Articles | Volume 21, issue 2
https://doi.org/10.5194/nhess-21-643-2021
https://doi.org/10.5194/nhess-21-643-2021
Research article
 | 
16 Feb 2021
Research article |  | 16 Feb 2021

Are OpenStreetMap building data useful for flood vulnerability modelling?

Marco Cerri, Max Steinhausen, Heidi Kreibich, and Kai Schröter

Related authors

BN-FLEMOΔ: a Bayesian-network-based flood loss estimation model for adaptation planning in Ho Chi Minh City, Vietnam
Kasra Rafiezadeh Shahi, Nivedita Sairam, Lukas Schoppa, Le Thanh Sang, Do Ly Hoai Tan, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 2845–2861, https://doi.org/10.5194/nhess-25-2845-2025,https://doi.org/10.5194/nhess-25-2845-2025, 2025
Short summary
Modelling flood losses of micro-businesses in Ho Chi Minh City, Vietnam
Anna Buch, Dominik Paprotny, Kasra Rafiezadeh Shahi, Heidi Kreibich, and Nivedita Sairam
Nat. Hazards Earth Syst. Sci., 25, 2437–2453, https://doi.org/10.5194/nhess-25-2437-2025,https://doi.org/10.5194/nhess-25-2437-2025, 2025
Short summary
Rapid high-resolution impact-based flood early warning is possible with RIM2D: a showcase for the 2023 pluvial flood in Braunschweig
Shahin Khosh Bin Ghomash, Heiko Apel, Kai Schröter, and Max Steinhausen
Nat. Hazards Earth Syst. Sci., 25, 1737–1749, https://doi.org/10.5194/nhess-25-1737-2025,https://doi.org/10.5194/nhess-25-1737-2025, 2025
Short summary
Assessing the impact of early warning and evacuation on human losses during the 2021 Ahr Valley flood in Germany using agent-based modelling
André Felipe Rocha Silva, Julian Cardoso Eleutério, Heiko Apel, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 1501–1520, https://doi.org/10.5194/nhess-25-1501-2025,https://doi.org/10.5194/nhess-25-1501-2025, 2025
Short summary
Deciphering the drivers of direct and indirect damages to companies from an unprecedented flood event: A data-driven, multivariate probabilistic approach
Ravi Kumar Guntu, Guilherme Samprogna Mohor, Annegret H. Thieken, Meike Müller, and Heidi Kreibich
EGUsphere, https://doi.org/10.5194/egusphere-2025-1715,https://doi.org/10.5194/egusphere-2025-1715, 2025
Short summary

Cited articles

Alfieri, L., Feyen, L., Salamon, P., Thielen, J., Bianchi, A., Dottori, F., and Burek, P.: Modelling the socio-economic impact of river floods in Europe, Nat. Hazards Earth Syst. Sci., 16, 1401–1411, https://doi.org/10.5194/nhess-16-1401-2016, 2016. a
Amadio, M., Scorzini, A. R., Carisi, F., Essenfelder, A. H., Domeneghetti, A., Mysiak, J., and Castellarin, A.: Testing empirical and synthetic flood damage models: the case of Italy, Nat. Hazards Earth Syst. Sci., 19, 661–678, https://doi.org/10.5194/nhess-19-661-2019, 2019. a
Amirebrahimi, S., Rajabifard, A., Mendis, P., and Ngo, T.: A framework for a microscale flood damage assessment and visualization for a building using BIM–GIS integration, Int. J. Digit. Earth, 9, 363–386, https://doi.org/10.1080/17538947.2015.1034201, 2016. a
Apel, H., Aronica, G. T., Kreibich, H., and Thieken, A.: Flood risk analyses–how detailed do we need to be?, Nat. Hazards, 49, 79–98, https://doi.org/10.1007/s11069-008-9277-8, 2009. a, b
Barrington-Leigh, C. and Millard-Ball, A.: The world’s user-generated road map is more than 80 % complete, Plos One, 12, 1–20, https://doi.org/10.1371/journal.pone.0180698, 2017. a, b
Download
Short summary
Effective flood management requires information about the potential consequences of flooding. We show how openly accessible data from OpenStreetMap can support the estimation of flood damage for residential buildings. Working with methods of machine learning, the building geometry is used to predict flood damage in combination with information about inundation depth. Our approach makes it easier to transfer models to regions where no detailed data of flood impacts have been observed yet.
Share
Altmetrics
Final-revised paper
Preprint