Articles | Volume 21, issue 1
https://doi.org/10.5194/nhess-21-171-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-171-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A methodology for attributing the role of climate change in extreme events: a global spectrally nudged storyline
Linda van Garderen
CORRESPONDING AUTHOR
Institute for Coastal Research – Analysis and Modelling, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany
Frauke Feser
Institute for Coastal Research – Analysis and Modelling, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany
Theodore G. Shepherd
Department of Meteorology, University of Reading, Reading RG6 6BB,
United Kingdom
Related authors
Henrique M. D. Goulart, Irene Benito Lazaro, Linda van Garderen, Karin van der Wiel, Dewi Le Bars, Elco Koks, and Bart van den Hurk
Nat. Hazards Earth Syst. Sci., 24, 29–45, https://doi.org/10.5194/nhess-24-29-2024, https://doi.org/10.5194/nhess-24-29-2024, 2024
Short summary
Short summary
We explore how Hurricane Sandy (2012) could flood New York City under different scenarios, including climate change and internal variability. We find that sea level rise can quadruple coastal flood volumes, while changes in Sandy's landfall location can double flood volumes. Our results show the need for diverse scenarios that include climate change and internal variability and for integrating climate information into a modelling framework, offering insights for high-impact event assessments.
Fiona R. Spuler, Marlene Kretschmer, Magdalena Alonso Balmaseda, Yevgeniya Kovalchuk, and Theodore G. Shepherd
Weather Clim. Dynam., 6, 995–1014, https://doi.org/10.5194/wcd-6-995-2025, https://doi.org/10.5194/wcd-6-995-2025, 2025
Short summary
Short summary
Large-scale atmospheric dynamics modulate the occurrence of extreme events and can improve their prediction. We present a generative machine learning method to identify key dynamical drivers of an impact variable in the form of targeted circulation regimes. Applied to extreme precipitation in Morocco, we show that these targeted regimes are more predictive of the impact while preserving their own predictability and physical consistency.
Sebastian Sippel, Clair Barnes, Camille Cadiou, Erich Fischer, Sarah Kew, Marlene Kretschmer, Sjoukje Philip, Theodore G. Shepherd, Jitendra Singh, Robert Vautard, and Pascal Yiou
Weather Clim. Dynam., 5, 943–957, https://doi.org/10.5194/wcd-5-943-2024, https://doi.org/10.5194/wcd-5-943-2024, 2024
Short summary
Short summary
Winter temperatures in central Europe have increased. But cold winters can still cause problems for energy systems, infrastructure, or human health. Here we tested whether a record-cold winter, such as the one observed in 1963 over central Europe, could still occur despite climate change. The answer is yes: it is possible, but it is very unlikely. Our results rely on climate model simulations and statistical rare event analysis. In conclusion, society must be prepared for such cold winters.
Wilson C. H. Chan, Nigel W. Arnell, Geoff Darch, Katie Facer-Childs, Theodore G. Shepherd, and Maliko Tanguy
Nat. Hazards Earth Syst. Sci., 24, 1065–1078, https://doi.org/10.5194/nhess-24-1065-2024, https://doi.org/10.5194/nhess-24-1065-2024, 2024
Short summary
Short summary
The most recent drought in the UK was declared in summer 2022. We pooled a large sample of plausible winters from seasonal hindcasts and grouped them into four clusters based on their atmospheric circulation configurations. Drought storylines representative of what the drought could have looked like if winter 2022/23 resembled each winter circulation storyline were created to explore counterfactuals of how bad the 2022 drought could have been over winter 2022/23 and beyond.
Henrique M. D. Goulart, Irene Benito Lazaro, Linda van Garderen, Karin van der Wiel, Dewi Le Bars, Elco Koks, and Bart van den Hurk
Nat. Hazards Earth Syst. Sci., 24, 29–45, https://doi.org/10.5194/nhess-24-29-2024, https://doi.org/10.5194/nhess-24-29-2024, 2024
Short summary
Short summary
We explore how Hurricane Sandy (2012) could flood New York City under different scenarios, including climate change and internal variability. We find that sea level rise can quadruple coastal flood volumes, while changes in Sandy's landfall location can double flood volumes. Our results show the need for diverse scenarios that include climate change and internal variability and for integrating climate information into a modelling framework, offering insights for high-impact event assessments.
Philipp Breul, Paulo Ceppi, and Theodore G. Shepherd
Weather Clim. Dynam., 4, 39–47, https://doi.org/10.5194/wcd-4-39-2023, https://doi.org/10.5194/wcd-4-39-2023, 2023
Short summary
Short summary
Accurately predicting the response of the midlatitude jet stream to climate change is very important, but models show a variety of possible scenarios. Previous work identified a relationship between climatological jet latitude and future jet shift in the southern hemispheric winter. We show that the relationship does not hold in separate sectors and propose that zonal asymmetries are the ultimate cause in the zonal mean. This questions the usefulness of the relationship.
Philipp Breul, Paulo Ceppi, and Theodore G. Shepherd
Weather Clim. Dynam., 3, 645–658, https://doi.org/10.5194/wcd-3-645-2022, https://doi.org/10.5194/wcd-3-645-2022, 2022
Short summary
Short summary
Understanding how the mid-latitude jet stream will respond to a changing climate is highly important. Unfortunately, climate models predict a wide variety of possible responses. Theoretical frameworks can link an internal jet variability timescale to its response. However, we show that stratospheric influence approximately doubles the internal timescale, inflating predicted responses. We demonstrate an approach to account for the stratospheric influence and recover correct response predictions.
Wilson C. H. Chan, Theodore G. Shepherd, Katie Facer-Childs, Geoff Darch, and Nigel W. Arnell
Hydrol. Earth Syst. Sci., 26, 1755–1777, https://doi.org/10.5194/hess-26-1755-2022, https://doi.org/10.5194/hess-26-1755-2022, 2022
Short summary
Short summary
We select the 2010–2012 UK drought and investigate an alternative unfolding of the drought from changes to its attributes. We created storylines of drier preconditions, alternative seasonal contributions, a third dry winter, and climate change. Storylines of the 2010–2012 drought show alternative situations that could have resulted in worse conditions than observed. Event-based storylines exploring plausible situations are used that may lead to high impacts and help stress test existing systems.
Beatriz M. Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn P. Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley J. Gray, Robin J. Hogan, Luke Jones, Linus Magnusson, Inna Polichtchouk, Theodore G. Shepherd, Nils Wedi, and Antje Weisheimer
Atmos. Chem. Phys., 22, 4277–4302, https://doi.org/10.5194/acp-22-4277-2022, https://doi.org/10.5194/acp-22-4277-2022, 2022
Short summary
Short summary
The stratosphere is emerging as one of the keys to improve tropospheric weather and climate predictions. This study provides evidence of the role the stratospheric ozone layer plays in improving weather predictions at different timescales. Using a new ozone modelling approach suitable for high-resolution global models that provide operational forecasts from days to seasons, we find significant improvements in stratospheric meteorological fields and stratosphere–troposphere coupling.
Adam A. Scaife, Mark P. Baldwin, Amy H. Butler, Andrew J. Charlton-Perez, Daniela I. V. Domeisen, Chaim I. Garfinkel, Steven C. Hardiman, Peter Haynes, Alexey Yu Karpechko, Eun-Pa Lim, Shunsuke Noguchi, Judith Perlwitz, Lorenzo Polvani, Jadwiga H. Richter, John Scinocca, Michael Sigmond, Theodore G. Shepherd, Seok-Woo Son, and David W. J. Thompson
Atmos. Chem. Phys., 22, 2601–2623, https://doi.org/10.5194/acp-22-2601-2022, https://doi.org/10.5194/acp-22-2601-2022, 2022
Short summary
Short summary
Great progress has been made in computer modelling and simulation of the whole climate system, including the stratosphere. Since the late 20th century we also gained a much clearer understanding of how the stratosphere interacts with the lower atmosphere. The latest generation of numerical prediction systems now explicitly represents the stratosphere and its interaction with surface climate, and here we review its role in long-range predictions and projections from weeks to decades ahead.
Marlene Kretschmer, Giuseppe Zappa, and Theodore G. Shepherd
Weather Clim. Dynam., 1, 715–730, https://doi.org/10.5194/wcd-1-715-2020, https://doi.org/10.5194/wcd-1-715-2020, 2020
Short summary
Short summary
The winds in the polar stratosphere affect the weather in the mid-latitudes, making it important to understand potential changes in response to global warming. However, climate model projections disagree on how this so-called polar vortex will change in the future. Here we show that sea ice loss in the Barents and Kara (BK) seas plays a central role in this. The time when the BK seas become ice-free differs between models, which explains some of the disagreement regarding vortex projections.
Cited articles
Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R., and Garcia-Herrera, R.: The Hot Summer of 2010: Redrawing the Temperature Record
Map of Europe, Science, 332, 220–224, https://doi.org/10.1126/science.1201224, 2011.
Bastos, A., Gouveia, C. M., Trigo, R. M., and Running, S. W.: Analysing the
spatio-temporal impacts of the 2003 and 2010 extreme heatwaves on plant
productivity in Europe, Biogeosciences, 11, 3421–3435,
https://doi.org/10.5194/bg-11-3421-2014, 2014.
Black, E., Blackburn, M., Harrison, G., Hoskins, B., and Methven, J.: Factors contributing to the summer 2003 European heatwave, Weather, 59, 217–223, https://doi.org/10.1256/wea.74.04, 2004.
Bony, S., Bellon, G., Klocke, D., Sherwood, S., Fermepin, S., and Denvil, S.: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation, Nat. Geosci., 6, 447–451, https://doi.org/10.1038/ngeo1799, 2013.
Cattiaux, J., Vautard, R., Cassou, C., Yiou, P., Masson-Delmotte, V., and
Codron, F.: Winter 2010 in Europe: A cold extreme in a warming climate, Geophys. Res. Lett., 37, L20704, https://doi.org/10.1029/2010GL044613, 2010.
Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V.,
Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De
Noblet, N., Friend, A. D., Friedlingstein, P., Grunwald, T., Heinesch, B.,
Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G.,
Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala, T., and
Valentini, R.: Europe-wide reduction in primary productivity caused by the
heat and drought in 2003, Nature, 437, 529–533, https://doi.org/10.1038/nature03972, 2005.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Deser, C., Terray, L., and Phillips, A. S.: Forced and Internal Components
of Winter Air Temperature Trends over North America during the past 50 Years: Mechanisms and Implications, J. Climate, 29, 2237–2258,
https://doi.org/10.1175/jcli-d-15-0304.1, 2016.
Dole, R., Hoerling, M., Perlwitz, J., Eischeid, J., Pegion, P., Zhang, T.,
Quan, X. W., Xu, T. Y., and Murray, D.: Was there a basis for anticipating
the 2010 Russian heat wave?, Geophys. Res. Lett., 38, L06702, https://doi.org/10.1029/2010gl046582, 2011.
Feser, F. and Barcikowska, M.: The influence of spectral nudging on typhoon
formation in regional climate models, Environ. Res. Lett., 7, 014024, https://doi.org/10.1088/1748-9326/7/1/014024, 2012.
Feudale, L. and Shukla, J.: Influence of sea surface temperature on the European heat wave of 2003 summer. Part I: an observational study, Clim.
Dynam., 36, 1691–1703, https://doi.org/10.1007/s00382-010-0788-0, 2011a.
Feudale, L. and Shukla, J.: Influence of sea surface temperature on the
European heat wave of 2003 summer. Part II: a modeling study, Clim. Dynam., 36, 1705–1715, https://doi.org/10.1007/s00382-010-0789-z, 2011b.
Fink, A. H., Brücher, T., Krüger, A., Leckebusch, G. C., Pinto, J. G., and Ulbrich, U.: The 2003 European summer heatwaves and drought–synoptic diagnosis and impacts, Weather, 59, 209–216, https://doi.org/10.1256/wea.73.04, 2004.
Fischer, E. M., Seneviratne, S. I., Vidale, P. L., Lüthi, D., and Schär, C.: Soil moisture – Atmosphere interactions during the 2003 European summer heat wave, J. Climate, 20, 5081–5099,
https://doi.org/10.1175/jcli4288.1, 2007.
Galarneau, T. J., Hamill, T. M., Dole, R. M., and Perlwitz, J.: A Multiscale
Analysis of the Extreme Weather Events over Western Russia and Northern
Pakistan during July 2010, Mon. Weather Rev., 140, 1639–1664,
https://doi.org/10.1175/mwr-d-11-00191.1, 2012.
García-Herrera, R., Díaz, J., Trigo, R. M., Luterbacher, J., and Fischer, E. M.: A review of the European summer heat wave of 2003, Crit. Rev. Environ. Sci. Technol., 40, 267–306, https://doi.org/10.1080/10643380802238137, 2010.
Giorgetta, M. A., Roeckner, E., Mauritsen, T., Bader, J., Crueger, T.,
Esch, M., Rast, S., Kornblueh, L., Schmidt, H., Kinne, S., Hohenegger, C., Möbis, B., Krismer, T., Wieners, K.-H., and Stevens, B.: ECHAM 6.1.00, available at: https://code.mpimet.mpg.de/projects/mpi-esm-users/files, last access: 15 January 2021.
Grumm, R. H.: The central European and Russian heat event of July–August 2010, B. Am. Meteorol. Soc., 92, 1285–1296, https://doi.org/10.1175/2011BAMS3174.1, 2011.
Hannart, A., Pearl, J., Otto, F. E. L., Naveau, P., and Ghil, M.: Causal
Counterfactual Theory for the Attribution of Weather and Climate-Related
Events, B. Am. Meteorol. Soc., 97, 99–110, https://doi.org/10.1175/bams-d-14-00034.1, 2016.
Hauser, M., Orth, R., and Seneviratne, S. I.: Role of soil moisture versus
recent climate change for the 2010 heat wave in western Russia, Geophys. Res. Lett., 43, 2819–2826, https://doi.org/10.1002/2016gl068036, 2016.
Horton, D. E., Johnson, N. C., Singh, D., Swain, D. L., Rajaratnam, B., and
Diffenbaugh, N. S.: Contribution of changes in atmospheric circulation patterns to extreme temperature trends, Nature, 522, 465–469,
https://doi.org/10.1038/nature14550, 2015.
Hoskins, B. and Woollings, T.: Persistent extratropical regimes and climate
extremes, Curr. Clim. Change Rep., 1, 115–124, https://doi.org/10.1007/s40641-015-0020-8, 2015.
Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M., and Rosinski, J.: A new
sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model, J. Climate, 21, 5145–5153, https://doi.org/10.1175/2008JCLI2292.1,
2008.
IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate
Change Adaptation, in: A Special Report of Working Groups I and II of the
Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., Cambridge University Press, Cambridge, UK, and New York, NY, USA, 582 pp., 2012.
IPCC – Inter-governmental Panel on Climate Change: Summary for Policymakers,
Global Warming of 1.5 ∘C: An IPCC Special Report on the Impacts of
Global Warming of 1.5 ∘C Above Pre-industrial Levels and Related
Global Greenhouse Gas Emission Pathways, in: the Context of Strengthening the
Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J.,
Chen, Y., Zhou, X., Gomis, M., Lonnoy, E., Maycock, T., Tignor, M., and
Watefield, T., World Meteorological Organization, Geneva, Switzerland, 32 pp., 2018.
Jeuken, A. B. M., Siegmund, P. C., Heijboer, L. C., Feichter, J., and Bengtsson, L.: On the potential of assimilating meteorological analyses in a
global climate model for the purpose of model validation, J. Geophys. Res.-Atmos., 101, 16939–16950, https://doi.org/10.1029/96jd01218, 1996.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR
40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:Tnyrp>2.0.Co;2, 1996.
Kim, J. E. and Hong, S. Y.: A Global Atmospheric Analysis Dataset Downscaled from the NCEP-DOE Reanalysis, J. Climate, 25, 2527–2534,
https://doi.org/10.1175/jcli-d-11-00534.1, 2012.
Lau, W. K. M. and Kim, K. M.: The 2010 Pakistan Flood and Russian Heat Wave: Teleconnection of Hydrometeorological Extremes, J. Hydrometeorol., 13, 392–403, https://doi.org/10.1175/jhm-d-11-016.1, 2012.
Lloyd, E. A. and Oreskes, N.: Climate Change Attribution: When Is It Appropriate to Accept New Methods?, Earths Future, 6, 311–325,
https://doi.org/10.1002/2017ef000665, 2018.
Lloyd, E. A. and Shepherd, T. G.: Environmental catastrophes, climate change, and attribution, Ann. NY Acad. Sci., 1469, 105–124, https://doi.org/10.1111/nyas.14308, 2020.
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., and Wanner, H.:
European seasonal and annual temperature variability, trends, and extremes
since 1500, Science, 303, 1499–1503, https://doi.org/10.1126/science.1093877, 2004.
Matsueda, M.: Predictability of Euro-Russian blocking in summer of 2010,
Geophys. Res. Lett., 38, L06801, https://doi.org/10.1029/2010gl046557, 2011.
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T.,
Lamarque, J. F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K.,
Thomson, A., Velders, G. J. M., and van Vuuren, D. P. P.: The RCP greenhouse
gas concentrations and their extensions from 1765 to 2300, Climatic Change,
109, 213–241, https://doi.org/10.1007/s10584-011-0156-z, 2011.
Meredith, E. P., Semenov, V. A., Maraun, D., Park, W., and Chernokulsky, A.
V.: Crucial role of Black Sea warming in amplifying the 2012 Krymsk
precipitation extreme, Nat. Geosci., 8, 615–619, https://doi.org/10.1038/ngeo2483, 2015.
Miguez-Macho, G., Stenchikov, G. L., and Robock, A.: Spectral nudging to
eliminate the effects of domain position and geometry in regional climate
model simulations, J. Geophys. Res.-Atmos., 109, D13104, https://doi.org/10.1029/2003jd004495, 2004.
Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C., and Vilà-Guerau
de Arellano, J.: Mega-heatwave temperatures due to combined soil desiccation
and atmospheric heat accumulation, Nat. Geosci., 7, 345–349, https://doi.org/10.1038/ngeo2141, 2014.
Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M.,
Budich, R., Bunzel, F., Esch, M., Ghosh, R., Haak, H., Ilyina, T., Kleine, T., Kornblueh, L., Li, H., Modali, K., Notz, D., Pohlmann, H., Roeckner, E.,
Stemmler, I., Tian, F., and Marotzke, J.: A Higher-resolution Version of the
Max Planck Institute Earth System Model (MPI-ESM1.2-HR), J. Adv. Model. Earth Syst., 10, 1383–1413, https://doi.org/10.1029/2017ms001217, 2018.
Muthers, S., Laschewski, G., and Matzarakis, A.: The Summers 2003 and 2015 in South-West Germany: Heat Waves and Heat-Related Mortality in the Context of Climate Change, Atmosphere, 8, 224, https://doi.org/10.3390/atmos8110224, 2017.
NAS – National Academies of Sciences Engineering and Medicine: Attribution
of Extreme Weather Events in the Context of Climate Change, The National Academies Press, Washington, D.C., https://doi.org/10.17226/21852, 2016.
Otto, F. E. L.: Attribution of Weather and Climate Events, Annu. Rev. Environ. Resour., 42, https://doi.org/10.1146/annurev-environ-102016-060847, 627–646, 2017.
Otto, F. E. L., Massey, N., van Oldenborgh, G. J., Jones, R. G., and Allen, M. R.: Reconciling two approaches to attribution of the 2010 Russian heat wave, Geophys. Res. Lett., 39, L04702, https://doi.org/10.1029/2011gl050422, 2012.
Patricola, C. M. and Wehner, M. F.: Anthropogenic influences on major tropical cyclone events, Nature, 563, 339–346, https://doi.org/10.1038/s41586-018-0673-2, 2018.
Pearl, J. and Mackenzie, D.: The book of Why: The new science of cause and
effect, Basic Books, New York, 2018.
Pfahl, S., O'Gorman, P. A., and Fischer, E. M.: Understanding the regional
pattern of projected future changes in extreme precipitation, Nat. Clim. Change, 7, 423–427, https://doi.org/10.1038/nclimate3287, 2017.
Rahmstorf, S. and Coumou, D.: Increase of extreme events in a warming world, P. Natl. Acad. Sci. USA, 108, 17905–17909, https://doi.org/10.1073/pnas.1101766108, 2011.
Rasmijn, L. M., van der Schrier, G., Bintanja, R., Barkmeijer, J., Sterl, A., and Hazeleger, W.: Future equivalent of 2010 Russian heatwave intensified by weakening soil moisture constraints, Nat. Clim. Change, 8, 381–385, https://doi.org/10.1038/s41558-018-0114-0, 2018.
Rayner, N. A., Brohan, P., Parker, D. E., Folland, C. K., Kennedy, J. J., Vanicek, M., Ansell, T. J., and Tett, S. F. B.: Improved Analyses of Changes
and Uncertainties in Sea Surface Temperature Measured In Situ since the
Mid-Nineteenth Century: The HadSST2 Dataset, J. Climate, 19, 446–469, https://doi.org/10.1175/jcli3637.1, 2006.
Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: Representation of
natural and anthropogenic land cover change in MPI-ESM, J. Adv. Model. Earth Syst., 5, 459–482, https://doi.org/10.1002/jame.20022, 2013.
Russo, S., Dosio, A., Graversen, R. G., Sillmann, J., Carrao, H., Dunbar, M.
B., Singleton, A., Montagna, P., Barbola, P., and Vogt, J. V.: Magnitude of
extreme heat waves in present climate and their projection in a warming world, J. Geophys. Res.-Atmos., 119, 12500–12512, https://doi.org/10.1002/2014jd022098, 2014.
Russo, S., Sillmann, J., and Fischer, E. M.: Top ten European heatwaves since 1950 and their occurrence in the coming decades, Environ. Res. Lett., 10, 124003, https://doi.org/10.1088/1748-9326/10/12/124003, 2015.
Schär, C., Frei, C., Lüthi, D., and Davies, H. C.: Surrogate climate-change scenarios for regional climate models, Geophys. Res. Lett., 23, 669–672, https://doi.org/10.1029/96GL00265, 1996.
Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A., and Appenzeller, C.: The role of increasing temperature
variability in European summer heatwaves, Nature, 427, 332–336,
https://doi.org/10.1038/nature02300, 2004.
Schneider, D. P., Deser, C., and Okumura, Y.: An assessment and interpretation of the observed warming of West Antarctica in the austral spring, Clim. Dynam., 38, 323–347, https://doi.org/10.1007/s00382-010-0985-x, 2012.
Schneidereit, A., Schubert, S., Vargin, P., Lunkeit, F., Zhu, X. H., Peters,
D. H. W., and Fraedrich, K.: Large-Scale Flow and the Long-Lasting Blocking
High over Russia: Summer 2010, Mon. Weather Rev., 140, 2967–2981,
https://doi.org/10.1175/mwr-d-11-00249.1, 2012.
Schubert-Frisius, M., Feser, F., von Storch, H., and Rast, S.: Optimal Spectral Nudging for Global Dynamic Downscaling, Mon. Weather Rev., 145, 909–927, https://doi.org/10.1175/mwr-d-16-0036.1, 2017.
Schupfner, M.: CMIP6 Scenario MIP DKRZ MPI-ESM1-2-HR historical – RCM-forcing data, available at:
https://cera-www.dkrz.de/WDCC/ui/cerasearch/entry?acronym=RCM_CMIP6_Historical-HR, last access: 15 January 2021.
Scinocca, J. F., Kharin, V. V., Jiao, Y., Qian, M. W., Lazare, M., Solheim, L., Flato, G. M., Biner, S., Desgagne, M., and Dugas, B.: Coordinated Global
and Regional Climate Modeling, J. Climate, 29, 17–35, https://doi.org/10.1175/jcli-d-15-0161.1, 2015.
Screen, J. A. and Simmonds, I.: Increasing fall-winter energy loss from the
Arctic Ocean and its role in Arctic temperature amplification, Geophys. Res. Lett., 37, L16707, https://doi.org/10.1029/2010GL044136, 2010.
Shepherd, T. G.: Dynamics, stratospheric ozone, and climate change, Atmos.-Ocean, 46, 117–138, https://doi.org/10.3137/ao.460106, 2008.
Shepherd, T. G.: Atmospheric circulation as a source of uncertainty in climate change projections, Nat. Geosci., 7, 703–708, https://doi.org/10.1038/ngeo2253,
2014.
Shepherd, T. G.: A Common Framework for Approaches to Extreme Event Attribution, Curr. Clim. Change Rep., 2, 28–38, https://doi.org/10.1007/s40641-016-0033-y, 2016.
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.,
Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I., Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and Roeckner, E.: Atmospheric component of the MPI-M Earth System Model: ECHAM6,
J. Adv. Model. Earth Syst., 5, 146–172, https://doi.org/10.1002/jame.20015, 2013.
Stott, P. A., Stone, D. A., and Allen, M. R.: Human contribution to the
European heatwave of 2003, Nature, 432, 610–614, https://doi.org/10.1038/nature03089, 2004.
Stott, P. A., Christidis, N., Otto, F. E. L., Sun, Y., Vanderlinden, J. P.,
van Oldenborgh, G. J., Vautard, R., von Storch, H., Walton, P., Yiou, P., and Zwiers, F. W.: Attribution of extreme weather and climate-related events, Wiley Interdisciplin. Rev. – Clim. Change, 7, 23–41, https://doi.org/10.1002/wcc.380, 2016.
Trenberth, K. E. and Fasullo, J. T.: Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010, J. Geophys. Res.-Atmos., 117, D17103, https://doi.org/10.1029/2012jd018020, 2012.
Trenberth, K. E., Fasullo, J. T., and Shepherd, T. G.: Attribution of climate extreme events, Nat. Clim. Change, 5, 725–730, https://doi.org/10.1038/nclimate2657, 2015.
Trigo, R. M., García-Herrera, R., Díaz, J., Trigo, I. F., and Valente, M. A.: How exceptional was the early August 2003 heatwave in France?, Geophys. Res. Lett., 32, L10701, https://doi.org/10.1029/2005gl022410, 2005.
van der Wiel, K., Selten, F. M., Bintanja, R., Blackport, R., and Screen, J.
A.: Ensemble climate-impact modelling: extreme impacts from moderate meteorological conditions, Environ. Res. Lett., 15, 034050, https://doi.org/10.1088/1748-9326/ab7668, 2020.
van Niekerk, A., Shepherd, T. G., Vosper, S. B., and Webster, S.: Sensitivity of resolved and parametrized surface drag to changes in resolution and parametrization, Q. J. Roy. Meteorol. Soc., 142, 2300–2313, https://doi.org/10.1002/qj.2821, 2016.
Vautard, R., Yiou, P., Otto, F., Stott, P., Christidis, N., Van Oldenborgh,
G. J., and Schaller, N.: Attribution of human-induced dynamical and thermodynamical contributions in extreme weather events, Environ. Res. Lett., 11, 114009, https://doi.org/10.1088/1748-9326/11/11/114009, 2016.
von Storch, H., Langenberg, H., and Feser, F.: A spectral nudging technique
for dynamical downscaling purposes, Mon. Weather Rev., 128, 3664–3673,
https://doi.org/10.1175/1520-0493(2000)128<3664:Asntfd>2.0.Co;2, 2000.
von Storch, H., Cavicchia, L., Feser, F., and Li, D. L.: The Concept of Large-Scale Conditioning of Climate Model Simulations of Atmospheric Coastal
Dynamics: Current State and Perspectives, Atmosphere, 9, 337, https://doi.org/10.3390/atmos9090337, 2018.
Waldron, K. M., Paegle, J., and Horel, J. D.: Sensitivity of a spectrally
filtered and nudged limited-area model to outer model options, Mon. Weather Rev., 124, 529–547, https://doi.org/10.1175/1520-0493(1996)124<0529:Soasfa>2.0.Co;2, 1996.
Wallace, J. M., Fu, Q., Smoliak, B. V., Lin, P., and Johanson, C. M.: Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season, P. Natl. Acad. Sci. USA, 109, 14337–14342, https://doi.org/10.1073/pnas.1204875109, 2012.
Wang, G., Hope, P., Lim, E. P., Hendon, H. H., and Arblaster, J. M.: An
initialized attribution method of extreme events on subseasonal to seasonal
time-scales, J. Climate, https://doi.org/10.1175/JCLI-D-19-1021.1, in press, 2020.
Watanabe, M., Shiogama, H., Imada, Y., Mori, M., Ishii, M., and Kimoto, M.:
Event attribution of the August 2010 Russian heat wave, Scient. Online Lett. Atmos., 9, 65–68, https://doi.org/10.2151/sola.2013-015, 2013.
Wehrli, K., Guillod, B. P., Hauser, M., Leclair, M., and Seneviratne, S. I.:
Identifying Key Driving Processes of Major Recent Heat Waves, J. Geophys. Res.-Atmos., 124, 11746–11765, https://doi.org/10.1029/2019JD030635, 2019.
Wehrli, K., Hauser, M., and Seneviratne, S. I.: Storylines of the 2018 Northern Hemisphere heatwave at pre-industrial and higher global warming levels, Earth Syst. Dynam., 11, 855–873, https://doi.org/10.5194/esd-11-855-2020, 2020.
Yoshimura, K. and Kanamitsu, M.: Dynamical global downscaling of global reanalysis, Mon. Weather Rev., 136, 2983–2998, https://doi.org/10.1175/2008mwr2281.1,
2008.
Short summary
The storyline method is used to quantify the effect of climate change on a particular extreme weather event using a global atmospheric model by simulating the event with and without climate change. We present the method and its successful application for the climate change signals of the European 2003 and the Russian 2010 heatwaves.
The storyline method is used to quantify the effect of climate change on a particular extreme...
Altmetrics
Final-revised paper
Preprint