
Gao, M. L., Gong, H. L., Chen, B. B., Li, X., Zhou, C., Shi, M., Si, Y., Chen, Z., and Duan, G.: Regional Land Subsidence Analysis in Eastern Beijing Plain by InSAR Time Series and Wavelet Transforms, Remote Sens., 10, 365–382, 2018.
Huang, B., Shu, L., and Yang, Y. S.: Groundwater overexploitation causing land subsidence: hazard risk assessment using field observation and spatial
modelling, Water Resour. Manage., 26, 4225–4239, 2012.
Jia, W., McPherson, B., Pan, F., Dai, Z., and Xiao, T.: Uncertainty quantification of CO2 storage using Bayesian model averaging and polynomial chaos expansion, Int. J. Greenhouse Gas Contr., 71, 104–115, 2018.
Jiang, Y., Jia, S. M., and Wang, H. G.: Risk assessment and management of land subsidence in Beijing Plain, Chin. J. Geol. Hazard Contr., 23, 55–60, 2012.
Julio-Miranda, P., Ortíz-Rodríguez, A. J., Palacio-Aponte, A. G., López-Doncel, R., and Barboza-Gudiño, R.: Damage assessment associated with land subsidence in the San Luis Potosi-Soledad de Graciano Sanchez metropolitan area, Mexico, elements for risk management, Nat. Hazards, 64, 751–765, 2012.
Kiureghiana, A. D. and Ditlevsen, O.: Aleatory or epistemic? Does it matter?,
Struct. Safe., 31, 105–112, 2009.
Korb, K. B. and Nicholson, A. E.: Bayesian Artificial Intelligence, CRC Press, Florida, 2003.
Lei, K. C., Luo, Y., Chen, B. B., and Guo, G. X., Zhou, Y.: Distribution characteristics and influence factors of land subsidence in Beijing area, Geol. China, 43, 2216–2225, 2016.
Li, Y. Y., Gong, H. L., Zhu, L., Li, X., Wang, R., and Guo, G.: Characterizing land displacement in complex hydrogeological and geological settings: a case study in the Beijing Plain, China, Nat. Hazards, 87, 323–343, 2017.
Liu, R., Chen, Y., Wu, J., Gao, L., Barrett, D., Xu, T., Li, X., Li, L., Huang, C., and Yu, J.: Integrating Entropy-Based Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard, Risk Anal., 37, 756–773, 2017.
Matthies, H. G.: Quantifying uncertainty: modern computational representation
of probability and applications, Extreme Man-Made and Natural Hazards in
Dynamics of Structures, in: NATO Security through Science Series, Springer,
Dordrecht, 105–135, 2007.
Mentes, A. and Helvacioglu, I. H.: An application of fuzzy fault tree analysis for spread mooring systems, Ocean Eng., 38, 285–294, 2011.
Mohebbi Tafreshi, G., Nakhaei, M., and Lak, R.: Land subsidence risk assessment using GIS fuzzy logic spatial modeling in Varamin aquifer, Iran, Geo J., 38, https://doi.org/10.1007/s10708-019-10129-8, 2019.
Motagh, M., Shamshiri, R., and Haghighi, M. H.: Quantifying groundwater exploitation induced subsidence in the Rafsanjan plain, southeastern Iran, using InSAR time-series and in situ measurements, Eng. Geol., 218, 134–151,
2017.
Park, I., Choi, J., Lee, M. J., and Lee, S.: Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping, Comput. Geosci., 48, 228–238, 2012.
Peduto, D., Nicodemo, G., Maccabiani, J., and Ferlisi, S.: Multi-scale analysis of settlement-induced building damage using damage surveys and DInSAR data: A case study in The Netherlands, Eng. Geol., 218, 117–133, 2017.
Pradhan, B., Abokharima, M. H., Jebur, M. N., and Tehrany, M. S.: Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS, Nat. Hazards, 73, 1019–1042, 2014.
Ren, J., Jenkinson, I., Wang, J., Xu, D. L., and Yang, J. B.: An offshore risk analysis method using fuzzy Bayesian network, J. Offshore Mech. Arct. Eng., 131, 1–12, 2009.
Saaty, T. L.: The Analytic Hierarchy Process, McGraw-Hill Press, New York,
1980.
Smith, R. and Knight, R.: Modeling Land Subsidence Using InSAR and Airborne
Electromagnetic Data, Water Resour. Res., 55, 2801–2819, 2019.
Sneed, M., Brandt, J., and Solt, M.: Land subsidence along the California
aqueduct inWest-Central San Joaquin Valley, California, 2003–10, in: US Geological Survey Scientific Investigations Report 2018-5144, US Geological Survey, Reston, VA, https://doi.org/10.3133/sir20185144, 2018.
Suh, J., Choi, Y., and Park, H. D.: GIS-based evaluation of mining-induced
subsidence susceptibility considering 3D multiple mine drifts and estimated
mined panels, Environ. Earth Sci., 75, 1–19, 2016.
Sun, H., Zhang, Q., Zhao, C., Yang, C., Sun, Q., and Chen, W.: Monitoring land subsidence in the southern part of the lower Liaohe plain, China with a multi-track PS-InSAR technique, Remote Sens. Environ., 188, 73–84, 2017.
Sundell, J., Haaf, E., Tornborg, J., and Rosén, L.: Comprehensive risk assessment of groundwater drawdown induced subsidence, Stoch. Environ. Res. Risk A., 1, 427–449, 2019.
Tang, X., Shu, Y., Lian, Y., Zhao, Y., and Fu, Y.: A spatial assessment of urban waterlogging risk based on a Weighted Naive Bayes classifier, Sci. Total Environ., 630, 264–274, 2018.
Teatini, P., Ferronato, M., Gambolati, G., Bertoni, W., and Gonella, M.: A century of land subsidence in Ravenna, Italy, Environ. Geol., 47, 831–846, https://doi.org/10.1007/s00254-004-1215-9, 2005.
Teatini, P., Tosi, L., Strozzi, T., Carbognin, L., Cecconi, G., Rosselli, R., and Libardo, S.: Resolving land subsidence within the Venice Lagoon by persistent scatterer SAR interferometry, Phys. Chem. Earth., 40–41, 72–79, 2012.
Teatini, P., Strozzi, T., Tosi, L., Wegmüller, U., Werner, C., and Carbognin, L.: Assessing short and long-time displacements in the Venice coastland by synthetic aperture radar interferometric point target analysis, J. Geophys. Res., 112, F01012, https://doi.org/10.1029/2006JF000656, 2007.
Tomás, R., Herrera, G., Lopez-Sanchez, J. M., Vicente, F., Cuenca, A., and Mallorquí, J. J.: Study of the land subsidence in Orihuela City (SE Spain) using PSI data: Distribution, evolution and correlation with conditioning and triggering factors, Eng. Geol., 115, 105–121, 2010.
Tomás, R., García-Barba, J., Cano, M., Sanabria, M. P., Ivorra, S., Duro, J., and Herrera, G.: Subsidence damage assessment of a gothic church using Differential Interferometry and field data, Struct. Health Monit., 11, 751–762, 2012.
Van Laarhoven, P. J. M. and Pedrycs, W.: A fuzzy extension of Saaty's priority theory, Fuzzy Set. Syst., 11, 229–241, https://doi.org/10.1016/S0165-0114(83)80082-7, 1983.
Verdin, A., Rajagopalan, B., Kleiber, W., Podesta, G. P., and Bert, F.: BayGEN: A Bayesian Space-Time Stochastic Weather Generator, Water Resour. Res., 55, 2900–2915, 2019.
Vilares, I. and Kording, K.: Bayesian models: the structure of the world,
uncertainty, behavior, and the brain, Ann. NY. Acad. Sci., 1224, 22–39, 2011.
Wang, J., Yi, S., Li, M., Wang, L., and Song, C.: Effects of sea level rise, land subsidence, bathymetric change and typhoon tracks on storm flooding in the coastal areas of Shanghai, Sci. Total Environ., 621, 228–234, 2018.
Webb, G. I. and Pazzan, J.: Adjusted probability Naive Bayesian induction, in: Proceedings of the 11th Australian Joint Conference on Artificial Intelligence, Springer Verlag, Berlin, 285–295, 1998.
Weise, K. and Woger, W.: A Bayesian theory of measurement uncertainty, Meas. Sci. Technol., 4, 1–11, 1993.
Wu, H. N., Shen, S. L., and Yang, J.: Identification of Tunnel Settlement Caused by Land Subsidence in Soft Deposit of Shanghai, J. Perform. Construct. Facil., 31, 04017092, https://doi.org/10.1061/(ASCE)CF.1943-5509.0001082, 2017.
Xu, Y. S., Yuan, Y., Shen, S. L., Yin, Z. Y., Wu, H. N., and Ma, L.: Investigation into subsidence hazards due to groundwater pumping from Aquifer II in Changzhou, China, Nat. Hazards, 78, 281–296, 2015.
Xue, Y. Q., Zhang, Y., Ye, S. J., Wu, J. C., and Li, Q. F.: Land subsidence in China, Environ. Geol., 48, 713–720, 2005.
Yang, Y., Zhang, F. D., Liu, L. C., Dou, Y. B., and Jia, S. M.: Susceptibility zoning and control measures on land subsidence caused by groundwater exploitation, Geol. China, 40, 653–658, 2013.
Yi, Y., Liu, H., Zhang, Y., Liu, X., and Qi, J.: Analysis of urban ground subsidence hazard induced by building load combined with weights of evidence model and deep learning, J. Catastrophol., 32, 50–59, 2017.
Zhang, J. H., Fan, J. D., and Li, S. J.: Research on the Groundwater Resources Conservation of Huairou Emergency Water Source after the South-to-north Water Transfer into Beijing, Urban Geol., 10, 17–20, 2015.
Zhang, L., Wu, X., Qin, Y., Skibniewski, M. J., and Liu, W.: Towards a Fuzzy Bayesian Network Based Approach for Safety Risk Analysis of Tunnel-Induced Pipeline Damage, Risk Anal., 36, 278–301, 2016.
Zhu, L., Gong, H. L., Li, X. J., Wang, R., Chen, B., Dai, Z., and Teatini, P.: Land subsidence due to groundwater withdrawal in the northern Beijing plain, China, Eng. Geol., 193, 243–255, 2015.
Zhu, L., Dai, Z. X., Gong, H., Gable, C., and Teatini, P.: Statistic inversion of multi-zone transition probability models for aquifer characterization in alluvial fans, Stoch. Environ. Res. Risk A., 30, 1005–1016, 2016.
Zhu, L., Gong, H., Dai, Z., Guo, G., and Teatini, P.: Modeling 3-D permeability distribution in alluvial fans using facies architecture and geophysical acquisitions, Hydrol. Earth Syst. Sci., 21, 721–733, https://doi.org/10.5194/hess-21-721-2017, 2017.
Zhu, L., Franceschini, A., Gong, H. L., Ferronato, M., Dai, Z., Ke, Y., Pan, Y., Li, X., Wang, R., and Teatini, P.: 3D facies and geomechanical modelling of land subsidence in the Chaobai plain, Beijing, Water Resour. Res., 54, e2019WR027026, https://doi.org/10.1029/2019WR027026, 2020a.
Zhu, L., Gong, H. L., Chen, Y., Wang, S., Ke, Y., Guo, G., Li, X., Chen, B., Wang, H., and Teatini, P.: Effects of Water Diversion Project on groundwater system and land subsidence in Beijing, China, Eng. Geol., 276, 105763, https://doi.org/10.1016/j.enggeo.2020.105763, 2020b.
Short summary
We propose a method that integrates fuzzy set theory and a weighted Bayesian model to evaluate the hazard probability of land subsidence based on Interferometric Synthetic Aperture Radar technology. The proposed model can represent the uncertainty and ambiguity in the evaluation process, and results can be compared to traditional qualitative methods.
We propose a method that integrates fuzzy set theory and a weighted Bayesian model to evaluate...
Altmetrics
Final-revised paper
Preprint