Articles | Volume 21, issue 2
Nat. Hazards Earth Syst. Sci., 21, 823–835, 2021
https://doi.org/10.5194/nhess-21-823-2021
Nat. Hazards Earth Syst. Sci., 21, 823–835, 2021
https://doi.org/10.5194/nhess-21-823-2021

Research article 02 Mar 2021

Research article | 02 Mar 2021

Land subsidence due to groundwater pumping: hazard probability assessment through the combination of Bayesian model and fuzzy set theory

Huijun Li et al.

Related authors

Spatial variation of three-dimensional deformation: a case study in the north-eastern Beijing plain, China
Jiahui Zhou, Lin Zhu, Huili Gong, Huijun Li, Liping Zheng, Rui Cheng, and Hanrui Sun
Proc. IAHS, 382, 391–396, https://doi.org/10.5194/piahs-382-391-2020,https://doi.org/10.5194/piahs-382-391-2020, 2020
Short summary
Land subsidence modelling using a long short-term memory algorithm based on time-series datasets
Huijun Li, Lin Zhu, Huili Gong, Hanrui Sun, and Jie Yu
Proc. IAHS, 382, 505–510, https://doi.org/10.5194/piahs-382-505-2020,https://doi.org/10.5194/piahs-382-505-2020, 2020

Related subject area

Hydrological Hazards
Improving flood damage assessments in data-scarce areas by retrieval of building characteristics through UAV image segmentation and machine learning – a case study of the 2019 floods in southern Malawi
Lucas Wouters, Anaïs Couasnon, Marleen C. de Ruiter, Marc J. C. van den Homberg, Aklilu Teklesadik, and Hans de Moel
Nat. Hazards Earth Syst. Sci., 21, 3199–3218, https://doi.org/10.5194/nhess-21-3199-2021,https://doi.org/10.5194/nhess-21-3199-2021, 2021
Short summary
Assessment of direct economic losses of flood disasters based on spatial valuation of land use and quantification of vulnerabilities: a case study on the 2014 flood in Lishui city of China
Haixia Zhang, Weihua Fang, Hua Zhang, and Lu Yu
Nat. Hazards Earth Syst. Sci., 21, 3161–3174, https://doi.org/10.5194/nhess-21-3161-2021,https://doi.org/10.5194/nhess-21-3161-2021, 2021
Short summary
Evaluating integrated water management strategies to inform hydrological drought mitigation
Doris E. Wendt, John P. Bloomfield, Anne F. Van Loon, Margaret Garcia, Benedikt Heudorfer, Joshua Larsen, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021,https://doi.org/10.5194/nhess-21-3113-2021, 2021
Short summary
Global riverine flood risk – how do hydrogeomorphic floodplain maps compare to flood hazard maps?
Sara Lindersson, Luigia Brandimarte, Johanna Mård, and Giuliano Di Baldassarre
Nat. Hazards Earth Syst. Sci., 21, 2921–2948, https://doi.org/10.5194/nhess-21-2921-2021,https://doi.org/10.5194/nhess-21-2921-2021, 2021
Short summary
Global flood exposure from different sized rivers
Mark V. Bernhofen, Mark A. Trigg, P. Andrew Sleigh, Christopher C. Sampson, and Andrew M. Smith
Nat. Hazards Earth Syst. Sci., 21, 2829–2847, https://doi.org/10.5194/nhess-21-2829-2021,https://doi.org/10.5194/nhess-21-2829-2021, 2021
Short summary

Cited articles

Bhattarai, R. and Kondoh, A.: Risk Assessment of Land Subsidence in Kathmandu Valley, Nepal, Using Remote Sensing and GIS, Adv. Remote Sens., 6, 132–146, 2017. 
Bonì, R., Meisina, C., Teatini, P., Zucca, F., Zoccarato, C., Franceschini, A., Ezquerro, P., Bejar, M., Fernandez-Merofo, J. A., Guardiola-Albert, C., Pastor Navarro, J., Tomás, R., and Herrera, G.: 3D groundwater flow and deformation modelling of Madrid aquifer, J. Hydrol., 585, 124773, https://doi.org/10.1016/j.jhydrol.2020.124773, 2020. 
Chaussard, E., Wdowinski, S., Cabral-Cano, E., and Amelung, F.: Land subsidence in central Mexico detected by ALOS InSAR time-series, Remote Sens. Environ., 140, 94–106, 2014. 
Chen, M., Tomás, R., Li, Z. H., Motagh, M., Li, T., Hu, L., Gong, H., Li, X., Yu, J., and Gong, X.: Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry, Remote Sens., 8, 468–489, 2016. 
Chen, Y., Shu, L. C., and Burbey, T.: An Integrated Risk Assessment Model of Township-Scaled Land Subsidence Based on an Evidential Reasoning Algorithm and Fuzzy Set Theory, Risk Anal., 34, 656–669, 2014. 
Download
Short summary
We propose a method that integrates fuzzy set theory and a weighted Bayesian model to evaluate the hazard probability of land subsidence based on Interferometric Synthetic Aperture Radar technology. The proposed model can represent the uncertainty and ambiguity in the evaluation process, and results can be compared to traditional qualitative methods.
Altmetrics
Final-revised paper
Preprint