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Abstract. Land subsidence caused by groundwater over-
pumping threatens the sustainable development in Beijing.
Hazard assessments of land subsidence can provide early
warning information to improve prevention measures. How-
ever, uncertainty and fuzziness are the major issues dur-
ing hazard assessments of land subsidence. We propose
a method that integrates fuzzy set theory and weighted
Bayesian model (FWBM) to evaluate the hazard probabil-
ity of land subsidence measured by Interferometric Synthetic
Aperture Radar (InSAR) technology. The model is structured
as a directed acyclic graph. The hazard probability distribu-
tion of each factor triggering land subsidence is determined
using Bayes’ theorem. Fuzzification of the factor significance
reduces the ambiguity of the relationship between the factors
and subsidence. The probability of land subsidence hazard
under multiple factors is then calculated with the FWBM.
The subsidence time series obtained by InSAR is used to
infer the updated posterior probability. The upper and mid-
dle parts of the Chaobai River alluvial fan are taken as a
case-study site, which locates the first large-scale emergency

groundwater resource region in the Beijing plain. The re-
sults show that rates of groundwater level decrease more than
1 m yr−1 in the confined and unconfined aquifers, with cu-
mulative thicknesses of the compressible sediments between
160 and 170 m and Quaternary thicknesses between 400 and
500 m, yielding maximum hazard probabilities of 0.65, 0.68,
0.32, and 0.35, respectively. The overall hazard probability of
land subsidence in the study area decreased from 51.3 % to
28.3 % between 2003 and 2017 due to lower rates of ground-
water level decrease. This study provides useful insights for
decision makers to select different approaches for land sub-
sidence prevention.

1 Introduction

The continuous overpumping of groundwater results in dra-
matic piezometric drawdown and induces regional land sub-
sidence. Many countries such as China, Mexico, Italy, USA,
Spain, and Iran (Teatini et al., 2005; Tomás et al., 2010; Gal-
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loway and Burbey, 2011; Chaussard et al., 2014; Zhu et al.,
2015; Motagh et al., 2017) have reported land subsidence due
to groundwater pumping. Land subsidence is a complex pro-
cess influenced by the anthropogenic activities and geolog-
ical environment. The anthropogenic extraction of ground-
water from aquifer is the principal triggering factor because
the rapid decline in the groundwater level leads to the com-
paction of the aquitard, and consequently the land surface
subsides (Xue et al., 2005; Zhu et al., 2015; Gao et al., 2018).
Although the drops of groundwater level in aquifers lead to
land subsidence, this process is also controlled by the geo-
logical environment, which includes hydrologic and geome-
chanical conditions (Zhu et al., 2015, 2017; Gambolati and
Teatini, 2015). Terzaghi’s effective stress principle shows
that a decrease in the pore pressure leads to an increase in the
effective stress, which consequently induces land subsidence.
The value of land subsidence is related to the soil mechani-
cal properties (Bonì et al., 2020). Land subsidence threatens
the environment and cause economic losses, such as munic-
ipal infrastructure damage, building fracture, and increasing
flood risk (Wu et al., 2017; Peduto et al., 2017; Wang et al.,
2018). Assessments of the subsidence hazard are necessary
for risk prevention.

Recent studies have analyzed the hazards of land subsi-
dence to buildings using field investigation and Interferomet-
ric Synthetic Aperture Radar (InSAR) (Julio-Miranda et al.,
2012; Tomás et al., 2012; Bhattarai and Kondoh, 2017; Pe-
duto et al., 2017). Some studies assessed the regional sub-
sidence hazard and identified the areas with high risk us-
ing spatial modeling methods based on geographic informa-
tion system (GIS; Huang et al., 2012; Bhattarai and Kon-
doh, 2017) and multi-objective decision-making (Jiang et al.,
2012; Yang et al., 2013) or advanced methods along with
fuzzy set theory (Mohebbi Tafreshi et al., 2019). The lat-
ter require expert score, which is subjective, and the pro-
duced risk level map is also qualitative. Mohebbi Tafreshi
et al. (2019) adopted fuzzy functions to standardize param-
eters with different dimensions, which did not address the
fuzziness of parameter importance. Land subsidence is a geo-
logical problem depending on various uncertain natural vari-
ables. Hazard assessments are associated with an inherent de-
gree of uncertainty, which includes aleatoric aspects due to
randomness and epistemic aspects related to insufficient in-
formation (Kiureghiana and Ditlevsen, 2009). Aleatoric un-
certainty may come from the randomness of natural variables
and data quality (Matthies, 2007). Epistemic uncertainty may
be generated by inadequate expert knowledge, the selection
of evaluation factors, and their quantitative effects on a haz-
ard (Vilares and Kording, 2011). The methods mentioned
above do not fully consider these uncertainties.

To avoid these disadvantages, some researchers have
adopted more objective methods, such as evidence reasoning
methods (Chen et al., 2014; Pradhan et al., 2014), physically
based numerical models (Xu et al., 2015; Dai et al., 2016;
Jia et al., 2018; Sundell et al., 2019), and machine learn-

ing (Park et al., 2012; Yi et al., 2017). However, numerical
models require detailed geo-hydrological and geological pa-
rameters, which are generally difficult to collect (Smith and
Knight, 2019). Evidence reasoning has strict combination
rules and becomes exponentially intensive from the compu-
tational point of view as the number of elements increases,
although it can handle both certain and uncertain informa-
tion regardless of whether the information is complete or in-
complete and precise or imprecise (Dai et al., 1999). Further-
more, current studies mainly focus on the identification and
classification of hazard levels without any quantitative anal-
ysis of the subsidence hazard.

The main challenges in the field are to reduce the un-
certainty of hazard assessments and to find an objective
and effective method to assess hazard areas and risks. The
mentioned uncertainty can be represented with probabilities.
Bayesian models (BMs) are powerful probability approaches
to deal with uncertainty (Vilares and Kording, 2011). BMs
have been widely applied in disaster hazard assessments,
such as flooding hazard and pipeline damage assessments
(Liu et al., 2017; Zhang et al., 2016).

This paper proposes a fuzzy weighted Bayesian
model (FWBM) that combines a weighted Bayesian
model (WBM) and fuzzy set theory to evaluate the subsi-
dence hazard probability and analyze the hazard probability
for different rates of groundwater level change. The posterior
probability is calculated using InSAR-derived land subsi-
dence as model input to reduce the epistemic uncertainty.
This new approach is applied in the Chaobai River alluvial
fan in Beijing, China, where the first large-scale emergency
groundwater resource region (EGRR) supplying water to
Beijing is located. The hazard probability inferenced with
the proposed relatively objective method can offer scientific
support for the prediction of land subsidence hazard.

2 Methodology

2.1 InSAR technology

InSAR is a microwave remote sensing technique that records
the phase and amplitude of the electromagnetic waves of
ground objects. The phase information is used to inversely
determine the subsidence. Persistent scatterer InSAR (PS-
InSAR) is the most popular method for detecting time series
of land movements by calculating the differential interfero-
metric phase on PS points with a millimetric accuracy (Sun
et al., 2017). The density of PS points can reach 450 per km2

in urban areas (Ferretti et al., 2011). The differential inter-
ferometric phase 8 of each PS in the corresponding interfer-
ogram contains five components, including the deformation
phase along the line of sight (LOS), the topographic phase,
the phase component due to the atmospheric delay, the or-
bital error phase, and the phase noise (Teatini et al., 2007).
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The deformation phase along the LOS can be extracted by
removing other phase information.

PS-InSAR processing includes four steps (Zhu et al.,
2015):

1. master image selection,

2. construction of a series of interferograms,

3. PS point selection, and

4. unwrapping phase.

2.2 FWBM method

2.2.1 Basic principle of BM

BMs consider the probability distribution of random vari-
ables and can infer the posterior probability based on weakly
informative prior probability to address uncertainty (Weise
and Woger, 1993). A BM consists of a set of random vari-
ables with complex causalities that can be plotted using a
directed acyclic graph (DAG), where random variables are
represented as eigenvector nodes (Ren et al., 2009). In DAG
(Fig. 1a), the hazard factors related to land subsidence are
parent nodes (Yj ), and the subsidence hazard is the child
node (T ). The arrows represent the probabilistic dependence
between nodes (Korb and Nicholson, 2003).

Bayes’ theorem can be used to infer posterior probability
distributions from weakly informative prior probability dis-
tributions through observed results (Verdin et al., 2019). The
approach is formulated as follows:

P(Y |S)=
P(Y )P (S|Y )

P (S)
, (1)

where S represents the observed land subsidence; Y repre-
sents the hazard factor; P(Y |S) is the posterior probability
of Y when S is observed; P(Y ) is the prior probability inde-
pendent of S; P(S|Y ) is the likelihood function, representing
the development of Y ; and P(S) is the marginal probability.

For multiple factors in DAG, the jointly probability of
multiple conditions can be expressed as

P
{
T |Y1, . . ., Yj , . . ., Ym

}
=

m∏
j=1

P
(
T |Yj

)
, (2)

where Yj is the j th of the m factors that influence T .

2.2.2 FWBM construction

The conditional independence assumption must be met
for BMs. This assumption generally can be strictly met in
geological studies (Webb and Pazzan, 1998). WBMs use
weighted assessment variables to relax the independence as-
sumption and address the different contributions of parent
nodes to child node (Webb and Pazzan, 1998). It has been
widely used in hazard-related analyses (Tang et al., 2018).

However, the weight of each factor, such as the piezometric
decline, soil compressibility, or high static loads on the land
surface, is determined by its importance to land subsidence
and is usually qualitative and fuzzy (Chen et al., 2016; Li
et al., 2017). The fuzziness of the factor contribution to land
subsidence may cause ambiguity in weighting when their im-
portance must be determined. These deviations can be mod-
eled with fuzzy set theory, which expresses fuzziness through
a membership function to objectively describe the relation-
ship between land subsidence and the factors (Mentes and
Helvacioglu, 2011). Therefore, the fuzzification of factor im-
portance is applied to eliminate ambiguity.

We developed the FWBM by extending Eq. (2) with the
introduction of a fuzzy-based weight. The probability of ran-
dom variable T becomes

P
{
T |Y1, . . ., Yj , . . ., Ym

}
=

m∏
j=1

P
(
T |Yj

)wFj , (3)

where wFj
is the fuzzy-based weight of Yj .

The structure of the FWBM is shown in Fig. 1b, which is
an improvement of Fig. 1a. The eigenvector nodes are fuzzy
weighted.

Referring to spatial variables, a BM is used to calculate
the hazard probability of each factor through its spatial fea-
tures. The spatial features of Yj are given by X, X = {Xj,1,
Xj,2, . . . , Xj,i−1, Xj,i , . . . , Xj,n}, where Xj,i is defined as the
ith of the nth features of the j th factor, as shown in Fig. 1c.
The value of n depends on the feature classification. Obvi-
ously, FWBM contains three parts including (i) probability
of Yj , which consists of its n spatial features Xj,i ; (ii) the
fuzzy weight of Yj ; and (iii) the probability of T .

The hazard probability of the spatial feature Xj,i at sub-
sidence detection time k is calculated using the following
equation, which is derived from Eq. (1):

P
{
Xj,i |S, t = k

}
= P

(
Xj,i, t = k

) P
{
S|Xj,i, t = k

}
P(S)

, (4)

where P(Xj,i , t = k) is the prior probability; P {S|Xj,i , t =

k} is the conditional probability calculated with the ratio
of the subsidence grid to the feature grid; and P(S) is the
marginal probability, which is the sum of the probability of
each Xj,i and is calculated by

P(S)=

n∑
i=1

P
(
Xj,i, t = k

)
P
{
S|Xj,i, t = k

}
. (5)

2.2.3 FWBM implementation

In the FWBM framework (Fig. 2), a BM is used to infer the
hazard probability with the fuzzification of factor importance
to reduce the ambiguity of the relationship between the haz-
ard factors and land subsidence measured by InSAR.

The first part of the procedure consists of data (land sub-
sidence measurements and hazard factors) gridding to ob-
tain homogeneous datasets. The assessment hazard factors
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Figure 1. (a) DAG of the BM structure; (b) FWBM structure; (c) spatial features of the hazard factors (Yj , for example).

Figure 2. Flowchart of subsidence hazard assessment using the FWBM.
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are derived first, which are parent nodes (Y1, Y2 . . . , Ym) in
the model structure, from groundwater extraction and geo-
logical conditions. Additionally, the posterior probability in
a BM can be adjusted using new observations to reduce the
epistemic uncertainty (Weise and Woger, 1993). For the as-
sessment of land subsidence hazard, InSAR is applied to ob-
tain time series of land movements at the regional scale. A
stack of SAR images is processed with PS-InSAR to obtain
the time series of PS points. The PS points form a contin-
uous input dataset to update the posterior probability of the
FWBM, thus reducing the uncertainty in the assessment pro-
cedure. Simultaneously, the subsidence data are also used to
validate the hazard assessment outcome. The various datasets
are spatially connected using the spatial join tool in GIS for
the statistical analysis of FWBM.

The second part is the model implementation. Three mod-
ules corresponding to the three variables that should be in-
ferred in FWBM, i.e., probability of Yj and T and factor
weight wFj

, are implemented.

– The first module infers the subsidence hazard prob-
ability of Yj , P(Yj ). For a single factor, the poste-
rior probability distribution of subsidence hazard is in-
ferred through its spatial feature Xj,i using the Bayesian
theorem. As shown in Fig. 3a, the hazard probability
of Xj,i , P {Xj,i |S, t = k}, is calculated using Eqs. (4)
and (5) with the calculated prior probability P(Xj,i ,
t = k) and conditional probability P {S|Xj,i , t = k} at
subsidence detection time k. The prior probability and
conditional probability are calculated through spatial
statistical analysis with land subsidence records. This
step is iterated when new subsidence events are ob-
served (new PS points detected and used in input) to
update the posterior probability.

– The second module calculates the fuzzy-based
weight WFj

. Fuzzification of the factor importance is
processed by establishing fuzzy pairwise comparison
matrices (f_PCM). According to the analytic hierarchy
process (AHP) method, the pairwise comparison
criteria is divided into five levels represented with odd
numbers from 1–9 (Saaty, 1980). The five levels are
regarded as fuzzy numbers, and the medium level is
considered to be equally important. The value of each
level is expressed as a triangular fuzzy number which
is commonly used to express fuzziness (Mentes and
Helvacioglu, 2011). Based on the constructed f_PCM,
WFj

is calculated by the fuzzy extended AHP method
(Van Laarhoven and Pedrycs, 1983).

– The third module infers the probability of T , P(T ). The
hazard probability influenced by multiple factors is de-
rived using the FWBM. As shown in Fig. 3b, with the
probability density P(Yj ) and factor weights, the grid-
ded hazard probability of land subsidence P(T ) is im-
plemented using Eq. (3). The hazard probability map

Figure 3. Flowchart to infer (a) the subsidence hazard probability of
a single factor and (b) the subsidence hazard probability influenced
by multiple factors.

is reclassified using the natural breaks (Jenks) classi-
fication method, which is widely used in risk evalua-
tion (Suh et al., 2016; Liu et al., 2017), and compared
with the InSAR measurements to validate the assessed
results.

3 Case study

3.1 Description of the study area

The study area belongs to the upper-middle part of the
Chaobai River alluvial fan in the northern Beijing plain and
covers approximately 1350 km2 (Fig. 4). The Huairou EGRR
is located in this area and designed to ensure the urban wa-
ter supply in continuous dry or emergency conditions. Long-
term groundwater overpumping has caused rapid decreases
in the groundwater level, with a maximum value of approx-
imately 40 m after the EGRR operation in 2003 (Zhu et al.,
2015, 2016). This significant piezometric drop resulted in re-
gional land subsidence. To relieve the situation, the South-to-
North Water Transfer Project central route (SNWP-CR) was
implemented at the end of 2014.

3.2 Datasets and processing

In this study, four hazard factors are considered: the rates
of groundwater level change in confined (Y1 with the fea-
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Figure 4. Location of the study area with the digital elevation model from the Shuttle Radar Topography Mission (SRTM). The EGRR
location and the land subsidence monitoring station used to calibrate the PS-InSAR outcome are shown.

ture expressed as X1,i , i = 1 . . . 4) and unconfined (Y2 with
the feature expressed as X2,i , i = 1 . . . 4) aquifers, which re-
flect the hydrologic conditions; the cumulative thicknesses
of the compressible sediments (Y3 with the feature expressed
as X3,i , i = 1 . . . 17); and the thickness of the Quaternary
unit (Y4 with the feature expressed as X4,i , i = 1 . . . 14),
which represent the geological setting.

The contour lines of compressible soil and Quaternary unit
thickness were collected. The change in groundwater levels
varied from −4 to 6 m between 2015 and 2017. The annual
rates of groundwater level change were classified into four
classes. The four factors are shown in Fig. 5.

The distribution of the factors related to groundwater level
change is split into three periods:

1. from January 2003 to December 2010, a period of mas-
sive groundwater exploitation after the EGRR establish-
ment;

2. from January 2011 to December 2014, when the decline
rate of the groundwater level slowed due to the long-
term loss of groundwater which reduces the capacity of
water supply and increased rainfall (Zhang et al., 2015);
and

3. from January 2015 to December 2017, when the
SNWP-CR operation partially relieved the groundwater
exploitation.

A total of 125 SAR images were collected, including
37 ASAR images from June 2003 to January 2010,

38 RADARSAT-2 images from November 2010 to Novem-
ber 2014, and 50 Sentinel-1 images from December 2014
to December 2017. The subsidence results were validated
and calibrated with an extensometer station and benchmark
data (the location is shown in Fig. 4). The difference be-
tween the PS-InSAR solution and land-based land subsi-
dence measurements amounted to ±7 mm (Zhu et al., 2015,
2020a). Note that the subsidence rate obtained by PS-InSAR
is characterized by an uncertainty of 1–3 mm yr−1, depend-
ing on the number and quality of the processed images (Tea-
tini et al., 2012). The PS points with a subsidence rate above
10 mm yr−1 were regarded as subsidence points.

All factors and subsidence datasets were gridded into
5664 cells, with a cell size of 500 m× 500 m. The outcomes
on grid sizes of 200, 500, and 1000 m were initially com-
pared. The results for the 200 and 500 m grid size were simi-
lar, with smoother edges but a higher computational cost for
the former. The results obtained on the 1000 m grid size dis-
played too low a resolution. Each grid ID contains five fea-
tures including four assessment factors and land subsidence.

3.3 Model implementation

3.3.1 Weight computation

The fuzzification of factor importance is expressed as a tri-
angular fuzzy number considering the ambiguity between
factors and subsidence. To compare the model performance
when ambiguity was eliminated, we implemented the WBM

Nat. Hazards Earth Syst. Sci., 21, 823–835, 2021 https://doi.org/10.5194/nhess-21-823-2021
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Figure 5. Assessment factors: (a1–a3) annual rate of groundwater level change in the unconfined aquifer (QA_GLCR) over the three peri-
ods 2003–2010, 2011–2014, and 2015–2017, respectively. Negative values mean lowering; (b1–b3) annual rate of groundwater level change
in the confined aquifer system (CA_GLCR) over the three periods 2003–2010, 2011–2014, and 2015–2017, respectively. Negative values
mean lowering; (c) cumulative thickness of compressible sediments (CS_CT); (d) Quaternary thickness.

with the non-fuzzy-based weight (Wj ) calculated by the AHP
method. The result of WBM was also reclassified and sub-
tracted from FWBM to compare the levels of change when
considering or not considering the ambiguity.

3.3.2 Probability of Yj inference

The hazard probability of feature Xj,i , P {Xj,i |S, t = k}, was
calculated first. For example, X3,12 is the twelfth feature
of the compressible soil thickness (Y3), indicating that the
thickness ranges between 160 and 170 m. The prior probabil-
ity P(X3,12) was calculated based on the feature grid number
ratio between the number of grid cell with that feature and the
total number of grid cells covering the study area. The con-
ditional probability P {S|X3,12, from 2003 to 2010}, i.e., the
percentage of grid cells for which land subsidence occurred
in feature X3,12 from 2003 to 2010, was used as input for the
FWBM. P {S}was the sum of P {S|X3,12, from 2003 to 2010}

calculated based on Eq. (5). The posterior hazard probability
P {X3,12|S, from 2003 to 2010} was calculated using Eq. (4).

The same procedure was applied to land subsidence data
from 2011 to 2014 and from 2015 to 2017, and the posterior
hazard probability at a previous time interval was set as the
prior probability at the current one.

3.3.3 Probability of T inference

With the probability of the single factor and factor weights,
the hazard probability of T , P(T ), was then calculated. Since
only a phreatic aquifer exists in the northern part of the study
area and land subsidence was relatively low, the hazard prob-
ability in this portion of the study area was set to 0.01.

https://doi.org/10.5194/nhess-21-823-2021 Nat. Hazards Earth Syst. Sci., 21, 823–835, 2021
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Figure 6. (a) Assessment of the subsidence hazard probability from 2003 to 2010, 2011 to 2014, and 2015 to 2017; (b) subsidence hazard
level (2015–2017); (c) variation of the land subsidence rate (V_LSR) between 2010–2014 and 2015–2017 as obtained by PS-InSAR.

4 Results and discussion

4.1 Validation of the results

The proposed FWBM was applied to assess the subsidence
hazard probability in the upper and middle part of the
Chaobai River alluvial fans from 2003 to 2017. The haz-
ard assessment distribution was reclassified into seven grades
(Fig. 6a). A hazard probability less than 0.07 indicates a low-
hazard area, and a hazard probability greater than 0.15 indi-
cates a high-hazard area (Fig. 6b).

The changes in the land subsidence rate (Sr) detected by
InSAR (Fig. 6c) between 2010–2014 and 2015–2017 were
used to validate the assessment results. A positive value
means the subsidence rate decreased (SrD) and a negative
value means the subsidence rate increased (SrI). The total
match ratio is 85 % (Table 2). Notably, Table 1 showed that
some points with SrD are located in the high-hazard area.
In fact, there are portions of the study plain where, because
the piezometric level did not recover significantly, land sub-
sidence rates remained larger than 50 mm yr−1 in 2017 (Zhu
et al. 2020a, b) although smaller than the values observed in
previous years.

Table 1. Comparison of the match ratio (calculated by the ratio be-
tween the sum of the amount of SrI in the high-hazard area and
SrD in the low-hazard area, and the total number of SrI and SrD)
obtained with FWBM and WBM.

FWBM WBM

Number Number Number Number
of SrI of SrD of SrI of SrD

High-hazard area 1473 189 1497 274
Low-hazard area 199 766 175 681
Percentage 88 % 80 % 89 % 71 %

Total match ratio 85 % 82 %

Table 2. Fuzzy (WFj
) and non-fuzzy-based (Wj ) weights for the

hazard factors.

Y1 Y2 Y3 Y4

WFj
0.32 0.12 0.38 0.18

Wj 0.33 0.10 0.43 0.14

Nat. Hazards Earth Syst. Sci., 21, 823–835, 2021 https://doi.org/10.5194/nhess-21-823-2021
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Figure 7. (a) Variation of the subsidence hazard level between FWBM and WBM. Negative and positive values mean that WBM has a higher
or a smaller hazard level than FWBM, respectively. An amplification of areas (1)–(3) highlighted in panel (a) is provided in panels (b)–(d),
respectively. The colored dots represent the change in the land subsidence rate between 2010–2014 and 2015–2017 (the same as in Fig. 6c),
with the green dots representing a lower hazard probability and the red dots a higher hazard probability.

4.2 Effect of fuzziness on model results

The FWBM results were compared with the results from a
WBM that ignored the ambiguity in the hazard assessment
framework. The fuzzy-based weights (WFj

) and non-fuzzy-
based weights (Wj ) of the four considered factors are shown
in Table 2. We found that the stronger the semantic fuzzi-
ness of the factor importance is, the greater the uncertainty
of factor weights is, which may make the greater difference
in hazard probability results.

The WBM results were also divided into seven levels.
The degree of difference between WBM and FWBM out-
comes is shown in Fig. 7a. Negative and positive values
mean that WBM provides a higher or a lower hazard level
than FWBM, respectively. In terms of the subsidence rate
change (Fig. 6c), the WBM overestimates the subsidence
hazard level for area 1 (Fig. 7b) and partially the level for
area 2 (Fig. 7c), where the subsidence rate decreased in re-
cent years. In addition, the WBM underestimates the haz-
ard level for area 3 (Fig. 7d), where the subsidence rate in-
creased. The FWBM performs better in regions with SrD and
is characterized by a higher total match ratio than the WBM,
as shown in Table 1.

4.3 Effect of assessment factors on hazard probability

The hazard probability of factors addressed in the analysis is
shown in Fig. 8. Using the period from 2015 to 2017 as an
example, a rate reduction of the groundwater level in the con-
fined aquifer greater than 1 m yr−1 has a maximum hazard
probability of 0.65. The situation is the same for the ground-
water change in the unconfined aquifer, with a 0.68 max-
imum hazard probability when the rate reduction exceeds
1 m yr−1. The results show that the higher the reduction rate

of the groundwater levels is, the higher the hazard probabil-
ity is, which is consistent with the general understanding and
with the outcome of previous studies revealing that the rapid
groundwater level decline leads to the subsidence of the land
surface (Tomás et al., 2010; Galloway and Burbey, 2011;
Zhu et al., 2015). Cumulative thicknesses of the compressible
sediments between 160 and 170 m yield a maximum hazard
probability of 0.32, and the Quaternary thickness between
400 and 500 m yields a maximum hazard probability of 0.35.
This is also consistent with previous studies showing that
land subsidence mainly occurred in the area where the cu-
mulative thicknesses of the compressible sediments exceed
100 m (Lei et al., 2016). Note that an aquifer system with
thick compressible sediments is more susceptible to causing
large land subsidence, but this takes place only if a certain
drawdown of the piezometric head, which is the triggering
factor, occurs in that portion of the subsurface (Zhu et al.,
2015). This can explain why the hazard probability decreases
for the largest values of the compressible sediments and the
Quaternary unit.

4.4 Temporal change in the subsidence hazard

Because land subsidence is negligible in the northern part
of the study area (Zhu et al., 2015), the temporal change in
the hazard probability of land subsidence is investigated only
in the southern region, where the confined aquifer system is
located.

As shown in Fig. 6a, the subsidence hazard probability
in Niulanshan decreased from 2003 to 2017. Conversely,
the southwestern portion of the study area, especially in
Tianzhu and Nanfaxin where the groundwater level decrease
exceeded 1 m yr−1 and the thickness of the cumulative com-
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Figure 8. Hazard probability of the selected four factors for the three time periods considered in the analysis.

pressible sediments exceeded 150 m, always maintains a high
hazard probability.

Figure 9 shows that the value of the subsidence haz-
ard probability is between 0.01 % and 51.30 % from 2003
to 2010, between 0.01 % and 45.54 % from 2011 to 2014,
and between 0.01 % and 28.33 % from 2015 to 2017.

Overall, the subsidence hazard decreased. This can be
credited to the significant exploitation of groundwater re-
sources and the following utilization policies. From 2003
to 2010, the operation of the EGRR led to a rapid drawdown
of the groundwater levels. Between 2015 and 2017, the op-
eration of the SNWP-CR conveyed a large amount of water
to Beijing, reducing the pressure on the aquifer system and,
consequently, slowing the rate of change in the groundwa-
ter level (Zhu et al., 2020b). Similarly, the California State
Water Project, which is also a large water-transfer system,
has been fundamental to controlling land subsidence in the
Central Valley, California (Sneed et al., 2018).

4.5 Spatial distribution of subsidence hazard

Four subsidence hazard levels are classified from the proba-
bility map (Fig. 6b), consistent with previous studies (Yang
et al., 2013; Zhu et al., 2015). The high hazard covers 10.7 %
of the total area, and the medium hazard accounts for 17.5 %
of the total area. The low and very low hazards represent

29.7 % and 42.1 % of the total area, respectively. As the
thickness of the compressible sediments increases from north
to south, the subsidence hazard probability increases accord-
ingly. Tianzhu, Nanfaxin, Gaoliying, and Houshayu in the
southwestern region experience medium–high hazards be-
cause the compressible strata in these areas are thick and the
groundwater level dropped significantly. The InSAR results
also revealed that the maximum subsidence rate in these re-
gions increased to 84.9 mm yr−1 over the period from 2015
to 2017. Overall, the area of high subsidence hazard de-
creases versus time due to the reduction in the rate of ground-
water level change.

5 Conclusions

Considering the ambiguity of the importance of various fac-
tors controlling land subsidence due to groundwater pump-
ing and the uncertainty in the assessment process, a FWBM
model was developed to assess the probability of land subsi-
dence hazard at a regional scale. FWBM is based on a com-
bination of BM and fuzzy set theory. The InSAR method was
used to obtain land subsidence time series to adjust the pos-
terior probability of the FWBM, thus reducing the model un-
certainty.
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Figure 9. Probability distribution of subsidence hazard for the three time periods from 2003 to 2017.

The implementation of the FWBM in the Beijing area
demonstrated the potentiality of this modeling approach and
showed that it is superior when the ambiguity of the rela-
tionship between the factors and land subsidence is consid-
ered. The study is a first analysis of the hazard probabil-
ity of land subsidence and the related hazard factors. From
the case study, we found that subsidence probability de-
creased over time due to a change in water utilization, such
as the operation of the SNWP-CR. A rate of groundwater
level decline greater than 1 m yr−1 in the unconfined and
confined aquifers yields the maximum hazard probabilities
equal to 0.68 and 0.65, respectively. A compressible sedi-
ment thickness between 160 and 170 m yields a maximum
hazard probability of 0.32. A Quaternary strata thickness be-
tween 400 and 500 m yields a maximum hazard probabil-
ity of 0.35. The overall subsidence hazard probability in the
study area decreased from 51.3 % to 28.3 % between 2003
and 2017 due to the decrease in the rate of groundwater level
reduction.

The results of this study suggest that the proposed subsi-
dence hazard assessment method significantly represents the
uncertainty and ambiguity compared to traditional qualitative
methods (Huang et al., 2012; Park et al., 2012; Yang et al.,
2013; Chen et al., 2014; Tafreshi et al., 2019; Sundell et al.,
2019). The hazard probability map of different time periods
with different groundwater level conditions can offer scien-
tific support for land subsidence prediction and help stake-
holders and decision makers to develop more reliable water
utilization strategies accounting for land subsidence hazard.

Improvements to the proposed methodology will be in-
vestigated in the future. The prior probability in this model
is determined by the factor grid number ratio, which may
have deviations. This ratio can be further improved by expert
knowledge. Additionally, the impact of the selected assess-
ment factors on the results will be investigated. Moreover,
the cumulative land subsidence and not only the subsidence
rate will be considered to assess the subsidence hazard with
a more comprehensive perspective.
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