Articles | Volume 21, issue 2
https://doi.org/10.5194/nhess-21-823-2021
https://doi.org/10.5194/nhess-21-823-2021
Research article
 | 
02 Mar 2021
Research article |  | 02 Mar 2021

Land subsidence due to groundwater pumping: hazard probability assessment through the combination of Bayesian model and fuzzy set theory

Huijun Li, Lin Zhu, Gaoxuan Guo, Yan Zhang, Zhenxue Dai, Xiaojuan Li, Linzhen Chang, and Pietro Teatini

Related authors

Spatial variation of three-dimensional deformation: a case study in the north-eastern Beijing plain, China
Jiahui Zhou, Lin Zhu, Huili Gong, Huijun Li, Liping Zheng, Rui Cheng, and Hanrui Sun
Proc. IAHS, 382, 391–396, https://doi.org/10.5194/piahs-382-391-2020,https://doi.org/10.5194/piahs-382-391-2020, 2020
Short summary
Land subsidence modelling using a long short-term memory algorithm based on time-series datasets
Huijun Li, Lin Zhu, Huili Gong, Hanrui Sun, and Jie Yu
Proc. IAHS, 382, 505–510, https://doi.org/10.5194/piahs-382-505-2020,https://doi.org/10.5194/piahs-382-505-2020, 2020

Related subject area

Hydrological Hazards
Integrating susceptibility maps of multiple hazards and building exposure distribution: a case study of wildfires and floods for the province of Quang Nam, Vietnam
Chinh Luu, Giuseppe Forino, Lynda Yorke, Hang Ha, Quynh Duy Bui, Hanh Hong Tran, Dinh Quoc Nguyen, Hieu Cong Duong, and Matthieu Kervyn
Nat. Hazards Earth Syst. Sci., 24, 4385–4408, https://doi.org/10.5194/nhess-24-4385-2024,https://doi.org/10.5194/nhess-24-4385-2024, 2024
Short summary
Tangible and intangible ex post assessment of flood-induced damage to cultural heritage
Claudia De Lucia, Michele Amaddii, and Chiara Arrighi
Nat. Hazards Earth Syst. Sci., 24, 4317–4339, https://doi.org/10.5194/nhess-24-4317-2024,https://doi.org/10.5194/nhess-24-4317-2024, 2024
Short summary
A multivariate statistical framework for mixed storm types in compound flood analysis
Pravin Maduwantha, Thomas Wahl, Sara Santamaria-Aguilar, Robert Jane, James F. Booth, Hanbeen Kim, and Gabriele Villarini
Nat. Hazards Earth Syst. Sci., 24, 4091–4107, https://doi.org/10.5194/nhess-24-4091-2024,https://doi.org/10.5194/nhess-24-4091-2024, 2024
Short summary
Invited perspectives: safeguarding the usability and credibility of flood hazard and risk assessments
Bruno Merz, Günter Blöschl, Robert Jüpner, Heidi Kreibich, Kai Schröter, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci., 24, 4015–4030, https://doi.org/10.5194/nhess-24-4015-2024,https://doi.org/10.5194/nhess-24-4015-2024, 2024
Short summary
Influence of building collapse on pluvial and fluvial flood inundation of metro stations in central Shanghai
Zhi Li, Hanqi Li, Zhibo Zhang, Chaomeng Dai, and Simin Jiang
Nat. Hazards Earth Syst. Sci., 24, 3977–3990, https://doi.org/10.5194/nhess-24-3977-2024,https://doi.org/10.5194/nhess-24-3977-2024, 2024
Short summary

Cited articles

Bhattarai, R. and Kondoh, A.: Risk Assessment of Land Subsidence in Kathmandu Valley, Nepal, Using Remote Sensing and GIS, Adv. Remote Sens., 6, 132–146, 2017. 
Bonì, R., Meisina, C., Teatini, P., Zucca, F., Zoccarato, C., Franceschini, A., Ezquerro, P., Bejar, M., Fernandez-Merofo, J. A., Guardiola-Albert, C., Pastor Navarro, J., Tomás, R., and Herrera, G.: 3D groundwater flow and deformation modelling of Madrid aquifer, J. Hydrol., 585, 124773, https://doi.org/10.1016/j.jhydrol.2020.124773, 2020. 
Chaussard, E., Wdowinski, S., Cabral-Cano, E., and Amelung, F.: Land subsidence in central Mexico detected by ALOS InSAR time-series, Remote Sens. Environ., 140, 94–106, 2014. 
Chen, M., Tomás, R., Li, Z. H., Motagh, M., Li, T., Hu, L., Gong, H., Li, X., Yu, J., and Gong, X.: Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry, Remote Sens., 8, 468–489, 2016. 
Chen, Y., Shu, L. C., and Burbey, T.: An Integrated Risk Assessment Model of Township-Scaled Land Subsidence Based on an Evidential Reasoning Algorithm and Fuzzy Set Theory, Risk Anal., 34, 656–669, 2014. 
Download
Short summary
We propose a method that integrates fuzzy set theory and a weighted Bayesian model to evaluate the hazard probability of land subsidence based on Interferometric Synthetic Aperture Radar technology. The proposed model can represent the uncertainty and ambiguity in the evaluation process, and results can be compared to traditional qualitative methods.
Altmetrics
Final-revised paper
Preprint