Articles | Volume 21, issue 6
https://doi.org/10.5194/nhess-21-1921-2021
https://doi.org/10.5194/nhess-21-1921-2021
Research article
 | 
18 Jun 2021
Research article |  | 18 Jun 2021

Global ground strike point characteristics in negative downward lightning flashes – Part 2: Algorithm validation

Dieter R. Poelman, Wolfgang Schulz, Stephane Pedeboy, Leandro Z. S. Campos, Michihiro Matsui, Dustin Hill, Marcelo Saba, and Hugh Hunt

Related authors

Thunderstorm characteristics with lightning jumps and dives in satellite-based nowcasting
Felix Erdmann and Dieter Roel Poelman
EGUsphere, https://doi.org/10.5194/egusphere-2024-174,https://doi.org/10.5194/egusphere-2024-174, 2024
Short summary
Insights into ground strike point properties in Europe through the EUCLID Lightning Location System
Dieter Roel Poelman, Hannes Kohlmann, and Wolfgang Schulz
EGUsphere, https://doi.org/10.5194/egusphere-2024-18,https://doi.org/10.5194/egusphere-2024-18, 2024
Short summary
Global ground strike point characteristics in negative downward lightning flashes – Part 1: Observations
Dieter R. Poelman, Wolfgang Schulz, Stephane Pedeboy, Dustin Hill, Marcelo Saba, Hugh Hunt, Lukas Schwalt, Christian Vergeiner, Carlos T. Mata, Carina Schumann, and Tom Warner
Nat. Hazards Earth Syst. Sci., 21, 1909–1919, https://doi.org/10.5194/nhess-21-1909-2021,https://doi.org/10.5194/nhess-21-1909-2021, 2021
Short summary
Comparing lightning observations of the ground-based European lightning location system EUCLID and the space-based Lightning Imaging Sensor (LIS) on the International Space Station (ISS)
Dieter R. Poelman and Wolfgang Schulz
Atmos. Meas. Tech., 13, 2965–2977, https://doi.org/10.5194/amt-13-2965-2020,https://doi.org/10.5194/amt-13-2965-2020, 2020
Short summary
Analysis of lightning outliers in the EUCLID network
Dieter R. Poelman, Wolfgang Schulz, Rudolf Kaltenboeck, and Laurent Delobbe
Atmos. Meas. Tech., 10, 4561–4572, https://doi.org/10.5194/amt-10-4561-2017,https://doi.org/10.5194/amt-10-4561-2017, 2017
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Application of the teaching–learning-based optimization algorithm to an analytical model of thunderstorm outflows to analyze the variability of the downburst kinematic and geometric parameters
Andi Xhelaj and Massimiliano Burlando
Nat. Hazards Earth Syst. Sci., 24, 1657–1679, https://doi.org/10.5194/nhess-24-1657-2024,https://doi.org/10.5194/nhess-24-1657-2024, 2024
Short summary
Projections and uncertainties of winter windstorm damage in Europe in a changing climate
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024,https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Improving seasonal predictions of German Bight storm activity
Daniel Krieger, Sebastian Brune, Johanna Baehr, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 1539–1554, https://doi.org/10.5194/nhess-24-1539-2024,https://doi.org/10.5194/nhess-24-1539-2024, 2024
Short summary
A satellite view of the exceptionally warm summer of 2022 over Europe
João P. A. Martins, Sara Caetano, Carlos Pereira, Emanuel Dutra, and Rita M. Cardoso
Nat. Hazards Earth Syst. Sci., 24, 1501–1520, https://doi.org/10.5194/nhess-24-1501-2024,https://doi.org/10.5194/nhess-24-1501-2024, 2024
Short summary
Demographic yearbooks as a source of weather-related fatalities: the Czech Republic, 1919–2022
Rudolf Brázdil, Kateřina Chromá, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 1437–1457, https://doi.org/10.5194/nhess-24-1437-2024,https://doi.org/10.5194/nhess-24-1437-2024, 2024
Short summary

Cited articles

Balch, J. K., Bradley, B. A., Abatzoglou, J. T., Nagy, R. C., Fusco, E. J., and Mahood, A. L.: Human-started wildfires expand the fire niche across the United States, P. Natl. Acad. Sci. USA, 114, 1946–2951, 2017. 
Ballarotti, M. G., Saba, M. M. F., and Pinto Jr., O.: A new perfomance evaluation of the Brazilian Lightning Location System (RINDAT) based on high-speed camera observations of natural negative ground flashes, proc. 19th Int. Lightning Detection Conf. (ILDC), Tucson, Az, Vaisala, 2006. 
Biagi, C. J., Cummins, K. L., Kehoe, K. E., and Krider, E. P.: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004, J. Geophys. Res., 112, D05208, https://doi.org/10.1029/2006JD007341, 2007. 
Campos, L. Z. S.: On the mechanisms that lead to multiple ground contacts in lightning, Doctorate Thesis of the Graduate Course in Space Geophysics, Instituto Nacional de Pesquisas eEpaciais (INPE), Chapter 4, available at: http://urlib.net/8JMKD3MGP3W34P/3LG4CDL (last access: June 2021), 2016. 
Campos, L. Z. S., Cummins, K. L., and Pinto Jr., O.: An algorithm for identifying ground strike points from return stroke data provided by lightning location systems, Asia-Pacific Conference on Lightning (APL), Nagoya, Japan, 2015. 
Download
Short summary
The lightning flash density is a key input parameter for assessing the risk of occurrence of a lightning strike. Flashes tend to have more than one ground termination point on average; therefore the use of ground strike point densities is more appropriate. The aim of this study is to assess the ability of three distinct ground strike point algorithms to correctly determine the observed ground-truth strike points.
Altmetrics
Final-revised paper
Preprint