Articles | Volume 20, issue 2
https://doi.org/10.5194/nhess-20-643-2020
https://doi.org/10.5194/nhess-20-643-2020
Review article
 | 
27 Feb 2020
Review article |  | 27 Feb 2020

Review article: Review of fragility analyses for major building types in China with new implications for intensity–PGA relation development

Danhua Xin, James Edward Daniell, and Friedemann Wenzel

Related authors

The grid-level fixed asset model developed for China from 1951 to 2020
Danhua Xin, James Edward Daniell, Zhenguo Zhang, Friedemann Wenzel, Shaun Shuxun Wang, and Xiaofei Chen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-138,https://doi.org/10.5194/nhess-2024-138, 2024
Revised manuscript under review for NHESS
Short summary
Residential building stock modelling for mainland China targeted for seismic risk assessment
Danhua Xin, James Edward Daniell, Hing-Ho Tsang, and Friedemann Wenzel
Nat. Hazards Earth Syst. Sci., 21, 3031–3056, https://doi.org/10.5194/nhess-21-3031-2021,https://doi.org/10.5194/nhess-21-3031-2021, 2021
Short summary
Residential building stock modelling for mainland China
Danhua Xin, James Edward Daniell, Hing-Ho Tsang, and Friedemann Wenzel
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-385,https://doi.org/10.5194/nhess-2019-385, 2020
Manuscript not accepted for further review
Short summary
State of the art of fragility analysis for major building types in China with implications for intensity-PGA relationships
Danhua Xin, James Edward Daniell, and Friedemann Wenzel
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-254,https://doi.org/10.5194/nhess-2018-254, 2018
Revised manuscript not accepted
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Ready, Set & Go! An anticipatory action system against droughts
Gabriela Guimarães Nobre, Jamie Towner, Bernardino Nhantumbo, Célio João da Conceição Marcos Matuele, Isaias Raiva, Massimiliano Pasqui, Sara Quaresima, and Rogério Manuel Lemos Pereira Bonifácio
Nat. Hazards Earth Syst. Sci., 24, 4661–4682, https://doi.org/10.5194/nhess-24-4661-2024,https://doi.org/10.5194/nhess-24-4661-2024, 2024
Short summary
Between global risk reduction goals, scientific–technical capabilities and local realities: a modular approach for user-centric multi-risk assessment
Elisabeth Schoepfer, Jörn Lauterjung, Torsten Riedlinger, Harald Spahn, Juan Camilo Gómez Zapata, Christian D. León, Hugo Rosero-Velásquez, Sven Harig, Michael Langbein, Nils Brinckmann, Günter Strunz, Christian Geiß, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 4631–4660, https://doi.org/10.5194/nhess-24-4631-2024,https://doi.org/10.5194/nhess-24-4631-2024, 2024
Short summary
Flood risk assessment through large-scale modeling under uncertainty
Luciano Pavesi, Elena Volpi, and Aldo Fiori
Nat. Hazards Earth Syst. Sci., 24, 4507–4522, https://doi.org/10.5194/nhess-24-4507-2024,https://doi.org/10.5194/nhess-24-4507-2024, 2024
Short summary
Migration as a hidden risk factor in seismic fatality: a spatial modeling of the Chi-Chi earthquake and suburban syndrome
Tzu-Hsin Karen Chen, Kuan-Hui Elaine Lin, Thung-Hong Lin, Gee-Yu Liu, Chin-Hsun Yeh, and Diana Maria Ceballos
Nat. Hazards Earth Syst. Sci., 24, 4457–4471, https://doi.org/10.5194/nhess-24-4457-2024,https://doi.org/10.5194/nhess-24-4457-2024, 2024
Short summary
Simulating the effects of sea level rise and soil salinization on adaptation and migration decisions in Mozambique
Kushagra Pandey, Jens A. de Bruijn, Hans de Moel, W. J. Wouter Botzen, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 24, 4409–4429, https://doi.org/10.5194/nhess-24-4409-2024,https://doi.org/10.5194/nhess-24-4409-2024, 2024
Short summary

Cited articles

A, N.: Simplified Prediction Methods of Earthquake Disaster Losses in Hohhot, MS Thesis, Inner Mongolia Normal University, Inner Mongolia, China, 45 pp., 2013 (in Chinese). 
Antoniou, S. and Pinho, R.: Development and verification of a displacement-based adaptive pushover procedure, J. Earthq. Eng., 8, 643–661, https://doi.org/10.1080/13632460409350504, 2004. 
Barosh, P. J.: Use of seismic intensity data to predict the effects of earthquakes and underground nuclear explosions in various geologic settings, U.S. Government Printing Office, Washington, D.C., USA, 1969. 
Bie, D., Feng, Q., and Zhang, T.: A Research on Vulnerability of Brick-Concrete Buildings in Fujian Based on Partition of Region Characteristics, Journal of Catastrophe, 25, 254–257, https://doi.org/10.3969/j.issn.1000-811X.2010.z1.054, 2010 (in Chinese). 
Bilal, M. and Askan, A.: Relationships between Felt Intensity and Recorded Ground-Motion Parameters for Turkey, B. Seismol. Soc. Am., 104, 484–496, https://doi.org/10.1785/0120130093, 2014. 
Short summary
Field surveys after major disastrous earthquakes have shown that poor performance of buildings in earthquake-affected areas is the leading cause of human fatalities and economic losses. The evaluation of seismic fragility for existing building stocks has become a crucial issue due to the frequent occurrence of earthquakes in the last decades. This study conducts such a comprehensive review for mainland China and aims to better serve the natural disaster prevention and mitigation cause in China.
Altmetrics
Final-revised paper
Preprint