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Abstract. Flood risk modelling aims to quantify the proba-
bility of flooding and the resulting consequences for exposed
elements. The assessment of flood damage is a core task that
requires the description of complex flood damage processes
including the influences of flooding intensity and vulnera-
bility characteristics. Multi-variable modelling approaches
are better suited for this purpose than simple stage–damage
functions. However, multi-variable flood vulnerability mod-
els require detailed input data and often have problems in
predicting damage for regions other than those for which
they have been developed. A transfer of vulnerability mod-
els usually results in a drop of model predictive performance.
Here we investigate the questions as to whether data from the
open-data source OpenStreetMap is suitable to model flood
vulnerability of residential buildings and whether the un-
derlying standardized data model is helpful for transferring
models across regions. We develop a new data set by cal-
culating numerical spatial measures for residential-building
footprints and combining these variables with an empirical
data set of observed flood damage. From this data set ran-
dom forest regression models are learned using regional sub-
sets and are tested for predicting flood damage in other re-
gions. This regional split-sample validation approach reveals
that the predictive performance of models based on Open-
StreetMap building geometry data is comparable to alterna-
tive multi-variable models, which use comprehensive and de-
tailed information about preparedness, socio-economic sta-
tus and other aspects of residential-building vulnerability.
The transfer of these models for application in other regions
should include a test of model performance using indepen-
dent local flood data. Including numerical spatial measures
based on OpenStreetMap building footprints reduces model

prediction errors (MAE – mean absolute error – by 20 % and
MSE – mean squared error – by 25 %) and increases the re-
liability of model predictions by a factor of 1.4 in terms of
the hit rate when compared to a model that uses only wa-
ter depth as a predictor. This applies also when the models
are transferred to other regions which have not been used for
model learning. Further, our results show that using numer-
ical spatial measures derived from OpenStreetMap building
footprints does not resolve all problems of model transfer.
Still, we conclude that these variables are useful proxies for
flood vulnerability modelling because these data are consis-
tent (i.e. input variables and underlying data model have the
same definition, format, units, etc.) and openly accessible and
thus make it easier and more cost-effective to transfer vulner-
ability models to other regions.

1 Introduction

Floods have huge socio-economic impacts globally. Driven
by increasing exposure, as well as increasing frequency and
intensity of extreme weather events, consequences of flood-
ing have sharply risen during recent decades (Hoeppe, 2016;
Lugeri et al., 2010). Therefore, effective adaptation to grow-
ing flood risk is an urgent societal challenge (UNISDR,
2015; Jongman, 2018). With the transition to risk-oriented
approaches in flood management, flood risk models are im-
portant tools to conduct quantitative risk assessments as a
support for decision-making from continental to local scales
(Alfieri et al., 2016; de Moel et al., 2015; Winsemius et al.,
2013). While macro- or meso-scale risk assessment ap-
proaches target regional, national or continental studies, risk
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assessment on the micro-scale is needed to guide urban plan-
ning and optimize investment for protection and other miti-
gation measures considered in flood risk management plans
(Meyer et al., 2013; de Moel et al., 2015; Rehan, 2018).
Flood risk models include components to represent the key
elements of flood risk: hazard, exposure and vulnerability
(Kron, 2005). Flood hazard is usually modelled with high
spatial resolutions in order to realistically capture variabil-
ity in flood hazard intensity in consideration of local topo-
graphic characteristics (Apel et al., 2009; Teng, 2017). For
consistent risk assessments, exposure and vulnerability need
to be analysed on similar scales and with appropriate spa-
tial resolution. With an increasing availability of new ex-
posure data sets including for instance information about
the number, occupancy and characteristics of exposed ob-
jects (Figueiredo and Martina, 2016; Paprotny et al., 2020;
Pittore et al., 2017), micro-scale exposure and vulnerability
modelling gains much traction (Lüdtke et al., 2019; Schröter
et al., 2018; Sieg et al., 2019).

Both synthetic (e.g. Blanco-Vogt and Schanze, 2014; Dot-
tori et al., 2016; Penning-Rowsell and Chatterton, 1977) and
empirically based models (e.g. Thieken et al., 2005; Zhai
et al., 2005) have been proposed for micro-scale vulnera-
bility modelling. As flood damaging processes are complex,
a large diversity of influencing factors needs to be taken
into account to capture and appropriately represent flood-
ing intensity and resistance characteristics of exposed ele-
ments in flood vulnerability models (Thieken et al., 2005).
In this context, multi-variable modelling approaches are an
important advance from simple stage–damage curves, which
relate only water depth to flood loss. While multi-variable
vulnerability models usually outperform traditional stage–
damage functions (Merz et al., 2004; Schröter et al., 2014),
the downside of these approaches is an increased need of
detailed data on the level of individual objects (Merz et al.,
2010, 2013), which are often not available in the target area
of the analysis (Apel et al., 2009; Cammerer et al., 2013;
Dottori et al., 2016). Missing standards for collecting com-
parable and consistent data are one reason for this problem
(Changnon, 2003; Meyer et al., 2013). Hence, providing the
input variables for multi-variable flood vulnerability mod-
els on the micro-scale is a key challenge for their practical
applicability. Another challenge is the generalization of lo-
cally derived vulnerability models. A number of studies con-
firm a model performance mismatch between regions where
models have been developed and the target areas for applica-
tion (Cammerer et al., 2013; Jongman et al., 2012; Schröter
et al., 2016; Wagenaar et al., 2018). It is argued that the gen-
eralized application of vulnerability models to different ge-
ographic and socio-economic conditions needs to consider
an adequate representation of local characteristics and dam-
age processes (Felder et al., 2018; Figueiredo et al., 2018;
Sairam et al., 2019). Hence, consistency in input data is an
important requirement for the spatial transfer of vulnerabil-
ity models (Lüdtke et al., 2019; Molinari et al., 2020). The

availability, accessibility and consistency of data sources are
important requirements for generalized vulnerability model
applications but also pose requirements on modelling ap-
proaches. With an increased number of input variables and
an enlarged diversity of data sources used for vulnerability
modelling, we usually deal with heterogeneous data in terms
of different scaling, degrees of detail, resolution and complex
inter-dependencies (Schröter et al., 2016, 2018). Tree-based
algorithms are a suitable approach to handle heterogeneous
data, represent non-linear and non-monotonic dependencies
and, as a non-parametric approach, do not require assump-
tions about independence of data (Carisi et al., 2018; Merz
et al., 2013; Schröter et al., 2014; Wagenaar et al., 2017). The
random forest (RF) algorithm (Breiman, 2001) is broadly
used in many disciplines, due to its high predictive accu-
racy, simplicity in use and flexibility concerning input data.
In the domain of flood risk modelling, Wang et al. (2015)
have successfully applied RF for flood risk assessment, and
Bui et al. (2020) used RF for flood susceptibility mapping.
Merz et al. (2013) demonstrated the suitability of tree-based
algorithms for flood vulnerability modelling. Following this,
Carisi et al. (2018), Chinh et al. (2015), Hasanzadeh Nafari
et al. (2016), Sieg et al. (2017) and Wagenaar et al. (2017)
have used RF and other tree-based algorithms for flood loss
estimation in flood-prone regions in Vietnam, Australia, the
Netherlands and Italy. In these studies, vulnerability mod-
elling using RF was based on site-specific empirical data
sets which had been collected ex post major flood events.
In contrast, the framework proposed by Amirebrahimi et al.
(2016) successfully used 3D building information for flood
damage assessment of individual buildings. Gerl et al. (2016)
and Schröter et al. (2018) investigated the suitability of al-
ternative general data sources for flood vulnerability mod-
elling using urban structure type information derived from
remote sensing images, virtual 3D city models and numerical
spatial measures which describe the extent and shape com-
plexity of residential buildings. It was shown that geomet-
ric information such as building area and height are useful
variables for describing building characteristics relevant for
estimating flood losses (Schröter et al., 2018). From these
studies it has been concluded that data about building ge-
ometry work as a proxy to describe resistance characteris-
tics of buildings. However, further analyses are needed to
understand whether building geometry data enable consis-
tent flood vulnerability modelling with high resolution and
are suitable to characterize differences in flood vulnerability
across regions. With new data sources emerging from crowd-
sourcing projects and open-data initiatives, detailed building
data are increasingly available and accessible (Irwin, 2018).
Open and/or standardized building data are a promising data
source to coherently describe exposure and characterize vul-
nerability of residential buildings and to improve the spa-
tial transfer of vulnerability models given a consistent un-
derlying data model and clear specification of input variables
across regions. Data science methods are predestined to make
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use of these data in flood vulnerability modelling. Against
this backdrop, we investigate the suitability of the open-data
source OpenStreetMap (OSM) (OpenStreetMap Contribu-
tors, 2020) for flood vulnerability modelling of residential
buildings. OSM is a geographic database with a worldwide
coverage which is nowadays considered reliable (Barrington-
Leigh and Millard-Ball, 2017). The information about build-
ing footprints is freely available and straightforward to ob-
tain from public online servers. The OSM contributors’ com-
munity is constantly growing and assures regular updates in
terms of accuracy and completeness of the data (Hecht et al.,
2013).

We test the hypothesis that numerical spatial measures de-
rived from OSM building footprints provide useful informa-
tion for the estimation of flood losses to residential buildings.
From the underlying consistent OSM data model and stan-
dardized calculation of spatial measures, we expect an im-
provement of the spatial transfer of flood vulnerability mod-
els across regions. Accordingly, the research objectives are
(i) to understand which building-geometry-related variables
are useful to describe building vulnerability, (ii) to learn pre-
dictive flood vulnerability models, and (iii) to test and evalu-
ate model transfer across regions. In Sect. 2 the data sources,
the derived variables and the preparation of data sets are de-
scribed. Section 3 introduces the methods to identify pre-
dictor variables and to derive predictive models. Further, it
describes the set-up for testing and evaluating model perfor-
mance in spatial transfers. The results from these analyses
are reported and discussed in Sect. 4. Conclusions are drawn
in Sect. 5.

2 Data

We use an empirical data set of relative loss to residential
buildings and influencing factors which has been collected
via computer-aided telephone interview (CATI) data during
survey campaigns after major floods in Germany since 2002.
Another data source is OSM (OpenStreetMap Contributors,
2020), providing information about building locations, ge-
ometries, occupancy and other characteristics. OSM data are
complemented with numerical spatial measures calculated
from geometries of OSM building footprints.

2.1 Computer-aided telephone interview data

CATI surveys were conducted with affected private house-
holds ex post major floods in Germany. The regional focal
points of flood impacts were the Elbe catchment in eastern
Germany and the Danube catchment in southern Germany.
Particularly noteworthy are the floods of 2002 and 2013,
which caused economic losses of EUR 11.6 billion (refer-
ence year 2005) and EUR 8 billion respectively in Germany
(Thieken et al., 2006, 2016). With EUR 1 billion in economic
damage, the city of Dresden at the Elbe River in Saxony

had been a hotspot of flood impacts during the August 2002
flood (Kreibich and Thieken, 2009). In August 2002, flash
floods triggered by record-breaking precipitation and numer-
ous levee failures caused widespread flooding along the Elbe
River and its tributaries in Saxony and Saxony-Anhalt as well
as along the Regen River and other southern tributaries to the
Danube River in Bavaria (Schröter et al., 2015). The mag-
nitude of flood peak discharges along these rivers well ex-
ceeded a statistical return period of 100 years (Ulbrich et al.,
2003). In May 2013 a pronounced precipitation anomaly
with subsequent extreme precipitation at the end of May and
beginning of June caused severe flooding in June 2013, espe-
cially along the Elbe and Danube rivers, with new water level
records and major dike breaches both at the Elbe and Danube
rivers (Conradt et al., 2013; Merz et al., 2014; Schröter et al.,
2015). The magnitude of flood peak discharges exceeded sta-
tistical return periods of 100 years along the Elbe, Mulde
and Saale tributaries and along the Danube and Inn River
in Bavaria (Blöschl et al., 2013; Schröter et al., 2015). With
180 questions, the CATI surveys cover a broad range of
flood-impact-related factors including building characteris-
tics, effects of warnings, precaution and the socio-economic
background of households. The survey campaigns for dif-
ferent floods are consistent in terms of acquisition method-
ology, type and scope of questions. The interviewees were
randomly selected from lists of potentially affected house-
holds along inundated streets which have been identified
from satellite data, flood reports and press releases. With an
average response rate of 15 %, in total 3056 interviews have
been completed. For further details about the surveys and
data processing, refer to Kienzler et al. (2015) and Thieken
et al. (2005, 2017). Building on the findings of previous
work (Merz et al., 2013; Schröter et al., 2014), for this study
23 variables have been preselected with a focus on build-
ing characteristics, flood intensity at the building and socio-
economic status as well as warning, precaution and previous
flood experience (Table 1). In addition, relative loss to the
building has been determined as the ratio of reported actual
losses and the building value (replacement cost) at the time
of the flood event (Elmer et al., 2010). Hence, it describes the
degree of building damage on a scale from 0 (no damage) to
1 (total damage). Building values are based on the standard
actuarial valuation method of the insurance industry in Ger-
many (Dietz, 1999), which estimates replacement costs using
information about the floor space, basement area, number of
storeys, roof type, etc. that are available from CATI data. Rel-
ative loss to the building and water depth (“wst”) at the build-
ing are the key variables from the CATI data set used in this
study. The variable rloss is used to learn predictive models
and to evaluate their performance. Consequently, the records
in the CATI data set without values for rloss are removed.
This reduces the number of available records from 3056 to
2203. The variable wst is the most commonly used predictor
in flood vulnerability modelling (Gerl et al., 2016) because it
is a highly relevant characteristic of flood intensity, and it is
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usually available from hydrodynamic numerical simulations;
wst from CATI is a continuous variable with a length unit
in centimetres. Negative values represent a water level be-
low the ground surface, which affects only the basement of a
building.

2.2 OpenStreetMap data

OSM is a free web-based map service built on the activ-
ity of registered users who contribute to the database by
adding, editing or deleting features based on their local
knowledge. The contributors use GPS devices and satellite
as well as aerial imagery to verify the accuracy of the map.
OSM is an open-data project, and the cartographic infor-
mation can be downloaded, altered and redistributed under
the Open Data Commons Open Database License (ODbL)
(OpenStreetMap Contributors, 2020). Among the so-called
volunteered geographic information (VGI) projects (Good-
child, 2007), OSM is the most widely known. OSM data
provide information about building locations, footprint ge-
ometries, occupancy and other characteristics. The positional
accuracy of OSM data, as well as the completeness of the
database in respect to the number of mapped objects present
in the real world, is nowadays considered satisfactory for
most developed countries and urban areas (Barrington-Leigh
and Millard-Ball, 2017; Hecht et al., 2013). On the contrary,
information on object attributes such as road names or build-
ing types is often scarce and inconsistent. The tag “building”
is used to identify the outline of a building object in OSM.
The majority of buildings (82 %) have no further descrip-
tion, and only 12 % are specified as primarily “residential” or
a single-family “house” (https://taginfo.openstreetmap.org/
keys/building#values, last access: 28 February 2020). There-
fore, the filtering for residential buildings from the OSM
database uses the underlying “residential” land use informa-
tion of OSM. By joining the land use information to the
building polygons, those of residential occupation can be
identified and selected.

2.3 Data preparation

The OSM and CATI data sets have been conflated in order
to link the empirically observed variables rloss and wst with
OSM data for individual residential buildings. This opera-
tion uses the geolocation information of both data sources.
The CATI data are provided with address details including
community, postal code, street name and the house number
ranges in blocks of five numbers. Geocoding algorithms in-
cluding open web API (application programming interface)
services like Google (https://developers.google.com/maps/
documentation/geolocation/overview, last access: 3 Febru-
ary 2021), Photon (https://photon.komoot.io/, last access:
3 February 2021) and Nominatim (https://nominatim.org/,
last access: 3 February 2021) were applied to obtain geo-

Figure 1. Regional subdivision of the data set for spatial split-
sample testing (Dresden municipality, the Elbe catchment and the
Danube catchment).

coordinates for the address information from the interview
data.

OSM is a spatial data set including georeferenced build-
ing outlines. The geolocated interviews are spatially matched
with OSM building polygons using an overlay operation
which merges interview points with OSM building polygons.
In view of limited address details regarding the building
house number ranges and inherent inaccuracies of geocod-
ing databases and algorithms (Teske, 2014), a buffer radius
of 5 m has been used to correct for offsets between geocod-
ing points and building polygons. CATI records which still
could not be matched with OSM geometries and with obvi-
ously erroneous geolocations, e.g. position is far away from
flood-affected areas or urban settlements, have been removed
from the data set. After these steps 1649 records remain from
the original set of CATI surveys. The spatial distribution of
these data points highly concentrates on the Elbe catchment
(1234 records) including Dresden (310 records) and on the
Danube catchment (105 records) (Fig. 1)

2.4 Numerical measures

Information about the building geometry is useful to sup-
port the estimation of flood losses to residential buildings
(Schröter et al., 2018). Building on this knowledge, numer-
ical spatial measures are calculated for OSM building foot-
prints with the aim to add potential explanatory variables to
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Table 1. Preselected variables from CATI surveys; C: continuous, O: ordinal, N: nominal-scaled variables.

Variable Type and range

Warning, precaution and previous experience

1 wt Early warning lead time C: 0 to 336 h

2 wq Quality of warning O: 1= knew exactly what to do to 6= had no idea what to do

3 ws Indicator of flood warning source O: 0= no warning to 4= official warning through authorities

4 wi Indicator of flood warning information O: 0= no helpful information to 11=much helpful information

5 wte Lead time period not used for emergency C: 0 to 335 h

6 em Emergency measures indicator O: 1= no measures undertaken to 17=many measures under-
taken

7 epre Perception of efficiency of private precaution O: 1= very efficient to 6= not efficient at all

8 pre Precautionary measures indicator O: 0= no measures undertaken to 38=many efficient measures
undertaken

9 fe Flood experience indicator O: 0= no experience to 9= recent flood experience

10 kh Knowledge of flood hazard N (yes or no)

Hydraulic characteristics of the inundation

11 wst Water depth C: 248 cm below ground to 670 cm above ground

Building characteristics

12 bt Building type N (1=multi-family house, 2= semi-detached house or
3= single-family house)

13 nfb Number of flats in building C: 1 to 45 flats

14 fsb Floor space of building C: 45 to 18 000 m2

15 bq Building quality O: 1= very good to 6= very bad

16 bv Building value C: EUR 92 244 to EUR 3 718 677

Socio-economic status of the residents

17 age Age of the interviewed person C: 16 to 95 years

18 hs Household size, i.e. number of persons C: 1 to 20 people

19 chi Number of children (< 14 years) in household C: 0 to 6 children

20 eld Number of elderly persons (> 65 years) in household C: 0 to 4 elderly persons

21 own Ownership structure N (1= tenant, 2= owner of flat or 3= owner of building)

22 inc Monthly net income in classes O: 11= below EUR 500 to 16=EUR 3000 and more

23 socP Socio-economic status according to (Plapp, 2003) O: 3= very low status to 13= very high status

Experienced damage

– rloss Relative loss of the residential building C: 0= no damage to 1= total damage
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the estimation of relative loss to residential buildings. For this
purpose, image analysis algorithms typically used in land-
scape ecology are adopted. These algorithms calculate nu-
merical spatial measures like area, perimeter, elongation and
complexity based on the analysis of geometries identified in
aerial or remote sensing images (Jung, 2016; Lang and Tiede,
2003; Rusnack, 2017). The numerical spatial measures are
calculated for each OSM building polygon and are compiled
in Table 2 along with the other CATI variables that are used
to derive flood vulnerability models. The meaning of these
spatial measures, the equations, and range of values and ex-
amples are listed in the Appendix A1.

3 Methods

We analyse the created data set with two main objectives.
First, we strive to identify those variables from Table 2 which
are most useful for explaining relative loss to residential
buildings. Second, we aim to derive flood vulnerability mod-
els for residential buildings and to test these models for spa-
tial transfers across regions. The data analysis workflow in-
cluding data pre-processing, model learning, model selec-
tion and model transfer is illustrated in Fig. 2. The data pre-
processing steps with data preparation and numerical spatial
measures have been described in the previous section. For
model learning and model transfer we use the random for-
est (RF) machine learning algorithm introduced by Breiman
(2001).

RFs are an extension of the classification and regression
tree (CART) algorithm (Breiman et al., 1984), which aims to
identify a regression structure among the variables in the data
set. Regression trees recursively subdivide the space of pre-
dictor variables to approximate a non-linear regression struc-
ture. This subdivision is driven by optimizing the accuracy
of local regression in these regions, which, by repeated par-
titioning, leads to a tree structure. Predictions are made by
following the division criteria along the nodes and branches
from the root node to the leaves, which finally contain the
predicted value for a given set of input variables. RFs make
predictions based on a large number of decision trees, i.e.
a forest, which is learned by randomly selecting the vari-
ables considered for splitting the features space of the data.
RFs incorporate bootstrap aggregation (bagging) as a sim-
ple and powerful ensemble method to reduce the variance of
the CART algorithm. In comparison to single trees, RFs are
more suitable to identify complex patterns and structures in
the data (Basu et al., 2018). As an ensemble approach, RFs
learn a regression tree for a number of bootstrap replica of
the learning data. This results in a number of trees (“ntree”)
forming a forest of regression trees. To reduce correlation
between trees, the RF algorithm randomly selects a subset
of variables (“mtry”) which are evaluated for dividing the
space of predictor variables. This efficiently reduces overfit-
ting and makes RF less sensitive to changes in the underlying

data. Each bootstrap replica is created by randomly sampling
with replacement about two-thirds of observations from the
original data set. The remaining data are indicated as out-
of-bag (OOB) observations and are used for evaluating the
predictive accuracy of the tree, in terms of the OOB error.
For regression trees the OOB error is the mean squared sum
of residuals. For loss estimation, the predictions of all trees
are combined by aggregating the individual predictions as
the mean prediction from the forest. The predictions of the
individual trees, i.e. from the ensemble of models, provide
an estimate of predictive uncertainty.

For variable selection and predictive model learning RFs
provide a concept to quantify the importance of candidate
explanatory variables which allow for selecting the subset of
most relevant variables. RFs are also an efficient algorithm
to learn predictive models from heterogeneous data sets with
complex interactions and with different scales like continu-
ous or categorical information (Huang and Boutros, 2016).

RF predictive model performance is sensitive to specifica-
tions of the algorithm parameters mtry and ntree (Huang and
Boutros, 2016). Therefore, the optimum values for both pa-
rameters are identified as those which yield minimum OOB
errors on an independent data set. For parameter tuning,
we pursue the variation approach implemented by Schröter
et al. (2018) by selecting parameters from a broad and com-
prehensive range of values, ntree ∈ [100, 500, 1000, 2000,
3000, . . . 15 000] and mtry ∈ [p/6, p/3, 2p/3] with p as
the number of candidate predictors, and derive RF models
for each combination. For each pair of chosen values, the al-
gorithm is repeated 100 times to account for inherent data
variability. The optimum parameters will minimize the pre-
diction error on the OOB sample data. Using the optimum
RF parameter settings, we derive predictive models for rloss.

3.1 Variable selection

The first step in model learning is the selection of variables
to be used as predictors in the model. The analysis of the
Spearman’s rank correlation between the variables gives a
first insight into the linear dependency structure of the data
set. Furthermore, RF supports the evaluation and ranking of
potential predictors by quantification of variable importance
which also accounts for variable interaction effects. The im-
portance of a selected variable is evaluated by calculating
the changes of the squared error of the predictions when the
values of that variable are randomly permuted in the OOB
sample. The increase of the average error will be larger for
more important variables and smaller for less important vari-
ables. On this basis it is possible to decide which variables
to include in a predictive model. The outcomes of variable
importance evaluations are sensitive to the RF algorithm pa-
rameters mtry and ntree (Genuer et al., 2010). Therefore,
to achieve stable results for these analyses, we implement
a robust approach which averages the outcomes of multiple
runs with variations in RF parameters (Schröter et al., 2018):

Nat. Hazards Earth Syst. Sci., 21, 643–662, 2021 https://doi.org/10.5194/nhess-21-643-2021



M. Cerri et al.: Are OSM building data useful for flood vulnerability modelling? 649

Table 2. Variables of the amended OSM data set for each building object

Empirical variables from the CATI interviews Range

– Relative loss of the residential building (rloss) Relative loss 0= no damage to
1= total damage

– Water depth (wst) Water level with respect to the ground level −248 to 670 cm

Numerical spatial measures calculated for OSM building geometries Range

1 Area (Area) Area of the building 0 to∞m2

2 Perimeter (Perimeter) Perimeter of the building 0 to∞m

3 Degree of compactness (DegrComp) Compactness of the building shape, relative
vicinity of the internal points, normalized to a
circle

0 to 1

4 Perimeter–area ratio (PARatio) Shape complexity, biased by building size 0 to∞

5 Shape index (ShapeIndex) Shape complexity, adjusted to building size,
normalized to a square

1 to∞

6 Fractal dimension index (FracDimInd) Shape complexity, adjusted to building size
scaled between

1 to 2

7 Radius of gyration (RadGyras) Building extent and compactness 0 to∞m

8 Linear segment indicator (LinSegInd) Elongation of the polygon, normalized to a
square

1 to∞

9 Ratio of bounding rectangle area (BoundRatio) Shape complexity, normalized to the hypotheti-
cal simplest polygon

1 to∞

ntree ∈ [500, 1000, 1500, 2000, . . . 5000], whereby each tree
is repeatedly built for mtry ∈ [p/6, p/3, 2p/3], with p as
the number of candidate predictors, which correspond to the
lower limit, the default value and the upper limit, suggested
by (Breiman, 2001). Following this procedure, the potential
explanatory variables of our data set (Table 2) are evaluated
and ranked according to their relative importance to predict
rloss.

3.2 Predictive model learning

Variable selection needs to be considered as an essential part
of the model evaluation process. Therefore, candidate RF
models using different numbers of variables are assessed in
terms of predictive performance for independent data.

The OSM-based numerical spatial measures differentiate
building form and shape complexity. To gain further insights
into the suitability of these variables for flood vulnerability
modelling, we incrementally add explanatory variables to the
learning data set. Based on the outcomes of variable impor-
tance ranking the learning set is expanded variable by vari-
able, and models of increasing complexity are learned (cf.
Table 2). From the comparison of model predictive perfor-
mance between these candidate models, the best balance be-
tween model performance and number of input variables is
assessed. This is implemented by bootstrapping the splitting

of the data into subsets for learning (60 %) and testing (40 %)
with 100 iterations.

Further, for an independent assessment of OSM-based
vulnerability model performance we consider two bench-
mark models. We argue that the set of CATI variables (Ta-
ble 1) represents the most detailed data set available for flood
loss estimation of residential buildings (Merz et al., 2013;
Schröter et al., 2014; Thieken et al., 2016). Therefore, a RF
model is learned using all 23 CATI predictors as an upper
benchmark (BMu). In contrast, a RF model using only wst
as a predictor is learned as a lower benchmark. The rea-
soning is that using extra variables in addition to wst will
improve the predictive performance of the models (Schröter
et al., 2016, 2018). As described in Sect. 2.3, the detail of
geolocation information from CATI data is limited to ranges
of house numbers. Therefore, we face uncertainty in whether
CATI data and OSM building footprints have been matched
correctly. To assess the potential implications of this source
of uncertainty, we derive a model (BMrm) which is based on
a data set with rloss and wst observations randomly assigned
to OSM building footprints. We keep the RF modelling ap-
proach for the benchmark models consistent to ensure that
any observed difference in model performance stems from
differences in the underlying input variables.
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Figure 2. Data pre-processing, model learning and model transfer workflow with BMu (upper-benchmark model); BMl (lower-benchmark
model); BMrm (benchmark model with random match of interview locations with OSM building data); A (random forest model using eight
predictors); B (random forest model using eight predictors); and model transfers d2E (learning with Dresden and predictions for Elbe), d2D
(learning with Dresden and predictions for Danube), E2D (learning with Elbe and predictions for Danube) and D2E (learning with Danube
and predictions for Elbe).

3.3 Predictive model evaluation

Model predictive performance is evaluated by comparing
predicted (P ) and observed (O) rloss values from the vali-
dation sample using the following metrics. In these metrics
RF predictions are evaluated for the median prediction (P50)
derived from the ensemble of individual tree predictions.

Mean absolute error (MAE) quantifies the precision of
model predictions, with smaller values indicating higher pre-
cision:

MAE =
1
n

n∑
i= 1
|P50i − Oi |. (1)

Mean bias error (MBE) is a measure of accuracy, i.e. sys-
tematic deviation from the observed value. Unbiased predic-
tions yield a value of 0; underestimation results in negative;
and overestimation in positive values:

MBE =
1
n

n∑
i= 1

(P50i − Oi). (2)

Mean squared error (MSE) combines the variance of the
model predictions and their bias. Again, smaller values indi-

cate better model performance:

MSE =
1
n

n∑
i= 1

(P50i − Oi)
2. (3)

The ensemble of model predictions from the RF models
offers insight into prediction uncertainty. This property is
analysed by evaluating the 90 % quantile range, i.e. the dif-
ference between the 5 % quantile and 95 % quantile in rela-
tion to the median, as a measure of ensemble spread:

QR90 =
1
n

n∑
i= 1

(P95i −P5i )/P50i (4)

with the 95 % quantile, 5 % quantile and 50 % quantile,
i.e. the median of the predictions. QR90 (quantile range)
is a measure of sharpness with smaller values indicating a
smaller prediction uncertainty.

Reliability of model predictions is quantified in terms of
the hit rate (HR) (Gneiting and Raftery, 2007):

HR =
1
n

n∑
i= 1

hi ; hi =

{
1, if Oi ∈

[
P95i ,P5i

]
0,otherwise (5)

HR calculates the ratio of observations within the 95 %–
5 % quantile range of model predictions. For a reliable pre-
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diction HR should correspond to the expected nominal cov-
erage of 0.9.

HR and QR90 are combined to the interval score (IS),
which accounts for the trade-off between HR values and
QR90 ranges (Gneiting and Raftery, 2007):

IS= QR90+
1
n

n∑
i= 1

2
β

(
P05i −Oi

)
|
{
Oi < P05i

}
+

2
β

(
Oi −P95i

)
|
{
Oi > P95i

}
. (6)

3.4 Spatial-transfer evaluation

We investigate the question of whether the consistent data
basis of OSM-derived numerical spatial measures supports
the transfer of flood vulnerability models across regions by
splitting the available data set into subsets for different re-
gions affected by major floods. The CATI data are mainly lo-
cated in the Elbe and Danube catchments in Germany, which
are the regions mostly affected by inundations and flood im-
pacts. This suggests a regional subdivision of the empirical
data set according to these river basins for the investigation of
spatial model transfer. In detail we partition the data set be-
tween the metropolitan area of Dresden (Saxony), the Elbe
catchment (Saxony, Saxony-Anhalt and Thuringia) and the
Danube catchment (Bavaria and Baden-Württemberg); see
Fig. 1. This split is applied irrespective of the CATI survey
campaign year, and thus the regional subsets contain records
from different flood events. The idea is to investigate exam-
ples with a small set of learning data for a small specific re-
gion (Dresden), a large learning data set from an extended
region (Elbe catchment) and a small set of learning data from
an extended region (Danube catchment). The details for the
learning and transfer applications are listed in Table 3. For
these three regions we learn RF models using the selected
variables and assess their predictive performance when trans-
ferred to the other regions. As we use a completely indepen-
dent data set for model transfer testing, no additional boot-
strap on top of RF internal bootstrapping is required.

4 Results and discussion

Random forest OOB errors are sensitive to the choice of RF
parameters mtry and ntree. From the variation of RF parame-
ters we observe that OOB errors decrease with smaller values
for mtry and larger numbers of trees in a forest (ntree); see
Fig. 3.

The coloured bands represent the 90 % quantile range of
OOB values from the 100 bootstrap repetitions for each RF
algorithm configuration and illustrate the inherent variabil-
ity of input variables in the learning data set. The colour
code distinguishes the number of variables used to determine
splits at each node (mtry). For mtry= 2 the smallest OOB er-
rors are achieved throughout the variations in the number of

trees (ntree). This value represents the lower bound of recom-
mended values for mtry in RF regression models (Breiman,
2001). For smaller values of mtry less variables are consid-
ered for splitting the space of predictor variables, which re-
duces the correlation between individual trees of the forest.
Further, increasing values of ntree asymptotically approxi-
mate smaller OOB values. It appears that for the given data
set OOB values are virtually stable above ntree= 7000. As
the computational effort increases with larger forests it has
to be balanced with improvements regarding predictive per-
formance. Building on these results we use RF parameters
mtry= 2 and ntree= 7000, which are comparable to those
used by Schröter et al. (2018).

4.1 Variable selection and predictive model learning

The numerical spatial measures (Table 2 and Appendix A1)
evaluate properties of the building footprints including area,
perimeter and elongation of main building axes. Accordingly
some of these variables are strongly correlated (Fig. 4). The
Spearman’s rank correlation matrix of the variables confirms
a high degree of correlation in the data set, as for instance
between Area, Perimeter and RadGyras. In contrast, the spa-
tial measures are only slightly correlated with wst and rloss.
The presence of multi-colinearity may influence the analy-
sis of variable importance (Gregorutti et al., 2017). The ro-
bust importance analysis uses different RF parameter settings
and reports an average importance rank, which alleviates this
problem.

The variable wst ranks first in the importance analysis
(results not shown), which confirms common knowledge in
flood loss modelling (Gerl et al., 2016; Smith, 1994). In com-
parison to wst, the numerical spatial measures of OSM build-
ing footprints have clearly smaller importance values with
relatively small differences between them. In terms of build-
ing characteristics, both spatial measures which express the
size and extension of the building (e.g. Area and Perimeter)
and spatial measures which describe building compactness
and shape complexity (e.g. PARatio, RadGyras, LinSegInd
and BoundRatio) seem to add information to better estimate
relative building loss. The following order of importance was
determined for the variables: wst, PARatio, RadGyras, Area,
LinSegInd, BoundRatio, Perimeter, DegrComp, FracDimInd
and ShapeIndex. Predictive performance tests for models
with 2 to 10 variables (Fig. 5 and Table 4) build on this order
of importance.

However, the outcome of the variable importance analy-
sis does not suggest a clear selection of features to be in-
cluded in a predictive flood vulnerability model. The model-
predictive-performance-based assessment of variables uses
an increasing number of variables following their ranking or-
der of variable importance in the RF modelling. The predic-
tive performance is quantified in terms of MAE, MBE and
MSE (Eqs. 1, 2 and 3) for 100 bootstrap repetitions. While
the MAE is decreasing when additional variables are used

https://doi.org/10.5194/nhess-21-643-2021 Nat. Hazards Earth Syst. Sci., 21, 643–662, 2021



652 M. Cerri et al.: Are OSM building data useful for flood vulnerability modelling?

Table 3. Computational experiments for transfer applications.

Transfer Implementation Learned on/applied to
experiment no. of buildings

d2E Learned from Dresden and applied to Elbe 310/1234
d2D Learned from Dresden and applied to Danube 310/105
E2D Learned from Elbe and applied to Danube 1234/105
D2E Learned from Danube and applied to Elbe 105/1234

Figure 3. Out-of-bag error for variations of mtry and ntree RF parameters. Colour bands represent the variation range of OOB errors obtained
from 100 bootstrap repetitions.

Figure 4. Spearman’s correlation of model variables (significance
level of 1 %); non-significant correlations are crossed out.

with an overall minimum for a model using six variables, in-
cluding more than six variables tends to increase MAE again
(Fig. 5). However, regarding MBE these changes go in an
opposite direction. We observe the smallest MBE when only
two variables are included. MBE then grows continuously
for using up to seven variables and then slightly reduces
when more variables are used. The increase in precision ex-
pressed by the smaller MAE is accompanied with a reduction
of accuracy reflected by an increasing MBE. This yields an
almost-balanced performance in terms of MSE for all models
tested.

Looking into the sharpness of model predictions, the quan-
tile range (QR90) is getting larger with an increasing num-
ber of model variables, which reflects larger uncertainty (Ta-
ble 4). In terms of model reliability (HR), an increasing num-
ber of model variables achieves better performance statistics
up to using eight variables. The combination of both QR and
HR in the interval score (IS) shows a similar pattern.

On the basis of these assessments two model alternatives
are selected for further analysis: model A using eight vari-
ables, as it provides the most reliable model predictions,
and model B using six variables, which provide the high-
est precision and balance between accuracy and precision.
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Figure 5. Predictive performance of models using an increasing number of variables in order of their importance. Smaller MAE and MSE
values and MBE values close to 0 indicate better performance; cf. Eqs. (1)–(3).

Table 4. Model performance metrics for models using an increasing number of variables arranged in the order of wst, PARatio, RadGyras,
Area, LinSegInd, BoundRatio, Perimeter, DegrComp, FracDimInd and ShapeIndex. Best performance values and selected models are in
bold.

Model MAE MBE MSE QR HR IS

2 variables 0.0878 −0.0234 0.0230 0.2765 0.5864 7.9402
3 variables 0.0853 −0.0293 0.0226 0.2992 0.6301 7.1154
4 variables 0.0843 −0.0316 0.0224 0.3070 0.6433 6.8440
5 variables 0.0840 −0.0348 0.0227 0.3182 0.6533 6.7166
6 variables 0.0826 −0.0364 0.0222 0.3270 0.6622 6.5728
7 variables 0.0830 −0.0373 0.0225 0.3302 0.6614 6.5715
8 variables 0.0839 −0.0337 0.0224 0.3314 0.6640 6.3757
9 variables 0.0841 −0.0349 0.0226 0.3346 0.6639 6.3766
10 variables 0.0844 −0.0357 0.0228 0.3365 0.6631 6.4000

In detail model B uses the variables wst, PARatio, RadGy-
ras, Area, LinSegInd and BoundRatio. Model A, in addition,
uses Perimeter and DegrComp as predictors.

4.2 Model predictive performance: model
benchmarking

The OSM models A and B are benchmarked with a model
that uses all information available from the CATI surveys as
an upper benchmark (BMu) and a model that uses only water
depth as predictor as a lower benchmark (BMl). The perfor-
mance statistics achieved by models A and B for the com-
plete data set (all events and regions) are slightly inferior to
BMu but clearly better than the outcomes of BMl (Fig. 6).
Both models A and B give very similar performance statistics
with slightly higher precision (smaller MAE) but larger bias
(MBE) for model B. In contrast, model A provides more re-
liable predictions indicated by larger HR and smaller IS (Ta-

ble 6). The randomized benchmark model (BMrm) achieves
a better performance than BMl but is inferior to models A and
B (Fig. 6, Table 5). Hence, we are confident that the remain-
ing uncertainty associated with the mapping of geolocations
to building geometries does not affect the outcomes of our
analyses. Overall, we note that including numerical spatial
measures based on OSM building footprints add useful in-
formation to predict loss to residential buildings. The numer-
ical spatial measures included in the models are all directly
calculated using building footprints. Therefore, a larger num-
ber of variables used for loss estimation does not imply in-
creased efforts to collect data. From this perspective the cost
of using model A or B is equal. The RF algorithm strives to
reduce overfitting when large numbers of predictors are in-
cluded, and thus the parsimonious modelling principle can be
relaxed. A possible negative effect of overfitting when using
more predictors should manifest in spatial-transfer applica-
tions.
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Figure 6. Performance metrics of OSM-based models and benchmark models.

Table 5. Model precision, accuracy and reliability performance metrics for OSM-based models and benchmark models.

Model MAE MBE MSE QR HR IS

BMu (upper benchmark, all 23 predictors from CATI interviews) 0.075 −0.034 0.018 0.336 0.733 3.573
A (7 numerical spatial measures derived from OSM plus water depth) 0.083 −0.032 0.019 0.322 0.699 6.022
B (5 most important numerical spatial measures plus water depth) 0.081 −0.035 0.019 0.319 0.698 6.238
BMrm (random match of CATI geolocation with OSM building polygons) 0.087 −0.034 0.021 0.319 0.688 6.535
BMl (lower benchmark, only water depth as predictor) 0.100 −0.019 0.026 0.177 0.490 10.107

4.3 Spatial-transfer testing

The predictive performance of RF models is tested in
regional-transfer applications. For this purpose, the RF mod-
els A and B as well as the benchmark models BMu and BMl,
as specified in the previous section, are learned using re-
gional subsets of the data and applied to predict flood losses
in a different region; see Sect. 3.4 and Table 3 for details
about the regional subdivision of data and spatial-transfer ex-
periments. Learning models with a regional subset of data
and applying the models to other regions results in a drop
of predictive performance in comparison to the case when
the entire data set is used for model learning, except for the
case of d2E (Fig. 7). In most of the learning or transfer cases,
BMu scores best in terms of precision and reliability, rep-
resented by the performance metrics MAE, MSE, HR and
IS. Using only wst as a predictor (BMl) produces less pre-
cise and less reliable predictions as indicated by larger MAE
and MSE, as well as smaller HR and larger IS. While the
performance of models A and B is very similar, model A,
using eight predictors, more reliably predicts residential loss
(larger HR and smaller IS), and model B, using six predic-
tors, provides more accurate (MBE closer to 0) and more
precise predictions (smaller MAE and MSE). Hence, overfit-

ting does not seem to be an issue when more input variables
are used. In contrast to the model benchmark comparison
(Sect. 4.4) BMu and BMl do not entirely frame the RF model
performance values. Instead, models A and B in some cases
achieve better and in other cases worse performance statis-
tics. Generally speaking, the predictive performance differs
more strongly between the regional-transfer settings than be-
tween the models (Fig. 7). This is more pronounced for pre-
cision and accuracy metrics (MAE, MBE and MSE) than for
sharpness and reliability indicators (QR, HR and IS). Learn-
ing from the Dresden subset and transferring the model to
the Elbe region (d2E) works best as is shown by the smallest
MAE and MSE as well as an MBE closest to 0. Learning the
models with the Danube subset and transferring them to the
Elbe region (D2E) yields comparably small MAE and MSE
values, but this is also the only case with a tendency to over-
estimate rloss resulting in a positive MBE. The models are
struggling most to predict loss when they are learned with the
Dresden subset and transferred to the Danube region (d2D),
showing the lowest precision and accuracy. In turn, extending
the learning subset to the Elbe region improves the transfer
to the Danube (E2D). Concerning predictive uncertainty and
reliability, learning with the Danube subset yields large QRs,
which however only partly cover the observed loss values
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reflected in comparably low HR and high IS (D2E). Learn-
ing from Dresden or Elbe and transferring to Elbe or Danube
(d2E, d2D and E2D) produces sharper predictions, but still
the models differ in reliability, i.e. covering the observed val-
ues within their predictive uncertainty ranges (HR). In this
respect, the upper benchmark model (BMu) performs best.
The differences between models A and B are small, and both
are better than the lower benchmark model (BMl) and almost
similar to BMu for the transfer cases between the regions
Elbe and Danube (E2D and D2E).

With 105 records the Danube data set is the smallest sub-
sample. It has a smaller variability and range of values for
most numerical spatial measures in comparison to the Dres-
den and Elbe regional sets (Fig. 8).

The geometric properties of the flood-affected residential
buildings in the Danube region seem to differ from the af-
fected residential buildings in the Elbe region. In the Danube
subset, the area and perimeter of buildings tend to be smaller
than in the Elbe region. Also, the values for spatial mea-
sures representing building shape complexity, for instance
RadGyras, DegrComp and BoundRatio, indicate more com-
pact building footprints in the Danube region than in the
Elbe region. These differences can be attributed to differ-
ent socio-economic characteristics as well as building prac-
tices in former East and West Germany and regional differ-
ences in building types (Thieken et al., 2007). With only 310
records, the Dresden sub-sample covers comparable ranges
of observed variables as the Elbe subset (1234 records).
Both subsets show largely similar relations between indi-
vidual variables and rloss. Still, the Danube subset includes
relatively many records with high rloss values, which are
distributed along the whole spectrum of above-ground-level
water depths (Fig. 8). In comparison, the Dresden subset
comprises very few cases with high relative loss which is
partly related to differing inundation processes. In the Elbe
and Danube catchments large areas have been flooded as
a consequence of levee failures. Hence, the relationship of
model variables to high rloss values cannot be learned from
this subset and thus is not represented well by the model.
Therefore, this difference in the learning data may explain
the positive bias introduced by learning the model in the
Danube and transferring it to the Elbe and, vice versa, the
pronounced negative bias introduced by learning the model
in Dresden and transferring it to the Danube region. Viewed
from a model performance perspective, the transfer appli-
cations show that a good agreement between learning and
transfer data sets (e.g. d2E) produces more precise and reli-
able predictions than the transfer to regions with pronounced
differences (e.g. d2D and D2E). Still from the Danube region
with limited ranges of variable values, it is possible to obtain
relatively precise and accurate predictions of relative build-
ing loss. This suggests that a broad variability of observed
rloss values in the learning data set is an important control
for the predictive capability of the model in other regions. In
contrast, small samples with limited variability and only few

records with high rloss values struggle with predicting rloss
in other regions. This confirms insights that a model based on
more heterogeneous data performs better when transferred in
space (Wagenaar et al., 2018). Our findings also reveal that
using numerical spatial measures derived from OSM build-
ing geometries does not resolve all problems of model trans-
fer. As not many variables of building characteristics are
available from OSM data, the spatial measures calculated
from building footprints serve as proxy variables for these
unavailable details. These proxies achieve comparable pre-
dictive performance as specific property level data sets as for
instance collected via computer-aided telephone interview
surveys represented by the BMu model. This model uses a
broad range of variables to characterize vulnerability of res-
idential buildings including details of building characteris-
tics; socio-economic status of the household; and flood warn-
ing, precaution and previous flood experience (cf. Table 1).
Still, this more comprehensive information does not result in
a clearly better model predictive performance in transfer ap-
plications. Additional improvements can be expected from
including local expert knowledge about inundation duration,
flood experience and return period of the event into the mod-
elling process (Sairam et al., 2019). Flood-event-related vari-
ables including flood type appear to be important informa-
tion for estimating the degree of building loss because they
describe differences in the damaging processes (Vogel et al.,
2018). Other data sources have been used to enrich empirical
data sets for learning flood loss models. This includes for in-
stance information about the building age and floor area for
living from Cadastre data (Wagenaar et al., 2017), number of
storeys, building type, building structure, finishing level and
conservation status from census data (Amadio et al., 2019).
However, using these data did not result in a clear improve-
ment in spatial model transfer. Using variables derived from
OSM data increases the flexibility of the models to be applied
in other regions because the accessibility and availability of
OSM data reduces the effort of data collection, simplifies the
preparation of input variables and ensures consistency of in-
put data. The latter point is an important advantage because
achieving consistency of input data has been stressed to cause
large efforts in model transfers (Jongman et al., 2012; Moli-
nari et al., 2020). The suggested RF models are based on an
ensemble approach and thus provide a view to the predictive
uncertainty of the model outputs. We have shown this to be
a valuable detail in assessing the reliability of model predic-
tions in spatial transfers. In cases where model performance
cannot be tested with local empirical evidence, using model
ensembles has been shown to provide more skilful loss esti-
mates (Figueiredo et al., 2018).

5 Conclusions

The transfer of flood vulnerability models to regions other
than those for which they have been developed often comes
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Figure 7. Model performance metrics in regional transfer. Models A and B based on spatial numerical measures calculated for OSM building
footprints; benchmark models BMl and BMu based on CATI survey data. Transfer experiments d2E, d2D, E2D and D2E as described in
Table 3; “all” refers to using all records from all regions; cf. Table 5.

with reduced predictive performance. In this study we inves-
tigated the suitability of numerical spatial measures calcu-
lated for residential-building footprints, which are accessible
from OpenStreetMap, to predict flood damage. Further we
tested potential benefits from using this widely available and
consistent input data source for the transfer of vulnerability
models across regions. We develop a new data set based on
OpenStreetMap data, which comprises variables represent-
ing building footprint dimensions and shape complexity, and
we devise novel flood vulnerability models for residential
buildings.

The geometric characteristics of building footprints serve
as proxy variables for building resistance to flood impacts
and prove useful for flood loss estimation. These model input
variables are easily extracted by an automated process appli-
cable to every type of building polygon. Hence, the models
can be applied to areas where information about the footprint
geometry of residential buildings is available. Also other data
sources, e.g. cadastral data or data derived from remote sens-
ing, can be used besides the OpenStreetMap data source.
While the variables derived from building footprints ensure

consistency and support transferability of models, the mod-
els remain context specific and should only be transferred to
regions with comparable building geometric features as the
learning data set.

The vulnerability models have been validated using em-
pirical data of relative loss to residential buildings. Further,
a benchmark comparison of the models has been conducted
in spatial-transfer applications. The models give comparable
performance to alternative multi-variable models, which use
comprehensive and detailed information about preparedness,
socio-economic status and other aspects of building vulnera-
bility. In comparison to a model which uses only water depth
as a predictor, they reduce model prediction errors (MAE by
20 % and MSE by 25 %) and increase the reliability of model
predictions by a factor of 1.4.

OpenStreetMap is a highly popular and evolving data
source with constantly increasing completeness and up-to-
date data. In the future, the attributes of residential build-
ings are expected to provide additional details which are
of interest for the characterization of building resistance to
flooding. This includes for instance information about the
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Figure 8. Scatterplots of numerical spatial measures and relative loss in regional sub-samples (Danube, Dresden and Elbe).

building type, roof type, number of floors and building ma-
terial and opens up further possibilities to refine the vari-
ables used for vulnerability modelling. These data could
be further amended with other open-data sources including
socio-economic statistical data. In view of a large variability
of flood loss on the individual-building level, vulnerability
modelling for individual buildings remains challenging and
is subject to large uncertainty. Advances to the understand-
ing of damage processes and the improvement of flood vul-
nerability modelling hence require an improved and extended
monitoring of flood losses.
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Appendix A

Table A1. Definition and examples for numerical spatial measures.
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Code and data availability. Flood damage data of the 2005, 2006,
2010, 2011 and 2013 events along with instructions on how to ac-
cess the data are available via the German flood damage database,
HOWAS21 (https://doi.org/10.1594/GFZ.SDDB.HOWAS21, GFZ
German Research Centre for Geosciences, 2020). Flood damage
data from the 2002 event were partly funded by the Deutsche Rück-
versicherung Aktiengesellschaft reinsurance company and may be
obtained upon request.

OSM is an open-data project, and the cartographic information
can be downloaded, altered and redistributed under the Open Data
Commons Open Database License (ODbL) (OpenStreetMap Con-
tributors, 2020).

In the presented study, the geographic data were processed in
PostgreSQL 12.2 with the PostGIS 3.0.1 extension and R ver-
sion 3.6.3 (29 February 2020) (R Core Team, 2020). The spatial
measures were calculated in PostgreSQL and imported into R for
further processing. The random forest model was built and ap-
plied in R with the use of the following packages: “randomFor-
est 4.6-14” (Liaw and Wiener, 2002), “sf 0.6-3” (Pebesma, 2018,
https://doi.org/10.32614/RJ-2018-009), “reshape2_1.4.3” (Wick-
ham, 2007), “gdalUtilities_1.1.0” (O’Brien, 2020), “rpostgis_1.4.3”
(Bucklin and Basille, 2018), “rgdal_1.4-8” (Bivand et al., 2019),
“raster_3.0-7” (Hijmans, 2019), “RPostgreSQL_0.6-2” (Conway
et al., 2017) and “tidyverse_1.3.0” (Wickham et al., 2019,
https://doi.org/10.21105/joss.01686).
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