Articles | Volume 21, issue 6
Nat. Hazards Earth Syst. Sci., 21, 1921–1933, 2021
https://doi.org/10.5194/nhess-21-1921-2021
Nat. Hazards Earth Syst. Sci., 21, 1921–1933, 2021
https://doi.org/10.5194/nhess-21-1921-2021

Research article 18 Jun 2021

Research article | 18 Jun 2021

Global ground strike point characteristics in negative downward lightning flashes – Part 2: Algorithm validation

Dieter R. Poelman et al.

Related authors

Global ground strike point characteristics in negative downward lightning flashes – Part 1: Observations
Dieter R. Poelman, Wolfgang Schulz, Stephane Pedeboy, Dustin Hill, Marcelo Saba, Hugh Hunt, Lukas Schwalt, Christian Vergeiner, Carlos T. Mata, Carina Schumann, and Tom Warner
Nat. Hazards Earth Syst. Sci., 21, 1909–1919, https://doi.org/10.5194/nhess-21-1909-2021,https://doi.org/10.5194/nhess-21-1909-2021, 2021
Short summary
Comparing lightning observations of the ground-based European lightning location system EUCLID and the space-based Lightning Imaging Sensor (LIS) on the International Space Station (ISS)
Dieter R. Poelman and Wolfgang Schulz
Atmos. Meas. Tech., 13, 2965–2977, https://doi.org/10.5194/amt-13-2965-2020,https://doi.org/10.5194/amt-13-2965-2020, 2020
Short summary
Analysis of lightning outliers in the EUCLID network
Dieter R. Poelman, Wolfgang Schulz, Rudolf Kaltenboeck, and Laurent Delobbe
Atmos. Meas. Tech., 10, 4561–4572, https://doi.org/10.5194/amt-10-4561-2017,https://doi.org/10.5194/amt-10-4561-2017, 2017
Short summary
The European lightning location system EUCLID – Part 1: Performance analysis and validation
Wolfgang Schulz, Gerhard Diendorfer, Stéphane Pedeboy, and Dieter Roel Poelman
Nat. Hazards Earth Syst. Sci., 16, 595–605, https://doi.org/10.5194/nhess-16-595-2016,https://doi.org/10.5194/nhess-16-595-2016, 2016
Short summary
The European lightning location system EUCLID – Part 2: Observations
Dieter Roel Poelman, Wolfgang Schulz, Gerhard Diendorfer, and Marina Bernardi
Nat. Hazards Earth Syst. Sci., 16, 607–616, https://doi.org/10.5194/nhess-16-607-2016,https://doi.org/10.5194/nhess-16-607-2016, 2016
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Implementation of WRF-Hydro at two drainage basins in the region of Attica, Greece, for operational flood forecasting
Elissavet Galanaki, Konstantinos Lagouvardos, Vassiliki Kotroni, Theodore Giannaros, and Christos Giannaros
Nat. Hazards Earth Syst. Sci., 21, 1983–2000, https://doi.org/10.5194/nhess-21-1983-2021,https://doi.org/10.5194/nhess-21-1983-2021, 2021
Short summary
Intense windstorms in the northeastern United States
Frederick W. Letson, Rebecca J. Barthelmie, Kevin I. Hodges, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci., 21, 2001–2020, https://doi.org/10.5194/nhess-21-2001-2021,https://doi.org/10.5194/nhess-21-2001-2021, 2021
Short summary
Review article: Risk management framework of environmental hazards and extremes in Mediterranean ecosystems
Panagiotis T. Nastos, Nicolas R. Dalezios, Ioannis N. Faraslis, Kostas Mitrakopoulos, Anna Blanta, Marios Spiliotopoulos, Stavros Sakellariou, Pantelis Sidiropoulos, and Ana M. Tarquis
Nat. Hazards Earth Syst. Sci., 21, 1935–1954, https://doi.org/10.5194/nhess-21-1935-2021,https://doi.org/10.5194/nhess-21-1935-2021, 2021
Short summary
Global ground strike point characteristics in negative downward lightning flashes – Part 1: Observations
Dieter R. Poelman, Wolfgang Schulz, Stephane Pedeboy, Dustin Hill, Marcelo Saba, Hugh Hunt, Lukas Schwalt, Christian Vergeiner, Carlos T. Mata, Carina Schumann, and Tom Warner
Nat. Hazards Earth Syst. Sci., 21, 1909–1919, https://doi.org/10.5194/nhess-21-1909-2021,https://doi.org/10.5194/nhess-21-1909-2021, 2021
Short summary
Assessing internal changes in the future structure of dry–hot compound events: the case of the Pyrenees
Marc Lemus-Canovas and Joan Albert Lopez-Bustins
Nat. Hazards Earth Syst. Sci., 21, 1721–1738, https://doi.org/10.5194/nhess-21-1721-2021,https://doi.org/10.5194/nhess-21-1721-2021, 2021
Short summary

Cited articles

Balch, J. K., Bradley, B. A., Abatzoglou, J. T., Nagy, R. C., Fusco, E. J., and Mahood, A. L.: Human-started wildfires expand the fire niche across the United States, P. Natl. Acad. Sci. USA, 114, 1946–2951, 2017. 
Ballarotti, M. G., Saba, M. M. F., and Pinto Jr., O.: A new perfomance evaluation of the Brazilian Lightning Location System (RINDAT) based on high-speed camera observations of natural negative ground flashes, proc. 19th Int. Lightning Detection Conf. (ILDC), Tucson, Az, Vaisala, 2006. 
Biagi, C. J., Cummins, K. L., Kehoe, K. E., and Krider, E. P.: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004, J. Geophys. Res., 112, D05208, https://doi.org/10.1029/2006JD007341, 2007. 
Campos, L. Z. S.: On the mechanisms that lead to multiple ground contacts in lightning, Doctorate Thesis of the Graduate Course in Space Geophysics, Instituto Nacional de Pesquisas eEpaciais (INPE), Chapter 4, available at: http://urlib.net/8JMKD3MGP3W34P/3LG4CDL (last access: June 2021), 2016. 
Campos, L. Z. S., Cummins, K. L., and Pinto Jr., O.: An algorithm for identifying ground strike points from return stroke data provided by lightning location systems, Asia-Pacific Conference on Lightning (APL), Nagoya, Japan, 2015. 
Download
Short summary
The lightning flash density is a key input parameter for assessing the risk of occurrence of a lightning strike. Flashes tend to have more than one ground termination point on average; therefore the use of ground strike point densities is more appropriate. The aim of this study is to assess the ability of three distinct ground strike point algorithms to correctly determine the observed ground-truth strike points.
Altmetrics
Final-revised paper
Preprint