Research article 01 Dec 2020
Research article | 01 Dec 2020
Comparison of estimates of global flood models for flood hazard and exposed gross domestic product: a China case study
Jerom P. M. Aerts et al.
Related authors
No articles found.
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-582, https://doi.org/10.5194/hess-2020-582, 2020
Preprint under review for HESS
Short summary
Short summary
Digital elevation models and derived flow directions are crucial for distributed hydrological modelling. As the spatial resolution of models is typically coarser than these data we need methods to upscale flow direction data while preserving the river structure. We propose the Iterative Hydrography Upscaling (IHU) method and show it outperforms other often applied methods. In addition we derive the MERIT Hydro IHU hydrography dataset including sub-grid river attributes such as length and slope.
Paolo De Luca, Gabriele Messori, Davide Faranda, Philip J. Ward, and Dim Coumou
Earth Syst. Dynam., 11, 793–805, https://doi.org/10.5194/esd-11-793-2020, https://doi.org/10.5194/esd-11-793-2020, 2020
Short summary
Short summary
In this paper we quantify Mediterranean compound temperature and precipitation dynamical extremes (CDEs) over the 1979–2018 period. The strength of the temperature–precipitation coupling during summer increased and is driven by surface warming. We also link the CDEs to compound hot–dry and cold–wet events during summer and winter respectively.
Philip J. Ward, Veit Blauhut, Nadia Bloemendaal, James E. Daniell, Marleen C. de Ruiter, Melanie J. Duncan, Robert Emberson, Susanna F. Jenkins, Dalia Kirschbaum, Michael Kunz, Susanna Mohr, Sanne Muis, Graeme A. Riddell, Andreas Schäfer, Thomas Stanley, Ted I. E. Veldkamp, and Hessel C. Winsemius
Nat. Hazards Earth Syst. Sci., 20, 1069–1096, https://doi.org/10.5194/nhess-20-1069-2020, https://doi.org/10.5194/nhess-20-1069-2020, 2020
Short summary
Short summary
We review the scientific literature on natural hazard risk assessments at the global scale. In doing so, we examine similarities and differences between the approaches taken across the different hazards and identify potential ways in which different hazard communities can learn from each other. Finally, we discuss opportunities for learning from methods and approaches being developed and applied to assess natural hazard risks at more continental or regional scales.
Timothy Tiggeloven, Hans de Moel, Hessel C. Winsemius, Dirk Eilander, Gilles Erkens, Eskedar Gebremedhin, Andres Diaz Loaiza, Samantha Kuzma, Tianyi Luo, Charles Iceland, Arno Bouwman, Jolien van Huijstee, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 1025–1044, https://doi.org/10.5194/nhess-20-1025-2020, https://doi.org/10.5194/nhess-20-1025-2020, 2020
Short summary
Short summary
We present a framework to evaluate the benefits and costs of coastal adaptation through dikes to reduce future flood risk. If no adaptation takes place, we find that global coastal flood risk increases 150-fold by 2080, with sea-level rise contributing the most. Moreover, 15 countries account for 90 % of this increase; that adaptation shows high potential to cost-effectively reduce flood risk. The results will be integrated into the Aqueduct Global Flood Analyzer web tool.
Anaïs Couasnon, Dirk Eilander, Sanne Muis, Ted I. E. Veldkamp, Ivan D. Haigh, Thomas Wahl, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, https://doi.org/10.5194/nhess-20-489-2020, 2020
Short summary
Short summary
When a high river discharge coincides with a high storm surge level, this can exarcebate flood level, depth, and duration, resulting in a so-called compound flood event. These events are not currently included in global flood models. In this research, we analyse the timing and correlation between modelled discharge and storm surge level time series in deltas and estuaries. Our results provide a first indication of regions along the global coastline with a high compound flooding potential.
Maria Cortès, Marco Turco, Philip Ward, Josep A. Sánchez-Espigares, Lorenzo Alfieri, and Maria Carmen Llasat
Nat. Hazards Earth Syst. Sci., 19, 2855–2877, https://doi.org/10.5194/nhess-19-2855-2019, https://doi.org/10.5194/nhess-19-2855-2019, 2019
Short summary
Short summary
The main objective of this paper is to estimate changes in the probability of damaging flood events with global warming of 1.5, 2 and 3 °C above pre-industrial levels and taking into account different socioeconomic scenarios in two western Mediterranean regions. The results show a general increase in the probability of a damaging event, with larger increments when higher warming is considered. Moreover, this increase is higher when both climate and population change are included.
Johanna Englhardt, Hans de Moel, Charles K. Huyck, Marleen C. de Ruiter, Jeroen C. J. H. Aerts, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 19, 1703–1722, https://doi.org/10.5194/nhess-19-1703-2019, https://doi.org/10.5194/nhess-19-1703-2019, 2019
Short summary
Short summary
Large-scale risk assessments can be improved by a more direct relation between the type of exposed buildings and their flood impact. Compared to the common land-use-based approach, this model reflects heterogeneous structures and defines building-material-based vulnerability classes. This approach is particularly interesting for areas with large variations of building types, such as developing countries and large scales, and enables vulnerability comparison across different natural disasters.
Jannis M. Hoch, Dirk Eilander, Hiroaki Ikeuchi, Fedor Baart, and Hessel C. Winsemius
Nat. Hazards Earth Syst. Sci., 19, 1723–1735, https://doi.org/10.5194/nhess-19-1723-2019, https://doi.org/10.5194/nhess-19-1723-2019, 2019
Short summary
Short summary
Flood events are often complex in their origin and dynamics. The choice of computer model to simulate can hence determine which level of complexity can be represented. We here compare different models varying in complexity (hydrology with routing, 1-D routing, 1D/2D hydrodynamics) and assess how model choice influences the accuracy of results. This was achieved by using GLOFRIM, a model coupling framework. Results show that accuracy depends on the model choice and the output variable considered.
Shiqiang Du, Xiaotao Cheng, Qingxu Huang, Ruishan Chen, Philip J. Ward, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 19, 715–719, https://doi.org/10.5194/nhess-19-715-2019, https://doi.org/10.5194/nhess-19-715-2019, 2019
Short summary
Short summary
A mega-flood in 1998 caused tremendous losses in China and triggered major policy adjustments in flood-risk management. This paper rethinks these policy adjustments and discusses how China should adapt to newly emerging flood challenges. We suggest that China needs novel flood-risk management approaches to address the new challenges from rapid urbanization and climate change. These include risk-based urban planning and a coordinated water governance system.
Giuliano Di Baldassarre, Heidi Kreibich, Sergiy Vorogushyn, Jeroen Aerts, Karsten Arnbjerg-Nielsen, Marlies Barendrecht, Paul Bates, Marco Borga, Wouter Botzen, Philip Bubeck, Bruna De Marchi, Carmen Llasat, Maurizio Mazzoleni, Daniela Molinari, Elena Mondino, Johanna Mård, Olga Petrucci, Anna Scolobig, Alberto Viglione, and Philip J. Ward
Hydrol. Earth Syst. Sci., 22, 5629–5637, https://doi.org/10.5194/hess-22-5629-2018, https://doi.org/10.5194/hess-22-5629-2018, 2018
Short summary
Short summary
One common approach to cope with floods is the implementation of structural flood protection measures, such as levees. Numerous scholars have problematized this approach and shown that increasing levels of flood protection can generate a false sense of security and attract more people to the risky areas. We briefly review the literature on this topic and then propose a research agenda to explore the unintended consequences of structural flood protection.
Anouk I. Gevaert, Ted I. E. Veldkamp, and Philip J. Ward
Hydrol. Earth Syst. Sci., 22, 4649–4665, https://doi.org/10.5194/hess-22-4649-2018, https://doi.org/10.5194/hess-22-4649-2018, 2018
Short summary
Short summary
Drought is a natural hazard that has severe environmental and socioeconomic impacts around the globe. Here, we quantified the time taken for drought to propagate from precipitation droughts to soil moisture and streamflow droughts. Results show that propagation timescales are strongly related to climate type, with fast responses in tropical regions and slow responses in arid regions. Insight into the timescales of drought propagation globally may help improve seasonal drought forecasting.
Marleen C. de Ruiter, Philip J. Ward, James E. Daniell, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 17, 1231–1251, https://doi.org/10.5194/nhess-17-1231-2017, https://doi.org/10.5194/nhess-17-1231-2017, 2017
Short summary
Short summary
This study provides cross-discipline lessons for earthquake and flood vulnerability assessment methods by comparing indicators used in both fields. It appears that there is potential for improvement of these methods that can be obtained for both earthquake and flood vulnerability assessment indicators. This increased understanding is beneficial for both scientists as well as practitioners working with earthquake and/or flood vulnerability assessment methods.
Tom Brouwer, Dirk Eilander, Arnejan van Loenen, Martijn J. Booij, Kathelijne M. Wijnberg, Jan S. Verkade, and Jurjen Wagemaker
Nat. Hazards Earth Syst. Sci., 17, 735–747, https://doi.org/10.5194/nhess-17-735-2017, https://doi.org/10.5194/nhess-17-735-2017, 2017
Short summary
Short summary
The increasing number and severity of floods, driven by e.g. urbanization, subsidence and climate change, create a growing need for accurate and timely flood maps. At the same time social media is a source of much real-time data that is still largely untapped in flood disaster management. This study illustrates that inherently uncertain data from social media can be used to derive information about flooding.
Paolo Scussolini, Jeroen C. J. H. Aerts, Brenden Jongman, Laurens M. Bouwer, Hessel C. Winsemius, Hans de Moel, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 16, 1049–1061, https://doi.org/10.5194/nhess-16-1049-2016, https://doi.org/10.5194/nhess-16-1049-2016, 2016
Short summary
Short summary
Assessments of flood risk, on global to local scales, are becoming more urgent with ongoing climate change and with rapid socioeconomic developments. Such assessments need information about existing flood protection, still largely unavailable. Here we present the first open-source database of FLood PROtection Standards, FLOPROS, which enables more accurate modelling of flood risk. We also invite specialists to contribute new information to this evolving database.
Yus Budiyono, Jeroen C. J. H. Aerts, Daniel Tollenaar, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 16, 757–774, https://doi.org/10.5194/nhess-16-757-2016, https://doi.org/10.5194/nhess-16-757-2016, 2016
Short summary
Short summary
The paper describes a model framework for assessing flood risk in Jakarta under current and future scenarios (2030 and 2050) including climate change, sea level rise, land use change, and land subsidence. The results shows individual impact of future changes and serve as a basis to evaluate adaptation strategies in cities. They also show while the impacts of climate change alone on flood risk in Jakarta are highly uncertain, the combined impacts of all drivers reveal a strong increase in risk.
D. Lee, P. Ward, and P. Block
Hydrol. Earth Syst. Sci., 19, 4689–4705, https://doi.org/10.5194/hess-19-4689-2015, https://doi.org/10.5194/hess-19-4689-2015, 2015
Short summary
Short summary
This paper presents a global approach to defining high-flow seasons by identifying temporal patterns of streamflow. Simulations of streamflow from the PCR-GLOBWB model are evaluated to define dominant and minor high-flow seasons globally, and verified with GRDC observations and flood records from Dartmouth Flood Observatory.
T. I. E. Veldkamp, S. Eisner, Y. Wada, J. C. J. H. Aerts, and P. J. Ward
Hydrol. Earth Syst. Sci., 19, 4081–4098, https://doi.org/10.5194/hess-19-4081-2015, https://doi.org/10.5194/hess-19-4081-2015, 2015
Short summary
Short summary
Freshwater shortage is one of the most important risks, partially driven by climate variability. Here we present a first global scale sensitivity assessment of water scarcity events to El Niño-Southern Oscillation, the most dominant climate variability signal. Given the found correlations, covering a large share of the global land area, and seen the developments of water scarcity impacts under changing socioeconomic conditions, we show that there is large potential for ENSO-based risk reduction.
B. Merz, J. Aerts, K. Arnbjerg-Nielsen, M. Baldi, A. Becker, A. Bichet, G. Blöschl, L. M. Bouwer, A. Brauer, F. Cioffi, J. M. Delgado, M. Gocht, F. Guzzetti, S. Harrigan, K. Hirschboeck, C. Kilsby, W. Kron, H.-H. Kwon, U. Lall, R. Merz, K. Nissen, P. Salvatti, T. Swierczynski, U. Ulbrich, A. Viglione, P. J. Ward, M. Weiler, B. Wilhelm, and M. Nied
Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, https://doi.org/10.5194/nhess-14-1921-2014, 2014
B. Jongman, E. E. Koks, T. G. Husby, and P. J. Ward
Nat. Hazards Earth Syst. Sci., 14, 1245–1255, https://doi.org/10.5194/nhess-14-1245-2014, https://doi.org/10.5194/nhess-14-1245-2014, 2014
P. J. Ward, S. Eisner, M. Flörke, M. D. Dettinger, and M. Kummu
Hydrol. Earth Syst. Sci., 18, 47–66, https://doi.org/10.5194/hess-18-47-2014, https://doi.org/10.5194/hess-18-47-2014, 2014
H. C. Winsemius, L. P. H. Van Beek, B. Jongman, P. J. Ward, and A. Bouwman
Hydrol. Earth Syst. Sci., 17, 1871–1892, https://doi.org/10.5194/hess-17-1871-2013, https://doi.org/10.5194/hess-17-1871-2013, 2013
B. Jongman, H. Kreibich, H. Apel, J. I. Barredo, P. D. Bates, L. Feyen, A. Gericke, J. Neal, J. C. J. H. Aerts, and P. J. Ward
Nat. Hazards Earth Syst. Sci., 12, 3733–3752, https://doi.org/10.5194/nhess-12-3733-2012, https://doi.org/10.5194/nhess-12-3733-2012, 2012
Related subject area
Hydrological Hazards
Drought propagation and its impact on groundwater hydrology of wetlands: a case study on the Doode Bemde nature reserve (Belgium)
Modelling the Brumadinho tailings dam failure, the subsequent loss of life and how it could have been reduced
Assessment of probability distributions and analysis of the minimum storage draft rate in the equatorial region
Downsizing parameter ensembles for simulations of rare floods
Dynamic maps of human exposure to floods based on mobile phone data
What controls the coarse sediment yield to a Mediterranean delta? The case of the Llobregat River (NE Iberian Peninsula)
Open check dams and large wood: head losses and release conditions
Forecasting flood hazards in real time: a surrogate model for hydrometeorological events in an Andean watershed
Evaluation of EURO-CORDEX (Coordinated Regional Climate Downscaling Experiment for the Euro-Mediterranean area) historical simulations by high-quality observational datasets in southern Italy: insights on drought assessment
A multidisciplinary drought catalogue for southwestern Germany dating back to 1801
Simulating historical flood events at the continental-scale: observational validation of a large-scale hydrodynamic model
Land Subsidence due to groundwater pumping: Hazard Probability Assessment through the Combination of Bayesian Model and Fuzzy Set Theory
Simulation of extreme rainfall and streamflow events in small Mediterranean watersheds with a one-way-coupled atmospheric–hydrologic modelling system
Annual flood damage influenced by El Niño in the Kan River basin, Iran
Multivariate statistical modelling of the drivers of compound flood events in south Florida
Building hazard maps with differentiated risk perception for flood impact assessment
Challenges in flood modeling over data-scarce regions: how to exploit globally available soil moisture products to estimate antecedent soil wetness conditions in Morocco
A risk-based network analysis of distributed in-stream leaky barriers for flood risk management
Assessing Chinese flood protection and its social divergence
Testing the impact of direct and indirect flood warnings on population behaviour using an agent-based model
Hydrogeomorphological analysis and modelling for a comprehensive understanding of flash-flood damage processes: the 9 October 2018 event in northeastern Mallorca
Hydrological impacts of climate change on small ungauged catchments – results from a global climate model–regional climate model–hydrologic model chain
A revision of the Combined Drought Indicator (CDI) as part of the European Drought Observatory (EDO)
Evaluating the efficacy of bivariate extreme modelling approaches for multi-hazard scenarios
The impact of hydrological model structure on the simulation of extreme runoff events
Typhoon rainstorm simulation with radar data assimilation in southeast coast of China
Hydrometeorological analysis and forecasting of a 3-day flash-flood-triggering desert rainstorm
Event generation for probabilistic flood risk modelling: multi-site peak flow dependence model vs. weather-generator-based approach
Brief communication: Seasonal prediction of salinity intrusion in the Mekong Delta
Skill of large-scale seasonal drought impact forecasts
Brief communication: Comparing hydrological and hydrogeomorphic paradigms for global flood hazard mapping
Improving early warning of drought-driven food insecurity in southern Africa using operational hydrological monitoring and forecasting products
Invited perspectives: How machine learning will change flood risk and impact assessment
The role of spatial dependence for large-scale flood risk estimation
A method to use proxy data of runoff-related impacts for the evaluation of a model mapping intense storm runoff hazard: application to the railway context
Predictive skill for atmospheric rivers in the western Iberian Peninsula
Estimation of evapotranspiration by the Food and Agricultural Organization of the United Nations (FAO) Penman–Monteith temperature (PMT) and Hargreaves–Samani (HS) models under temporal and spatial criteria – a case study in Duero basin (Spain)
Ensemble flood simulation for a small dam catchment in Japan using nonhydrostatic model rainfalls – Part 2: Flood forecasting using 1600-member 4D-EnVar-predicted rainfalls
Improved accuracy and efficiency of flood inundation mapping of low-, medium-, and high-flow events using the AutoRoute model
Measuring compound flood potential from river discharge and storm surge extremes at the global scale
A joint probabilistic index for objective drought identification: the case study of Haiti
Evaluation of two hydrometeorological ensemble strategies for flash-flood forecasting over a catchment of the eastern Pyrenees
Modeling the effects of sediment concentration on the propagation of flash floods in an Andean watershed
A Dynamic Bidirectional Coupled Hydrologic-Hydrodynamic Model for Flood Prediction
Towards an automatic early warning system of flood hazards based on precipitation forecast: the case of the Miño River (NW Spain)
Hydro-meteorological reconstruction and geomorphological impact assessment of the October 2018 catastrophic flash flood at Sant Llorenç, Mallorca (Spain)
Bayesian network model for flood forecasting based on atmospheric ensemble forecasts
An integrated evaluation of the National Water Model (NWM)–Height Above Nearest Drainage (HAND) flood mapping methodology
Extremeness of recent drought events in Switzerland: dependence on variable and return period choice
Have trends changed over time? A study of UK peak flow data and sensitivity to observation period
Buruk Kitachew Wossenyeleh, Kaleb Asnake Worku, Boud Verbeiren, and Marijke Huysmans
Nat. Hazards Earth Syst. Sci., 21, 39–51, https://doi.org/10.5194/nhess-21-39-2021, https://doi.org/10.5194/nhess-21-39-2021, 2021
Short summary
Short summary
Droughts are mainly caused by a reduction of precipitation, and they affect both surface and groundwater resources. Drought propagates through the hydrological cycle and may impact vulnerable ecosystems. We investigated drought propagation in the hydrological cycle, focusing on assessing its impact on a groundwater-fed wetland ecosystem in the Doode Bemde wetland in central Belgium. We used a method combining meteorological drought indices, water balance models and groundwater models.
Darren Lumbroso, Mark Davison, Richard Body, and Gregor Petkovšek
Nat. Hazards Earth Syst. Sci., 21, 21–37, https://doi.org/10.5194/nhess-21-21-2021, https://doi.org/10.5194/nhess-21-21-2021, 2021
Short summary
Short summary
A tailings dam is an earth embankment used to store the waste from mines, known as tailings. In 2019, the Brumadinho tailings dam in Brazil failed, releasing a mudflow which killed ~ 300 people. This paper details the use of an agent-based model to estimate the risk to people downstream of this dam. The agent-based model represents each individual person. The modelling indicated that if a warning had been issued as the dam failed, the number of fatalities could have been reduced.
Hasrul Hazman Hasan, Siti Fatin Mohd Razali, Nur Shazwani Muhammad, and Firdaus Mohamad Hamzah
Nat. Hazards Earth Syst. Sci., 21, 1–19, https://doi.org/10.5194/nhess-21-1-2021, https://doi.org/10.5194/nhess-21-1-2021, 2021
Short summary
Short summary
This study aims to understand the concept of low-flow drought characteristics and the predictive significance of river storage draft rates in managing sustainable water catchment. This study consists of four types of analyses: streamflow trend analysis, low-flow frequency analysis, determination of the minimum storage draft rates and hydrological-drought characteristics. The results are useful for developing measures to maintain flow variability and can be used to develop water policies.
Anna E. Sikorska-Senoner, Bettina Schaefli, and Jan Seibert
Nat. Hazards Earth Syst. Sci., 20, 3521–3549, https://doi.org/10.5194/nhess-20-3521-2020, https://doi.org/10.5194/nhess-20-3521-2020, 2020
Short summary
Short summary
This work proposes methods for reducing the computational requirements of hydrological simulations for the estimation of very rare floods that occur on average less than once in 1000 years. These methods enable the analysis of long streamflow time series (here for example 10 000 years) at low computational costs and with modelling uncertainty. They are to be used within continuous simulation frameworks with long input time series and are readily transferable to similar simulation tasks.
Matteo Balistrocchi, Rodolfo Metulini, Maurizio Carpita, and Roberto Ranzi
Nat. Hazards Earth Syst. Sci., 20, 3485–3500, https://doi.org/10.5194/nhess-20-3485-2020, https://doi.org/10.5194/nhess-20-3485-2020, 2020
Short summary
Short summary
Flood risk is an increasing threat to urban communities and their strategical assets worldwide. Non-structural practices, such as emergency management plans, can be effective in order to decrease the flood risk in strongly urbanized areas. Mobile phone data provide reliable estimates of the spatiotemporal variability in people exposed to flooding, thus enhancing the preparedness of stakeholders involved in flood risk management. Further, practical advantages emerge with respect to crowdsourcing.
Juan P. Martín-Vide, Arnau Prats-Puntí, and Carles Ferrer-Boix
Nat. Hazards Earth Syst. Sci., 20, 3315–3331, https://doi.org/10.5194/nhess-20-3315-2020, https://doi.org/10.5194/nhess-20-3315-2020, 2020
Short summary
Short summary
An alluvial Mediterranean river changed its riverine and deltaic landscape. The delta has been heavily retreating (up to 800 m) for more than a century. We focus on the river, channelized in the last 50 years, trying to link its sandy sediment yield to the delta evolution. Sediment availability in the last 30 km of the river channel is deemed responsible for the decrease in the sediment yield to the delta. Sediment supply reduction to the coast jeopardizes the future of the delta and beaches.
Guillaume Piton, Toshiyuki Horiguchi, Lise Marchal, and Stéphane Lambert
Nat. Hazards Earth Syst. Sci., 20, 3293–3314, https://doi.org/10.5194/nhess-20-3293-2020, https://doi.org/10.5194/nhess-20-3293-2020, 2020
Short summary
Short summary
Open check dams are flood protection structures trapping sediment and large wood. Large wood obstructs openings of dams, thus increasing flow levels. If flow levels become higher than the dam crest, the trapped large wood may overtop the structure and be suddenly released downstream, which may also eventually obstruct downstream bridges. This paper is based on experiments on small-scale models. It shows how to compute the increase in flow level and conditions leading to sudden overtopping.
María Teresa Contreras, Jorge Gironás, and Cristián Escauriaza
Nat. Hazards Earth Syst. Sci., 20, 3261–3277, https://doi.org/10.5194/nhess-20-3261-2020, https://doi.org/10.5194/nhess-20-3261-2020, 2020
Short summary
Short summary
The prediction of multiple scenarios of flood hazard in mountain regions is typically based on expensive high-resolution models that simulate the flood propagation using significant computational resources. In this investigation we develop a surrogate model that provides a rapid evaluation of the flood hazard using a statistical approach and precomputed scenarios. This surrogate model is an advanced tool that can be used for early warning systems and to help decision makers and city planners.
David J. Peres, Alfonso Senatore, Paola Nanni, Antonino Cancelliere, Giuseppe Mendicino, and Brunella Bonaccorso
Nat. Hazards Earth Syst. Sci., 20, 3057–3082, https://doi.org/10.5194/nhess-20-3057-2020, https://doi.org/10.5194/nhess-20-3057-2020, 2020
Short summary
Short summary
Regional climate models (RCMs) are commonly used for high-resolution assessment of climate change impacts. This research assesses the reliability of several RCMs in a Mediterranean area (southern Italy), comparing historic climate and drought characteristics with
high-density and high-quality ground-based observational datasets. We propose a general methodology and identify the more skilful models able to reproduce precipitation and temperature variability as well as drought characteristics.
Mathilde Erfurt, Georgios Skiadaresis, Erik Tijdeman, Veit Blauhut, Jürgen Bauhus, Rüdiger Glaser, Julia Schwarz, Willy Tegel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 20, 2979–2995, https://doi.org/10.5194/nhess-20-2979-2020, https://doi.org/10.5194/nhess-20-2979-2020, 2020
Short summary
Short summary
Droughts are multifaceted hazards with widespread negative consequences for the environment and society. This study explores different perspectives on drought and determines the added value of multidisciplinary datasets for a comprehensive understanding of past drought events in southwestern Germany. A long-term evaluation of drought frequency since 1801 revealed that events occurred in all decades, but a particular clustering was found in the mid-19th century and the most recent decade.
Oliver E. J. Wing, Andrew M. Smith, Michael L. Marston, Jeremy R. Porter, Mike F. Amodeo, Christopher C. Sampson, and Paul D. Bates
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-344, https://doi.org/10.5194/nhess-2020-344, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
Global flood models are difficult to validate. They generally output theoretical flood events of a given probability, rather than an observed event they can be tested against. Here, we adapt a US-wide flood model to enable the rapid simulation of historical flood events in order to more robustly understand model biases. For 35 flood events, we highlight the challenges of model validation amidst observational data errors, yet evidence the increasing skill of large-scale models.
Huijun Li, Lin Zhu, Gaoxuan Guo, Yan Zhang, Zhenxue Dai, Xiaojuan Li, Linzhen Chang, and Pietro Teatini
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-309, https://doi.org/10.5194/nhess-2020-309, 2020
Revised manuscript accepted for NHESS
Corrado Camera, Adriana Bruggeman, George Zittis, Ioannis Sofokleous, and Joël Arnault
Nat. Hazards Earth Syst. Sci., 20, 2791–2810, https://doi.org/10.5194/nhess-20-2791-2020, https://doi.org/10.5194/nhess-20-2791-2020, 2020
Short summary
Short summary
Can numerical models simulate intense rainfall events and consequent streamflow in a mountainous area with small watersheds well? We applied state-of-the-art one-way-coupled atmospheric–hydrologic models and we found that, despite rainfall events simulated with low errors, large discrepancies between the observed and simulated streamflow were observed. Shifts in time and space of the modelled rainfall peak are the main reason. Still, the models can be applied for climate change impact studies.
Farhad Hooshyaripor, Sanaz Faraji-Ashkavar, Farshad Koohyian, Qiuhong Tang, and Roohollah Noori
Nat. Hazards Earth Syst. Sci., 20, 2739–2751, https://doi.org/10.5194/nhess-20-2739-2020, https://doi.org/10.5194/nhess-20-2739-2020, 2020
Short summary
Short summary
The effect of El Niño on flood damage was investigated. The methodology was based on the calculation of increasing rainfall amount during El Niño events compared to normal conditions. With the southern oscillation index equal to −1.0 as the threshold of El Niño, the annual percentage of increased rainfall is 12.2 %. The annual change factor may not necessarily be transferred to extreme values. Nonetheless, the change factor was applied for generating simulated storms of different return periods.
Robert Jane, Luis Cadavid, Jayantha Obeysekera, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 20, 2681–2699, https://doi.org/10.5194/nhess-20-2681-2020, https://doi.org/10.5194/nhess-20-2681-2020, 2020
Short summary
Short summary
Full dependence is assumed between drivers in flood protection assessments of coastal water control structures in south Florida. A 2-D analysis of rainfall and coastal water level showed that the magnitude of the conservative assumption in the original design is highly sensitive to the regional sea level rise projection considered. The vine copula and HT04 model outperformed five higher-dimensional copulas in capturing the dependence between rainfall, coastal water level, and groundwater level.
Punit K. Bhola, Jorge Leandro, and Markus Disse
Nat. Hazards Earth Syst. Sci., 20, 2647–2663, https://doi.org/10.5194/nhess-20-2647-2020, https://doi.org/10.5194/nhess-20-2647-2020, 2020
Short summary
Short summary
In operational flood risk management, a single best model is used to assess the impact of flooding, which might misrepresent uncertainties in the modelling process. We have used quantified uncertainties in flood forecasting to generate flood hazard maps that were combined based on different exceedance probability scenarios with the purpose to differentiate impacts of flooding and to account for uncertainties in flood hazard maps that can be used by decision makers.
El Mahdi El Khalki, Yves Tramblay, Christian Massari, Luca Brocca, Vincent Simonneaux, Simon Gascoin, and Mohamed El Mehdi Saidi
Nat. Hazards Earth Syst. Sci., 20, 2591–2607, https://doi.org/10.5194/nhess-20-2591-2020, https://doi.org/10.5194/nhess-20-2591-2020, 2020
Short summary
Short summary
In North Africa, the vulnerability to floods is high, and there is a need to improve the flood-forecasting systems. Remote-sensing and reanalysis data can palliate the lack of in situ measurements, in particular for soil moisture, which is a crucial parameter to consider when modeling floods. In this study we provide an evaluation of recent globally available soil moisture products for flood modeling in Morocco.
Barry Hankin, Ian Hewitt, Graham Sander, Federico Danieli, Giuseppe Formetta, Alissa Kamilova, Ann Kretzschmar, Kris Kiradjiev, Clint Wong, Sam Pegler, and Rob Lamb
Nat. Hazards Earth Syst. Sci., 20, 2567–2584, https://doi.org/10.5194/nhess-20-2567-2020, https://doi.org/10.5194/nhess-20-2567-2020, 2020
Short summary
Short summary
With growing support for nature-based solutions to reduce flooding by local communities, government authorities and international organisations, it is still important to improve how we assess risk reduction. We demonstrate an efficient, simplified 1D network model that allows us to explore the
whole-systemresponse of numerous leaky barriers placed in different stream networks, whilst considering utilisation, synchronisation effects and cascade failure, and we provide advice on their siting.
Dan Wang, Paolo Scussolini, and Shiqiang Du
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-264, https://doi.org/10.5194/nhess-2020-264, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
Flood protection level (FPL) is vital for risk analysis and management, but scarce in realty particularly for developing countries. This paper develops a policy-based FPL dataset for China and validated it using local FPL designs and plans. The FPLs are much higher than that in global database, suggesting Chinese flood risk should be lower with the required FPLs. Moreover, the FPLs are lower for western China and the vulnerable people, implying a spatial and social divergence of the FPLs.
Thomas O'Shea, Paul Bates, and Jeffrey Neal
Nat. Hazards Earth Syst. Sci., 20, 2281–2305, https://doi.org/10.5194/nhess-20-2281-2020, https://doi.org/10.5194/nhess-20-2281-2020, 2020
Short summary
Short summary
Outlined here is a multi-disciplinary framework for analysing and evaluating the nature of vulnerability to, and capacity for, flood hazard within a complex urban society. It provides scope beyond the current, reified, descriptors of
flood riskand models the role of affected individuals within flooded areas. Using agent-based modelling coupled with the LISFLOOD-FP hydrodynamic model, potentially influential behaviours that give rise to the flood hazard system are identified and discussed.
Joan Estrany, Maurici Ruiz-Pérez, Raphael Mutzner, Josep Fortesa, Beatriz Nácher-Rodríguez, Miquel Tomàs-Burguera, Julián García-Comendador, Xavier Peña, Adolfo Calvo-Cases, and Francisco J. Vallés-Morán
Nat. Hazards Earth Syst. Sci., 20, 2195–2220, https://doi.org/10.5194/nhess-20-2195-2020, https://doi.org/10.5194/nhess-20-2195-2020, 2020
Short summary
Short summary
A catastrophic flash-flood event hit the northeastern part of Mallorca in 2018, causing 13 casualties and impacting on the international opinion in one of the most important tourist resorts. The analysis of the rainfall–runoff processes illustrated an unprecedented flashy behaviour in Europe triggering the natural disaster. UAVs and hydrogeomorphological precision techniques were used as a rapid post-catastrophe decision-making tool, playing a key role during the rescue searching tasks.
Aynalem T. Tsegaw, Marie Pontoppidan, Erle Kristvik, Knut Alfredsen, and Tone M. Muthanna
Nat. Hazards Earth Syst. Sci., 20, 2133–2155, https://doi.org/10.5194/nhess-20-2133-2020, https://doi.org/10.5194/nhess-20-2133-2020, 2020
Short summary
Short summary
Hydrological impacts of climate change are generally performed by following steps from global to regional climate modeling through data tailoring and hydrological modeling. Usually, the climate–hydrology chain primary focuses on medium to large catchments. To study impacts of climate change on small catchments, a high-resolution regional climate model and hydrological model are required. The results from high-resolution models help in proposing specific adaptation strategies for impacts.
Carmelo Cammalleri, Carolina Arias-Muñoz, Paulo Barbosa, Alfred de Jager, Diego Magni, Dario Masante, Marco Mazzeschi, Niall McCormick, Gustavo Naumann, Jonathan Spinoni, and Jürgen Vogt
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-204, https://doi.org/10.5194/nhess-2020-204, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
Building on almost ten years of expertise and operational application of the Combined Drought Indicator (CDI) for the monitoring of agricultural droughts in Europe within the European Commission’s European Drought Observatory (EDO), this paper proposes a revised version of the index. This paper shows that the proposed revised CDI reliably reproduces the evolution of major droughts, out-performing the current version of the indicator, especially for long-lasting events.
Aloïs Tilloy, Bruce D. Malamud, Hugo Winter, and Amélie Joly-Laugel
Nat. Hazards Earth Syst. Sci., 20, 2091–2117, https://doi.org/10.5194/nhess-20-2091-2020, https://doi.org/10.5194/nhess-20-2091-2020, 2020
Short summary
Short summary
Estimating risks induced by interacting natural hazards remains a challenge for practitioners. An approach to tackle this challenge is to use multivariate statistical models. Here we evaluate the efficacy of six models. The models are compared against synthetic data which are comparable to time series of environmental variables. We find which models are more appropriate to estimate relations between hazards in a range of cases. We highlight the benefits of this approach with two examples.
Gijs van Kempen, Karin van der Wiel, and Lieke Anna Melsen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-154, https://doi.org/10.5194/nhess-2020-154, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
In this study, we combine climate model results with a hydrological model, to investigate uncertainties in flood and drought risk. With the climate model, 2000 years of ‘current climate’ was created. The hydrological model consisted of several building blocks that we could adapt. In this way, we could investigate the effect of these hydrological building blocks on flood and drought risk, in four different climate zones with return periods of up to 500 years.
Jiyang Tian, Ronghua Liu, Liuqian Ding, Liang Guo, and Bingyu Zhang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-146, https://doi.org/10.5194/nhess-2020-146, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
Typhoon always comes along with heavy rainfall, which lead to great loss. The aim of this study is to explore reasonable use of Doppler radar data assimilation to correct the initial and lateral boundary conditions of the Numerical Weather Prediction (NWP) systems for typhoon rainstorms forecast at catchment scale. The results shows that assimilating radial velocity with time interval of 1 h can significantly improve the rainfall simulations and outperforms the other assimilation modes.
Yair Rinat, Francesco Marra, Moshe Armon, Asher Metzger, Yoav Levi, Pavel Khain, Elyakom Vadislavsky, Marcelo Rosensaft, and Efrat Morin
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-189, https://doi.org/10.5194/nhess-2020-189, 2020
Revised manuscript accepted for NHESS
Benjamin Winter, Klaus Schneeberger, Kristian Förster, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci., 20, 1689–1703, https://doi.org/10.5194/nhess-20-1689-2020, https://doi.org/10.5194/nhess-20-1689-2020, 2020
Short summary
Short summary
In this paper two different methods to generate spatially coherent flood events for probabilistic flood risk modelling are compared: on the one hand, a semi-conditional multi-variate dependence model applied to discharge observations and, on the other hand, a continuous hydrological modelling of synthetic meteorological fields generated by a multi-site weather generator. The results of the two approaches are compared in terms of simulated spatial patterns and overall flood risk estimates.
Heiko Apel, Mai Khiem, Nguyen Hong Quan, and To Quang Toan
Nat. Hazards Earth Syst. Sci., 20, 1609–1616, https://doi.org/10.5194/nhess-20-1609-2020, https://doi.org/10.5194/nhess-20-1609-2020, 2020
Short summary
Short summary
This study deals with salinity intrusion in the Mekong Delta, a pressing issue in the third-largest river delta on Earth. It presents a simple, efficient, and cross-validated seasonal forecast model for salinity intrusion during the dry season based on logistic regression using ENSO34 or standardized streamflow indexes as predictors. The model performs exceptionally well, enabling a reliable forecast of critical salinity threshold exceedance up to 9 months prior to the dry season.
Samuel J. Sutanto, Melati van der Weert, Veit Blauhut, and Henny A. J. Van Lanen
Nat. Hazards Earth Syst. Sci., 20, 1595–1608, https://doi.org/10.5194/nhess-20-1595-2020, https://doi.org/10.5194/nhess-20-1595-2020, 2020
Short summary
Short summary
Present-day drought early warning systems only provide information on drought hazard forecasts. Here, we have developed drought impact functions to forecast drought impacts up to 7 months ahead using machine learning techniques, logistic regression, and random forest. Our results show that random forest produces a higher-impact forecasting skill than logistic regression. For German county levels, drought impacts can be forecasted up to 4 months ahead using random forest.
Giuliano Di Baldassarre, Fernando Nardi, Antonio Annis, Vincent Odongo, Maria Rusca, and Salvatore Grimaldi
Nat. Hazards Earth Syst. Sci., 20, 1415–1419, https://doi.org/10.5194/nhess-20-1415-2020, https://doi.org/10.5194/nhess-20-1415-2020, 2020
Short summary
Short summary
Global floodplain mapping has rapidly progressed over the past few years. Different methods have been proposed to identify areas prone to river flooding, resulting in a plethora of available products. Here we assess the potential and limitations of two main paradigms and provide guidance on the use of these global products in assessing flood risk in data-poor regions.
Shraddhanand Shukla, Kristi R. Arsenault, Abheera Hazra, Christa Peters-Lidard, Randal D. Koster, Frank Davenport, Tamuka Magadzire, Chris Funk, Sujay Kumar, Amy McNally, Augusto Getirana, Greg Husak, Ben Zaitchik, Jim Verdin, Faka Dieudonne Nsadisa, and Inbal Becker-Reshef
Nat. Hazards Earth Syst. Sci., 20, 1187–1201, https://doi.org/10.5194/nhess-20-1187-2020, https://doi.org/10.5194/nhess-20-1187-2020, 2020
Short summary
Short summary
The region of southern Africa is prone to climate-driven food insecurity events, as demonstrated by the major drought event in 2015–2016. This study demonstrates that recently developed NASA Hydrological Forecasting and Analysis System-based root-zone soil moisture monitoring and forecasting products are well correlated with interannual regional crop yield, can identify below-normal crop yield events and provide skillful crop yield forecasts, and hence support early warning of food insecurity.
Dennis Wagenaar, Alex Curran, Mariano Balbi, Alok Bhardwaj, Robert Soden, Emir Hartato, Gizem Mestav Sarica, Laddaporn Ruangpan, Giuseppe Molinario, and David Lallemant
Nat. Hazards Earth Syst. Sci., 20, 1149–1161, https://doi.org/10.5194/nhess-20-1149-2020, https://doi.org/10.5194/nhess-20-1149-2020, 2020
Short summary
Short summary
This invited perspective paper addresses how machine learning may change flood risk and impact assessments. It goes through different modelling components and provides an analysis of how current assessments are done without machine learning, current applications of machine learning and potential future improvements. It is based on a 2-week-long intensive collaboration among experts from around the world during the Understanding Risk Field lab on urban flooding in June 2019.
Ayse Duha Metin, Nguyen Viet Dung, Kai Schröter, Sergiy Vorogushyn, Björn Guse, Heidi Kreibich, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 20, 967–979, https://doi.org/10.5194/nhess-20-967-2020, https://doi.org/10.5194/nhess-20-967-2020, 2020
Short summary
Short summary
For effective risk management, flood risk should be properly assessed. Traditionally, risk is assessed by making the assumption of invariant flow or loss probabilities (the chance that a given discharge or loss is exceeded) within the river catchment during a single flood event. However, in reality, flooding is more severe in some regions than others. This study indicates the importance of representing the spatial dependence of flood peaks and damage for risk assessments.
Isabelle Braud, Lilly-Rose Lagadec, Loïc Moulin, Blandine Chazelle, and Pascal Breil
Nat. Hazards Earth Syst. Sci., 20, 947–966, https://doi.org/10.5194/nhess-20-947-2020, https://doi.org/10.5194/nhess-20-947-2020, 2020
Short summary
Short summary
A method for the evaluation of a model that maps the susceptibility of a territory to surface runoff is presented. It is based on proxy data of localized impacts related to runoff. It accounts for the hazard level, the vulnerability of the study area and possible mitigation actions taken to reduce the risk. The evaluation is made on a 80 km railway line in Normandy (north of France), where a comprehensive database of runoff-related impacts on the railway has been gathered over the 20th century.
Alexandre M. Ramos, Pedro M. Sousa, Emanuel Dutra, and Ricardo M. Trigo
Nat. Hazards Earth Syst. Sci., 20, 877–888, https://doi.org/10.5194/nhess-20-877-2020, https://doi.org/10.5194/nhess-20-877-2020, 2020
Rubén Moratiel, Raquel Bravo, Antonio Saa, Ana M. Tarquis, and Javier Almorox
Nat. Hazards Earth Syst. Sci., 20, 859–875, https://doi.org/10.5194/nhess-20-859-2020, https://doi.org/10.5194/nhess-20-859-2020, 2020
Short summary
Short summary
The estimation of ETo using temperature is particularly attractive in places where air humidity, wind speed and solar radiation data are not readily available. In this study we used, for the estimation of ETo, seven models against Penman–Monteith FAO 56 with temporal (annual and seasonal) and spatial perspective over Duero basin (Spain). The results of the tested models can be useful for adopting appropriate measures for efficient water management under the limitation of agrometeorological data.
Kenichiro Kobayashi, Le Duc, Apip, Tsutao Oizumi, and Kazuo Saito
Nat. Hazards Earth Syst. Sci., 20, 755–770, https://doi.org/10.5194/nhess-20-755-2020, https://doi.org/10.5194/nhess-20-755-2020, 2020
Short summary
Short summary
The feasibility of flood forecasting with 1600 rainfall forecasts was investigated. The rainfall forecasts were obtained from an advanced data assimilation system. The high probability of flood occurrence was predicted, which is not possible by the single deterministic forecast. The necessity of emergency flood operation was shown with a long leading time. This suggests that it is worth investing in increasing numbers of meteorological ensembles to improve flood forecasting.
Michael L. Follum, Ricardo Vera, Ahmad A. Tavakoly, and Joseph L. Gutenson
Nat. Hazards Earth Syst. Sci., 20, 625–641, https://doi.org/10.5194/nhess-20-625-2020, https://doi.org/10.5194/nhess-20-625-2020, 2020
Short summary
Short summary
AutoRoute is one of the tools used by the US Military to create
high-resolution flood inundation maps at regional to continental scales. Although proven to be useful in simulating floods in remote regions of the world, the accuracy of the model has had only limited testing for nonextreme flood cases. This paper presents improvements to AutoRoute to accurately simulate both extreme and nonextreme flood cases while improving the applicability in a production setting.
Anaïs Couasnon, Dirk Eilander, Sanne Muis, Ted I. E. Veldkamp, Ivan D. Haigh, Thomas Wahl, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, https://doi.org/10.5194/nhess-20-489-2020, 2020
Short summary
Short summary
When a high river discharge coincides with a high storm surge level, this can exarcebate flood level, depth, and duration, resulting in a so-called compound flood event. These events are not currently included in global flood models. In this research, we analyse the timing and correlation between modelled discharge and storm surge level time series in deltas and estuaries. Our results provide a first indication of regions along the global coastline with a high compound flooding potential.
Beatrice Monteleone, Brunella Bonaccorso, and Mario Martina
Nat. Hazards Earth Syst. Sci., 20, 471–487, https://doi.org/10.5194/nhess-20-471-2020, https://doi.org/10.5194/nhess-20-471-2020, 2020
Short summary
Short summary
This study proposes a new drought index that combines meteorological and agricultural drought aspects. The index is scalable, transferable all over the globe, can be updated in near real time and is a
remote-sensing product, since only satellite-based datasets were employed. A set of rules to objectively identify drought events is also implemented. We found that the set of rules, applied together with the new index, outperformed conventional drought indices in identifying droughts in Haiti.
Hélène Roux, Arnau Amengual, Romu Romero, Ernest Bladé, and Marcos Sanz-Ramos
Nat. Hazards Earth Syst. Sci., 20, 425–450, https://doi.org/10.5194/nhess-20-425-2020, https://doi.org/10.5194/nhess-20-425-2020, 2020
Short summary
Short summary
The performances of flash-flood forecasts are evaluated using a meteorological model forcing a rainfall-runoff model. Both deterministic (single forecast of the most likely weather) and ensemble forecasts (set or ensemble of forecasts) have been produced on three subcatchments of the eastern Pyrenees exhibiting different rainfall regimes. Results show that both overall discharge forecast and flood warning are improved by the ensemble strategies with respect to the deterministic forecast.
María Teresa Contreras and Cristián Escauriaza
Nat. Hazards Earth Syst. Sci., 20, 221–241, https://doi.org/10.5194/nhess-20-221-2020, https://doi.org/10.5194/nhess-20-221-2020, 2020
Short summary
Short summary
In this investigation we study the effects of high sediment concentrations on the dynamics of flash floods in mountain regions, with an application to a river in the Andes that has produced catastrophic events in the city of Santiago, Chile. We develop an advanced computational model to understand the effects of floods with high sediment loads on steep channels. These new insights can be used to design early warning systems and contribute to urban planning in cities near mountain rivers.
Chunbo Jiang, Qi Zhou, Wangyang Yu, Chen Yang, and Binliang Lin
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-355, https://doi.org/10.5194/nhess-2019-355, 2019
Revised manuscript accepted for NHESS
Short summary
Short summary
We proposed a new dynamic coupling model for flood simulation and prediction. The model assesses both hydrologic and hydraulic process based on characteristic theory. It was validated by several classic numerical test cases as well as experiments data, and it was implemented to a real study case. The results show that the model proposed is capable and accurate for flood simulation and further risk assessment.
José González-Cao, Orlando García-Feal, Diego Fernández-Nóvoa, José Manuel Domínguez-Alonso, and Moncho Gómez-Gesteira
Nat. Hazards Earth Syst. Sci., 19, 2583–2595, https://doi.org/10.5194/nhess-19-2583-2019, https://doi.org/10.5194/nhess-19-2583-2019, 2019
Short summary
Short summary
An early-warning system (EWS) for flood prediction was developed in the upper reach of the Miño River and the city of Lugo (NW Spain). This EWS can provide accurate results in less than 1 h, for a forecast horizon of 3 d, and report an alert situation to decision makers in order to mitigate the consequences of floods. In addition, this EWS can be easily adapted for any area of the world since the required input data and software are freely available.
Jorge Lorenzo-Lacruz, Arnau Amengual, Celso Garcia, Enrique Morán-Tejeda, Víctor Homar, Aina Maimó-Far, Alejandro Hermoso, Climent Ramis, and Romualdo Romero
Nat. Hazards Earth Syst. Sci., 19, 2597–2617, https://doi.org/10.5194/nhess-19-2597-2019, https://doi.org/10.5194/nhess-19-2597-2019, 2019
Short summary
Short summary
On 9 October 2018, an extreme convective storm (> 300 mm accumulated in 6 h) generated a flash flood (305 m3 s−1) in the Ses Planes torrent that devastated the town of Sant Llorenç (Mallorca, Spain). Water reached a depth of 3 m in the most affected areas, and there was greatly increased flow velocity at bridges crossing the town. The floodwaters were very powerful and modified the channel morphology: more than 5000 t of sediment was deposited in the 2 km reach upstream of the town.
Leila Goodarzi, Mohammad E. Banihabib, Abbas Roozbahani, and Jörg Dietrich
Nat. Hazards Earth Syst. Sci., 19, 2513–2524, https://doi.org/10.5194/nhess-19-2513-2019, https://doi.org/10.5194/nhess-19-2513-2019, 2019
Short summary
Short summary
We developed a novel approach in using Bayesian networks (BNs) for ensemble flood forecasting in a case study in Iran. This allows fast early warning without the need for hydrological modelling. We recommend to combine precipitation ensembles with hydrological initial conditions in the BN. The number of observed flood events is low by nature. Under the limited amount of data, BN outperformed artificial neural networks with good results. Future work will validate the concept further.
J. Michael Johnson, Dinuke Munasinghe, Damilola Eyelade, and Sagy Cohen
Nat. Hazards Earth Syst. Sci., 19, 2405–2420, https://doi.org/10.5194/nhess-19-2405-2019, https://doi.org/10.5194/nhess-19-2405-2019, 2019
Short summary
Short summary
The coupled National Water Model (NWM)–Height Above Nearest Drainage flood mapping methodology provides the basis for operational flood forecasting across the continental United States. This paper evaluates how the method performs for 28 case studies using a historic archive of flood extents and a retrospective run of the NWM. We provide a summary of the results and discuss where the method is performing reliably, the general reasons for poor forecasts, and how the method might be improved.
Manuela I. Brunner, Katharina Liechti, and Massimiliano Zappa
Nat. Hazards Earth Syst. Sci., 19, 2311–2323, https://doi.org/10.5194/nhess-19-2311-2019, https://doi.org/10.5194/nhess-19-2311-2019, 2019
Short summary
Short summary
The 2018 drought event had severe ecological, economic, and social impacts. How extreme was it in Switzerland? We addressed this question by looking at different types of drought, including meteorological, hydrological, agricultural, and groundwater drought, and at the two characteristics deficit and deficit duration. The return period estimates depended on the region, variable, and return period considered.
Adam Griffin, Gianni Vesuviano, and Elizabeth Stewart
Nat. Hazards Earth Syst. Sci., 19, 2157–2167, https://doi.org/10.5194/nhess-19-2157-2019, https://doi.org/10.5194/nhess-19-2157-2019, 2019
Short summary
Short summary
Classical statistical methods for flood frequency estimation assume flooding characteristics do not change over time. Recent focus on climate change has raised questions of the validity of such assumptions. Near-natural catchments are used to focus on climate (not land-use) change, investigating the sensitivity of trend estimates to the period of record. Some key statistics were very sensitive, but conclusive spatial patterns were not found. Smaller floods were most affected by these trends.
Cited articles
Aerts, J.: Flood hazard map comparison code, Zenodo, https://doi.org/10.5281/zenodo.4117688, 2020.
Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon,
P., Wyser, K., and Feyen, L.: Global projections of river flood risk in a
warmer world, Earth's Future 5, 171–182, https://doi.org/10.1002/2016EF000485, 2017
Apel, H., Martínez Trepat, O., Hung, N. N., Chinh, D. T., Merz, B., and Dung, N. V.: Combined fluvial and pluvial urban flood hazard analysis: concept development and application to Can Tho city, Mekong Delta, Vietnam, Nat. Hazards Earth Syst. Sci., 16, 941–961, https://doi.org/10.5194/nhess-16-941-2016, 2016.
Arnell, N. W. and Gosling, S. N.: The impacts of climate change on river
flood risk at the global scale, Climatic Change, 134, 387–401,
https://doi.org/10.1007/s10584-014-1084-5, 2016.
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E., Muñoz-Sabater, J., Pappenberger, F., de Rosnay, P., Stockdale, T., and Vitart, F.: ERA-Interim/Land: a global land surface reanalysis data set, Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015, 2015.
Bernhofen, M. V., Whyman, C., Trigg, M. A., Sleigh, P. A., Smith, A. M.,
Sampson, C. C., Yamazaki, D., Ward, P. J., Rudari, R., Pappenberger, F.,
Dottori, F., Salamon, P., and Winsemius, H. C.: A first collective validation
of global fluvial flood models for major floods in Nigeria and Mozambique,
Environ. Res. Lett., 13, 104007,
https://doi.org/10.1088/1748-9326/aae014, 2018.
Brummelen, G. V.: Heavenly Mathematics: The Forgotten Art of Spherical
Trigonometry, Princeton University Press, Princeton, USA, 2013.
Couasnon, A., Eilander, D., Muis, S., Veldkamp, T. I. E., Haigh, I. D., Wahl, T., Winsemius, H. C., and Ward, P. J.: Measuring compound flood potential from river discharge and storm surge extremes at the global scale, Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, 2020.
CRED: EM-DAT: The Emergency Events Database – Université catholique de Louvain (UCL) – CRED, edited by: Guha-Sapir, D., Brussels, Belgium, available at: http://www.emdat.be (last access: 1 November 2019), 2016.
de Moel, H., Jongman, B., Kreibich, H., Merz, B., Penning-Rowsell, E., and
Ward, P. J.: Flood risk assessments at different spatial scales, Mitig. Adapt.
Strateg. Glob. Change, 20, 865–890, https://doi.org/10.1007/s11027-015-9654-z, 2015.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.:
The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004,
https://doi.org/10.1029/2005RG000183, 2007.
Hagen, E. and Lu, X. X.: Let us create flood hazard maps for developing
countries, Nat. Hazards, 58, 841–843, https://doi.org/10.1007/s11069-011-9750-7,
2011.
Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J.: Future
flood losses in major coastal cities, Nat. Clim. Change, 3, 802–806,
https://doi.org/10.1038/nclimate1979, 2013.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642,
https://doi.org/10.1002/joc.3711, 2014.
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D.,
Watanabe, S., Kim, H., and Kanae, S.: Global flood risk under climate change,
Nat. Clim. Change, 3, 816–821, https://doi.org/10.1038/nclimate1911, 2013.
Hoch, J. M. and Trigg, M. A.: Advancing global flood hazard simulations by
improving comparability, benchmarking, and integration of global flood
models, Environ. Res. Lett., 14, e034001, https://doi.org/10.1088/1748-9326/aaf3d3, 2019.
Hut, R., Drost, N., Van De Giesen, N., and van Hage, W.: eWaterCycle II, AGU
Fall Meeting Abstracts, December 2018, Washington, D.C., USA, 11, available at:
http://adsabs.harvard.edu/abs/2018AGUFM.H11U1748H (last access: 14 October 2019), 2018.
Jongman, B., Winsemius, H. C., Aerts, J. C. J. H., de Perez, E. C., van Aalst, M. K., Kron, W., and Ward, P. J.: Declining vulnerability to river floods and the global benefits of adaptation, P. Natl. Acad. Sci. USA, 112, E2271–E2280,
https://doi.org/10.1073/pnas.1414439112, 2015.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of
the Köppen-Geiger climate classification updated, Meteorol.
Z., 15, 259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006.
Kummu, M., Taka, M., and Guillaume, J. H. A.: Gridded global datasets for
Gross Domestic Product and Human Development Index over 1990–2015,
Scientific Data, 5, 180004, https://doi.org/10.1038/sdata.2018.4, 2018.
Kundzewicz, Z. W., Kanae, S., Seneviratne, S. I., Handmer, J., Nicholls, N.,
Peduzzi, P., Mechler, R., Bouwer, L. M., Arnell, N., Mach, K., Muir-Wood,
R., Brakenridge, G. R., Kron, W., Benito, G., Honda, Y., Takahashi, K., and
Sherstyukov, B.: Flood risk and climate change: global and regional
perspectives, Hydrolog. Sci. J., 59, 1–28,
https://doi.org/10.1080/02626667.2013.857411, 2014.
Lehner, B. and Grill, G.: Global river hydrography and network routing:
baseline data and new approaches to study the world's large river systems,
Hydrol. Process., 27, 2171–2186, https://doi.org/10.1002/hyp.9740, 2013.
Löw, P.: Hurricanes cause record losses in 2017 – The year in figures, Munich Re NatCatSERVICE, available at: https://www.munichre.com/topics-online/en/climate-change-and-natural-disasters/natural-disasters/2017-year-in-figures.html (last access: 3 November 2019), 2018.
Mateo, C. M. R., Yamazaki, D., Kim, H., Champathong, A., Vaze, J., and Oki, T.: Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods, Hydrol. Earth Syst. Sci., 21, 5143–5163, https://doi.org/10.5194/hess-21-5143-2017, 2017.
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution
mapping of global surface water and its long-term changes, Nature, 540, 418–422, https://doi.org/10.1038/nature20584,
2016.
Rudari, R., Silvestro, F., Campo, L., Rebora, N., Boni, G., and Herold, C.: Improvement of the global flood model for the GAR 2015, available at: https://www.preventionweb.net/english/hyogo/gar/2015/en/bgdocs/risk-section/CIMA Foundation, Improvement of the Global Flood Model for the GAR15.pdf (last access: 3 June 2018), 2015.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R.,
Gayno, G., Wang, J., Hou, Y.-T., Chuang, H., Juang, H.-M. H., Sela, J.,
Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J.,
Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A.,
Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K.,
Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou,
C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge,
G., and Goldberg, M.: The NCEP Climate Forecast System Reanalysis, B.
Am. Meteorol. Soc., 91, 1015–1058, https://doi.org/10.1175/2010BAMS3001.1, 2010.
Sampson, C. C., Smith, A. M., Bates, P. D., Neal, J. C., Alfieri, L., and
Freer, J. E.: A high-resolution global flood hazard model, Water Resour.
Res., 51, 7358–7381, https://doi.org/10.1002/2015WR016954, 2015.
Schellekens, J., Dutra, E., Martínez-de la Torre, A., Balsamo, G., van Dijk, A., Sperna Weiland, F., Minvielle, M., Calvet, J.-C., Decharme, B., Eisner, S., Fink, G., Flörke, M., Peßenteiner, S., van Beek, R., Polcher, J., Beck, H., Orth, R., Calton, B., Burke, S., Dorigo, W., and Weedon, G. P.: A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset, Earth Syst. Sci. Data, 9, 389–413, https://doi.org/10.5194/essd-9-389-2017, 2017.
Smith, A., Sampson, C., and Bates, P.: Regional flood frequency analysis at
the global scale, Water Resour. Res., 51, 539–553,
https://doi.org/10.1002/2014WR015814, 2015.
Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F. W., Dutta, D., and Kim, S.:
Flood inundation modelling: A review of methods, recent advances and
uncertainty analysis, Environ. Model. Softw., 90, 201–216,
https://doi.org/10.1016/j.envsoft.2017.01.006, 2017.
Triet, N. V. K., Dung, N. V., Merz, B., and Apel, H.: Towards risk-based flood management in highly productive paddy rice cultivation – concept development and application to the Mekong Delta, Nat. Hazards Earth Syst. Sci., 18, 2859–2876, https://doi.org/10.5194/nhess-18-2859-2018, 2018.
Trigg, M. A., Birch, C. E., Neal, J. C., Bates, P. D., Smith, A., Sampson,
C. C., Yamazaki, D., Hirabayashi, Y., Pappenberger, F., Dutra, E., Ward, P.
J., Winsemius, H. C., Salamon, P., Dottori, F., Rudari, R., Kappes, M. S.,
Simpson, A. L., Hadzilacos, G., and Fewtrell, T. J.: The credibility
challenge for global fluvial flood risk analysis, Environ. Res. Lett., 11, 094014, https://doi.org/10.1088/1748-9326/11/9/094014, 2016.
UNISDR: Sendai framework for disaster risk reduction 2015–2030, in: UN world conference on disaster risk reduction, 14–18 March 2015, Sendai, Japan, United Nations Office for Disaster Risk Reduction, Geneva, Switzerland, available at: http://www.wcdrr.org/uploads/Sendai_Framework_for_Disaster_Risk_Reduction_2015-2030.pdf (last access: 1 November 2019), 2015.
Ward, P. J., Jongman, B., Weiland, F. S., Bouwman, A., van Beek, R.,
Bierkens, M. F. P., Ligtvoet, W., and Winsemius, H. C.: Assessing flood risk
at the global scale: model setup, results, and sensitivity, Environ. Res. Lett., 8, 044019, https://doi.org/10.1088/1748-9326/8/4/044019, 2013.
Ward, P. J., Jongman, B., Salamon, P., Simpson, A., Bates, P., De Groeve,
T., Muis, S., de Perez, E. C., Rudari, R., Trigg, M. A., and Winsemius, H.
C.: Usefulness and limitations of global flood risk models, Nat. Clim. Change, 5, 712–715, https://doi.org/10.1038/nclimate2742, 2015.
Winsemius, H. C., Van Beek, L. P. H., Jongman, B., Ward, P. J., and Bouwman, A.: A framework for global river flood risk assessments, Hydrol. Earth Syst. Sci., 17, 1871–1892, https://doi.org/10.5194/hess-17-1871-2013, 2013.
Winsemius, H. C., Aerts, J. C. J. H., van Beek, L. P. H., Bierkens, M. F.
P., Bouwman, A., Jongman, B., Kwadijk, J. C. J., Ligtvoet, W., Lucas, P. L.,
van Vuuren, D. P., and Ward, P. J.: Global drivers of future river flood
risk, Nat. Clim. Change, 6, 381–385, https://doi.org/10.1038/nclimate2893, 2015.
Yamazaki, D., Kanae, S., Kim, H., and Oki, T.: A physically based description
of floodplain inundation dynamics in a global river routing model, Water
Resour. Res., 47, W04501, https://doi.org/10.1029/2010WR009726, 2011.
Yamazaki, D., O'Loughlin, F., Trigg, M. A., Miller, Z. F., Pavelsky, T. M., and Bates, P. D.: Development of the Global Width Database for Large 440 Rivers, Water Resour. Res., 50, 3467–3480, https://doi.org/10.1002/2013WR014664, 2014a.
Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and
Pavelsky, T. M.: MERIT Hydro: A High-Resolution Global Hydrography Map Based
on Latest Topography Dataset, Water Resour. Res., 55, 5053–5073,
https://doi.org/10.1029/2019WR024873, 2019.
Zhao, F., Veldkamp, T. I. E., Frieler, K., Schewe, J., Ostberg, S., Willner,
S., Schauberger, B., Gosling, S. N., Schmied, H. M., Portmann, F. T., Leng,
G., Huang, M., Liu, X., Tang, Q., Hanasaki, N., Biemans, H., Gerten, D.,
Satoh, Y., Pokhrel, Y., Stacke, T., Ciais, P., Chang, J., Ducharne, A.,
Guimberteau, M., Wada, Y., Kim, H., and Yamazaki, D.: The critical role of
the routing scheme in simulating peak river discharge in global hydrological
models, Environ. Res. Lett., 12, 075003,
https://doi.org/10.1088/1748-9326/aa7250, 2017.
Short summary
We compare and analyse flood hazard maps from eight global flood models that represent the current state of the global flood modelling community. We apply our comparison to China as a case study, and for the first time, we include industry models, pluvial flooding, and flood protection standards. We find substantial variability between the flood hazard maps in the modelled inundated area and exposed gross domestic product (GDP) across multiple return periods and in expected annual exposed GDP.
We compare and analyse flood hazard maps from eight global flood models that represent the...
Altmetrics
Final-revised paper
Preprint