Articles | Volume 21, issue 6
https://doi.org/10.5194/nhess-21-1921-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-1921-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global ground strike point characteristics in negative downward lightning flashes – Part 2: Algorithm validation
Dieter R. Poelman
CORRESPONDING AUTHOR
Royal Meteorological Institute of Belgium, Brussels, Belgium
Austrian Lightning Detection and Information System (ALDIS), Vienna, Austria
Stephane Pedeboy
Météorage, Pau, France
Leandro Z. S. Campos
Campos Scientific Computing, São José dos Campos, Brazil
Michihiro Matsui
Franklin Japan Corporation, Sagamihara 212-0212, Japan
Dustin Hill
Scientific Lightning Solutions LLC (SLS), Titusville, Florida, USA
Marcelo Saba
National Institute for Space Research, INPE, São José dos Campos, Brazil
Hugh Hunt
The Johannesburg Lightning Research Laboratory, School of Electrical and Information Engineering, University of Witwatersrand, Johannesburg, Johannesburg, South Africa
Related authors
Felix Erdmann and Dieter Roel Poelman
Nat. Hazards Earth Syst. Sci., 25, 1751–1768, https://doi.org/10.5194/nhess-25-1751-2025, https://doi.org/10.5194/nhess-25-1751-2025, 2025
Short summary
Short summary
This study provides detailed insight into the thunderstorm characteristics associated with abrupt changes in the lightning activity of a thunderstorm – lightning jumps (LJs) and lightning dives (LDs) – using geostationary satellite observations. Thunderstorms exhibiting one or multiple LJs or LDs feature characteristics similar to severe thunderstorms. Storms with multiple LJs contain strong convective updrafts and are prone to produce high rain rates, large hail, or tornadoes.
Dieter Roel Poelman, Hannes Kohlmann, and Wolfgang Schulz
Nat. Hazards Earth Syst. Sci., 24, 2511–2522, https://doi.org/10.5194/nhess-24-2511-2024, https://doi.org/10.5194/nhess-24-2511-2024, 2024
Short summary
Short summary
EUCLID's lightning data unveil distinctive ground strike point (GSP) patterns in Europe. Over seas, GSPs per flash surpass inland, reaching a minimum in the Alps. Mountainous areas like the Alps and Pyrenees have the closest GSP separation, highlighting terrain elevation's impact. The daily peak current correlates with average GSPs per flash. These findings could significantly influence lightning protection measures, urging a focus on GSP density rather than flash density for risk assessment.
Dieter R. Poelman, Wolfgang Schulz, Stephane Pedeboy, Dustin Hill, Marcelo Saba, Hugh Hunt, Lukas Schwalt, Christian Vergeiner, Carlos T. Mata, Carina Schumann, and Tom Warner
Nat. Hazards Earth Syst. Sci., 21, 1909–1919, https://doi.org/10.5194/nhess-21-1909-2021, https://doi.org/10.5194/nhess-21-1909-2021, 2021
Short summary
Short summary
Information about lightning properties is important in order to advance the current understanding of lightning, whereby the characteristics of ground strike points are in particular helpful to improving the risk estimation for lightning protection. High-speed video recordings of 1174 negative downward lightning flashes are taken in different regions around the world and analyzed in terms of flash multiplicity, duration, interstroke intervals and ground strike point properties.
Felix Erdmann and Dieter Roel Poelman
Nat. Hazards Earth Syst. Sci., 25, 1751–1768, https://doi.org/10.5194/nhess-25-1751-2025, https://doi.org/10.5194/nhess-25-1751-2025, 2025
Short summary
Short summary
This study provides detailed insight into the thunderstorm characteristics associated with abrupt changes in the lightning activity of a thunderstorm – lightning jumps (LJs) and lightning dives (LDs) – using geostationary satellite observations. Thunderstorms exhibiting one or multiple LJs or LDs feature characteristics similar to severe thunderstorms. Storms with multiple LJs contain strong convective updrafts and are prone to produce high rain rates, large hail, or tornadoes.
Hannes Kohlmann, Wolfgang Schulz, Farhad Rachidi, Naiara Duarte, and Dmitry Kuklin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1015, https://doi.org/10.5194/egusphere-2025-1015, 2025
Short summary
Short summary
Ground-based lightning location system (LLS) networks employ LLS sensors that estimate the direction of the magnetic field vector of incident lightning electromagnetic fields. This work demonstrates how field-to-cable coupling induces currents on the LLS sensor power supply cable shield, which are responsible for spurious (scattered) magnetic fields and, thus, cause errors in the estimation of the incident angle and amplitude, called "sensor site errors".
Andrea Kolínská, Ivana Kolmašová, Eric Defer, Ondřej Santolík, and Stéphane Pédeboy
Atmos. Chem. Phys., 25, 1791–1803, https://doi.org/10.5194/acp-25-1791-2025, https://doi.org/10.5194/acp-25-1791-2025, 2025
Short summary
Short summary
We contribute to understanding differences in lightning flashes of opposite polarity by explaining distinct in-cloud processes after return strokes. Using data from multiple sensors, including individual Lightning Mapping Array stations, we reveal that positive flashes sustain strong high-frequency radiation due to the recharging of their in-cloud leader; this is in contrast to negative flashes, for which this activity declines rapidly.
Dieter Roel Poelman, Hannes Kohlmann, and Wolfgang Schulz
Nat. Hazards Earth Syst. Sci., 24, 2511–2522, https://doi.org/10.5194/nhess-24-2511-2024, https://doi.org/10.5194/nhess-24-2511-2024, 2024
Short summary
Short summary
EUCLID's lightning data unveil distinctive ground strike point (GSP) patterns in Europe. Over seas, GSPs per flash surpass inland, reaching a minimum in the Alps. Mountainous areas like the Alps and Pyrenees have the closest GSP separation, highlighting terrain elevation's impact. The daily peak current correlates with average GSPs per flash. These findings could significantly influence lightning protection measures, urging a focus on GSP density rather than flash density for risk assessment.
Jose V. Moris, Pedro Álvarez-Álvarez, Marco Conedera, Annalie Dorph, Thomas D. Hessilt, Hugh G. P. Hunt, Renata Libonati, Lucas S. Menezes, Mortimer M. Müller, Francisco J. Pérez-Invernón, Gianni B. Pezzatti, Nicolau Pineda, Rebecca C. Scholten, Sander Veraverbeke, B. Mike Wotton, and Davide Ascoli
Earth Syst. Sci. Data, 15, 1151–1163, https://doi.org/10.5194/essd-15-1151-2023, https://doi.org/10.5194/essd-15-1151-2023, 2023
Short summary
Short summary
This work describes a database on holdover times of lightning-ignited wildfires (LIWs). Holdover time is defined as the time between lightning-induced fire ignition and fire detection. The database contains 42 datasets built with data on more than 152 375 LIWs from 13 countries in five continents from 1921 to 2020. This database is the first freely-available, harmonized and ready-to-use global source of holdover time data, which may be used to investigate LIWs and model the holdover phenomenon.
Dieter R. Poelman, Wolfgang Schulz, Stephane Pedeboy, Dustin Hill, Marcelo Saba, Hugh Hunt, Lukas Schwalt, Christian Vergeiner, Carlos T. Mata, Carina Schumann, and Tom Warner
Nat. Hazards Earth Syst. Sci., 21, 1909–1919, https://doi.org/10.5194/nhess-21-1909-2021, https://doi.org/10.5194/nhess-21-1909-2021, 2021
Short summary
Short summary
Information about lightning properties is important in order to advance the current understanding of lightning, whereby the characteristics of ground strike points are in particular helpful to improving the risk estimation for lightning protection. High-speed video recordings of 1174 negative downward lightning flashes are taken in different regions around the world and analyzed in terms of flash multiplicity, duration, interstroke intervals and ground strike point properties.
Cited articles
Balch, J. K., Bradley, B. A., Abatzoglou, J. T., Nagy, R. C., Fusco, E. J., and Mahood, A. L.: Human-started wildfires expand the fire niche across the United States, P. Natl. Acad. Sci. USA, 114, 1946–2951, 2017.
Ballarotti, M. G., Saba, M. M. F., and Pinto Jr., O.: A new perfomance evaluation of the Brazilian Lightning Location System (RINDAT) based on high-speed camera observations of natural negative ground flashes, proc. 19th Int. Lightning Detection Conf. (ILDC), Tucson, Az, Vaisala, 2006.
Biagi, C. J., Cummins, K. L., Kehoe, K. E., and Krider, E. P.: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004, J. Geophys. Res., 112, D05208, https://doi.org/10.1029/2006JD007341, 2007.
Campos, L. Z. S.: On the mechanisms that lead to multiple ground contacts in lightning, Doctorate Thesis of the Graduate Course in Space Geophysics, Instituto Nacional de Pesquisas eEpaciais (INPE), Chapter 4, available at: http://urlib.net/8JMKD3MGP3W34P/3LG4CDL (last access: June 2021), 2016.
Campos, L. Z. S., Cummins, K. L., and Pinto Jr., O.: An algorithm for identifying ground strike points from return stroke data provided by lightning location systems, Asia-Pacific Conference on Lightning (APL), Nagoya, Japan, 2015.
Cramer, J. A. and Cummins, K. L.: Evaluating location accuracy of lightning location networks using tall towers, 23rd Int. Lightning Detection Conf., Tucson, AZ, Vaisala, 2014.
Cummins, K. L.: Analysis of multiple ground contacts in cloud-to-ground flashes using LLS data: the impact of complext terrain, 22nd International Lightning Detection Conference, 2–3 April 2012, Broomfield, Colorado, USA, 2012.
Cummins, K. L. and Murphy, M. J.: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN, IEEE Trans. Electromagn. Compat., 51, 499–518, https://doi.org/10.1109/TEMC.2009.2023450, 2009.
Cummins, K. L., Murphy, M. J., Bardo, E. A., Hiscox, W. L., Pyle, R. B., and Pifer, A. E.: A Combined TOA/MDF Technology Upgrade of the US National Lightning Detection Network, J. Geophys. Res.-Atmos., 103, 9035–9044, 1998.
Cummins, K. L., Zhang, D., Quick M. G., Garolera, A. C., and Myers, J.: Performance of the US NLDN during the Kansas Windfarm 2012 and 2013 field programs, in: 23rd International Lightning Detection Conference, 18–19 March 2014, Tucson, AZ, Vaisala, 2014.
Curran, E. B., Holle, R. L., and Lopez, R. E.: Lightning casualties and damages in the United States from 1959 to 1994, J. Climate, 13, 3448–3453, 2000.
Diendorfer, G.: A review of 25 years of lightning research in Austria from 1991–2015, in: World meeting on Lightning, 6–8 April 2016, Cartagena, Colombia, 2016.
Diendorfer, G., Pichler, H., and Schulz, W.: EUCLID Located Strokes to the Gaisberg Tower – Accuracy of Location and its assigned Confidence Ellipse, in: International Lightning Detection Conference (ILDC), 18–19 March 2014.
Evert, R. C. and Gijben, M.: Official South African Lightning Ground Flash Density Map 2006 to 2017, in: Earthing Africa Inaugural Symposium and Exhibition, Johannesburg, South Africa, 2017.
Fensham, H. G., Schumann, C., Hunt, H. G. P., Nixon, K. J., Warner, T. A., and Gijben M.: Performance evaluation of the SALDN using high-speed camera footage of ground truth lightning events over Johannesburg, South Africa, 34th International Conference on Lightning Protection (ICLP), Rzeszow, Poland, 2018.
Gijben, M.: Lightning Climatology of South Africa, S. Afr. J. Sci., 108, 740, https://doi.org/10.4102/sajs.v108i3/4.740, 2012.
Hermant, A.: Traqueur d'Orages. Les rendez-vous de la nature, Nathan, ISSN 1285-9168, ISBN 2092605461, 9782092605462, 2000.
Holle, R. L., Lopez, R. E., and Navarro, B. C.: Deaths, injuries, and damages from lightning in the United States in the 1890s in comparison with the 1990s, J. Appl. Meteorol., 44, 1563–1573, 2005.
Hunt, H. G. P., Liu, Y. C., and Nixon, K.: Evaluation of the South African Lightning Detection Network using photographed tall tower lightning events from 2009–2013, 32rd International Conference on Lightning Protection (ICLP), Shanghai, China, 2014.
Hunt, H. G. P., Nixon, K. J., Jandrell, I. R., and Schulz, W.: Can we model the statistical distribution of lightning location system errors better?, Electr. Pow. Syst. Res., 178, 106042, https://doi.org/10.1016/j.epsr.2019.106042, 2020.
Jerauld, J., Rakov, V. A., Uman, M. A., Rambo, K. J., Jordan, D. M., Cummins, K. L., and Cramer, J. A.: An evaluation of the performance characteristics of the US National Lightning Detection Network in Florida using rocket-triggered lightning, J. Geophys. Res., 110, D19106, https://doi.org/10.1029/2005JD005924, 2005.
Koshak, W. J., Cummins, K. L., Beuchler, D. E., Vant-Hull, B., Blakeslee, R. J., Williams, E. R., and Peterson, H. S.: Variability of CONUS Lightning in 2003–12 and Associated Impacts, J. Appl. Meteorol. Clim., 54, 15–41, https://doi.org/10.1175/JAMC-D-14-0072.1, 2015.
Lafkovici, A., Hussein, A. M., Janischewskyj, W., and Cummins, K. L.: Performance analysis of the North American Lightning Detection Network using CN Tower lightning data, 19th Int. Lightning Detection Conf., Tucson, AZ, Vaisala, 2006.
Mallick, S., Rakov, V. A., Hill, J. D., Ngin, T., Gamerota, W. R., Pilkey, J. T., Biagi, C. J., Jordan, D. M., Uman, M. A., Cramer, J. A., and Nag, A.: Performance characteristics of the NLDN for return strokes and pulses superimposed on steady currents, based on rocket-triggered lightning data acquired in Florida in 2004–2012, J. Geophys. Res.-Atmos., 119, 3825–3856, https://doi.org/10.1002/2013JD021401, 2014.
Matsui, M., Michishita, K., and Yokoyama, S.: Characteristics of negative flashes with multiple ground strike points located by the Japanese lightning detection network, IEEE T. Electromagn. C., 61, 751–758, https://doi.org/10.1109/TEMC.2019.2913661, 2019.
Montanyà, J., van der Velde, O., and Williams, E. R.: Lightning discharges produced by wind turbines, J. Geophys. Res.-Atmos., 119, 1455–1462, https://doi.org/10.1002/2013JD020225, 2014.
Naccarato, K. P. and Pinto Jr., O.: Improvements in the detection efficiency model for the Brazilian lightning detection network (Brasil – DAT), Atmos. Res., 91, 546–563, https://doi.org/10.1016/j.atmosres.2008.06.019, 2009.
Nag, A., Mallick, S., Rakov, V. A., Howard, J. S., Biagi, C. J., Hill, J. D., Uman, M. A., Jordan, D. M., Rambo, K. J., Jerauld, J. E., DeCarlo, B. A., Cummins, K. L., and Cramer, J. A.: Evaluation of US National Lightning Detection Network performance characteristics using rockettriggered lightning data acquired in 2004–2009, J. Geophys. Res., 116, D02123, https://doi.org/10.1029/2010JD014929, 2011.
Nag, A., Murphy, M. J., Cummins, K. L., Pifer, A. E., and Cramer, J. A.: Recent evolution of the US National lightning Detection Network, 23rd Int. Lightning Detection Conf., Tucson, AZ, Vaisala, 2014.
Nag, A., Murphy, M. J., Schulz, W., and Cummins, K. L.: Lightning location systems: insights on characteristics and validation techniques, Earth Space Sci., 2, 65–93, https://doi.org/10.1002/2014ea000051, 2015.
Pedeboy, S.: Identification of the multiple ground contacts flashes with lightning location systems, CIGRE C4 Colloquium on Power Quality and Lightning, 13–16 May 2012, Sarajevo, Bosnia and Herzegovina, 2012.
Poelman, D. R., Schulz, W., Diendorfer, G., and Bernardi, M.: The European lightning location system EUCLID – Part 2: Observations, Nat. Hazards Earth Syst. Sci., 16, 607–616, https://doi.org/10.5194/nhess-16-607-2016, 2016.
Poelman, D. R., Schulz, W., Pedeboy, S., Hill, D., Saba, M., Hunt, H., Schwalt, L., Vergeiner, C., Mata, C. T., Schumann, C., and Warner, T.: Global ground strike point characteristics in negative downward lightning flashes – Part 1: Observations, Nat. Hazards Earth Syst. Sci., 21, 1909–1919,
https://doi.org/10.5194/nhess-21-1909-2021, 2021.
Rakov, V. A., Uman, M. A., and Thottappillil, R.: Review of lightning properties from electric field and TV observations, J. Geophys. Res., 99, 10745–10750, https://doi.org/10.1029/93JD01205, 1994.
Saraiva, A. C. V., Saba, M. M. F., Pinto, O., Cummins, K. L., Krider, E. P., and Campos, L. Z. S.: A comparative study of negative cloud-to-ground lightning characteristics in São Paulo (Brazil) and Arizona (United States) based on high-speed video observations, J. Geophys. Res., 115, D11102, https://doi.org/10.1029/2009JD012604, 2010.
Schultz, C. J., Nauslar, N. J., Wachter, J. B., Hain, C. R., and Bell, J. R.: Spatial, Temporal and Electrical Characteristics of Lightning in Reported Lightning-Initiated Wildfire Events, Fire, 2, 18, https://doi.org/10.3390/fire2020018, 2019.
Schulz, W., Pichler, H., and Diendorfer, G.: Evaluation of 45 negative flashes based on E-field measurements, video data and lightning location data in Austria, Proc. 30th Int. Conf. on Lightning Protection, Cagliari, Italy, Power and Energy Society, 1011-1–1014, 2010.
Schulz, W., Diendorfer, G., Pedeboy, S., and Poelman, D. R.: The European lightning location system EUCLID – Part 1: Performance analysis and validation, Nat. Hazards Earth Syst. Sci., 16, 595–605, https://doi.org/10.5194/nhess-16-595-2016, 2016.
Stall, C. A., Cummins, K. L., Krider, E. P., and Cramer, J. A.: Detecting Multiple Ground Contacts in Cloudto-Ground Lightning Flashes, J. Atmos. Ocean. Tech., 26, 2392–2402, 2009.
Stansfield, R. G.: Statistical Theory of D. F. Fixing, Journal of the Institution of Electrical Engineers – Part IIIA: Radiocommunication, 94, 762–770, 1947.
Thottappillil, R., Rakov, V. A., Uman, M. A., Beasley, W. H., Master, M. J., and Shelukhin, D. V.: Lightning subsequent-strokeelectric-field peak greater than the 1st stroke peak and multiple ground terminations, J. Geophys. Res.-Atmos., 97, 7503–7509, 1992.
Valine, W. C. and Krider, E. P.: Statistics and characteristics of cloud-to-ground lightning with multiple ground contacts, J. Geophys. Res.-Atmos., 107, 4441, https://doi.org/10.1029/2001JD001360, 2002.
Warner, T. A., Cummins, K. L., and Orville, R. E.: Upward lightning observations from towers in Rapid City, South Dakota and comparison with National Lightning Detection Network data, 2004–2010, J. Geophys. Res.-Atmos., 117, D19109, https://doi.org/10.1029/2012JD018346, 2012.
Yair, Y.: Lightning hazards to human societies in a changing climate, Environ. Res. Lett., 13, 123002, https://doi.org/10.1088/1748-9326/aaea86, 2018.
Zhang, D., Cummins, K. L. and Nag, A.: Assessment of cloud lightning detection by the US National Lightning Detection Network using video and Lightning Mapping Array observations, Seventh Conf. on the Meteorological Applications of Lightning Data, Phoenix, AZ, Am. Meteorol. Soc., 7.1, available at: https://ams.confex.com/ams/95Annual/webprogram/Paper262568.html (last access: June 2021), 2015.
Zhu, Y., Rakov, V. A., Tran, M. D., and Na,g A.: A study of National Lightning Detection Network responses to natural lightning base don ground truth data acquired at LOG with emphasis on cloud discharge activity, J. Geophys. Res.-Atmos., 121, 14651–14660, https://doi.org/10.1002/2016JD025574, 2016.
Zhu, Y., Lyu, W., Cramer, J., Rakov, V., Bitzer, P., and Ding, Z.: Analysis of location errors of the US National Lightning Detection Network using lightning strikes to towers, J. Geophys. Res.-Atmos., 125, e2020JD032530, https://doi.org/10.1029/2020JD032530, 2020.
Short summary
The lightning flash density is a key input parameter for assessing the risk of occurrence of a lightning strike. Flashes tend to have more than one ground termination point on average; therefore the use of ground strike point densities is more appropriate. The aim of this study is to assess the ability of three distinct ground strike point algorithms to correctly determine the observed ground-truth strike points.
The lightning flash density is a key input parameter for assessing the risk of occurrence of a...
Altmetrics
Final-revised paper
Preprint