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Abstract. Over the past decade global flood hazard models
have been developed and continuously improved. There is
now a significant demand for testing global hazard maps gen-
erated by these models in order to understand their applica-
bility for international risk reduction strategies and for rein-
surance portfolio risk assessments using catastrophe models.
We expand on existing methods for comparing global hazard
maps and analyse eight global flood models (GFMs) that rep-
resent the current state of the global flood modelling commu-
nity. We apply our comparison to China as a case study and,
for the first time, include industry models, pluvial flooding,
and flood protection standards in the analysis. In doing so,
we provide new insights into how these components change
the results of this comparison. We find substantial variabil-
ity, up to a factor of 4, between the flood hazard maps in the
modelled inundated area and exposed gross domestic prod-
uct (GDP) across multiple return periods (ranging from 5 to
1500 years) and in expected annual exposed GDP. The inclu-
sion of industry models, which currently model flooding at a
higher spatial resolution and which additionally include plu-
vial flooding, strongly improves the comparison and provides
important new benchmarks. We find that the addition of plu-
vial flooding can increase the expected annual exposed GDP
by as much as 1.3 percentage points. Our findings strongly
highlight the importance of flood defences for a realistic risk
assessment in countries like China that are characterized by
high concentrations of exposure. Even an incomplete (1.74 %
of the area of China) but locally detailed layer of structural
defences in high-exposure areas reduces the expected annual

exposed GDP to fluvial and pluvial flooding from 4.1 % to
2.8 %.

1 Introduction

Floods are one of the most frequent and most devastating
kinds of natural disasters. Between 1980 and 2016, floods
caused 23 % of overall economic losses and 14 % of fatali-
ties due to natural hazards worldwide (Löw, 2018). In 2016,
economic losses from flooding amounted to USD 56 billion
globally. Understanding the risk of natural hazards, including
flood risk, has therefore been identified as a priority in recent
international risk reduction frameworks, such as the Sendai
Framework for Disaster Risk Reduction (UNISDR, 2015).

In recent years, significant scientific efforts have been car-
ried out to develop global flood risk models (GFMs) (Teng
et al., 2017). In terms of river flooding, these have exam-
ined current flood risk at the global scale (e.g. Winsemius
et al., 2013) as well as future flood risk due to changes in:
hazard, as a result of climate change (Alfieri et al., 2017;
Dottori et al., 2018; Arnell and Gosling 2016; Hirabayashi et
al., 2013; Kundzewicz et al., 2014; Ward et al., 2017; Win-
semius et al., 2015); exposure, due to increasing population,
wealth, and urbanization (Hallegatte et al., 2013; de Moel et
al., 2015); and vulnerability (Jongman et al., 2015). To date,
attention has especially been paid to developing global flood
hazard maps. These maps indicate the severity of the haz-
ard for different exceedance probabilities across the globe.
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The hazard severity is generally expressed in terms of flood
extent and flood depth, on a raster grid with resolutions rang-
ing from 1 to 32 arcsec. The GFMs that are used to create
these flood hazard maps are simplified global-scale models
of surface water flows that are driven by regional or global
climate models or rely on gauged-discharge or (gauged-) pre-
cipitation datasets (Sampson et al., 2015). The development
of these models has been facilitated by advances in satellite
data, numerical algorithms, computing power, and coupled
modelling frameworks (Ward et al., 2015). The key advan-
tage of GFMs compared to regional or national flood models
is their global scale, which means that flood hazard maps are
now available in data-poor areas that previously lacked haz-
ard maps (Hagen and Lu, 2011).

Despite these recent advances, several major challenges
still exist. For example, Ward et al. (2015) discuss the qual-
ity of elevation data, accuracy of boundary conditions used
to force inundation models, and knowledge of river morphol-
ogy, among other things. Bernhofen et al. (2018) also discuss
the importance of forcing boundary conditions, especially in-
put flow, as well as the influence of morphological features,
such as floodplain size and the steepness of the terrain. An-
other major challenge for GFMs is to account for the impact
that structural flood defences have on flood hazard, especially
in regions with high protection standards.

Due to the aforementioned challenges and the growing
number of GFMs, there is now a significant demand for
comparing the outputs of different models and assessing
their accuracy. This helps in understanding the applicability
of GFMs for developing international risk reduction strate-
gies and for their use in reinsurance and insurance portfo-
lio risk assessments. Several such studies have been carried
out by comparing or investigating a certain model compo-
nent (e.g. global hydrological model, river routing model,
and model resolution) in the GFM framework. For example,
Schellekens et al. (2017) conducted an inter-model agree-
ment assessment of 10 global hydrological models (GHMs)
based on the signal-to-noise ratio in monthly mean anoma-
lies of evapotranspiration, runoff, root zone soil moisture,
and precipitation. The agreement of the GHMs was found to
be low in snow-dominated regions and tropical rainforest or
monsoon areas and high in temperate areas. A study by Zhao
et al. (2017) assessed the ability of GHMs with native rout-
ing schemes to capture the timing and amplitude of river dis-
charge. The results were compared to the use of a dedicated
global river routing model, CaMa-Flood. Generally the use
of CaMa-Flood improved the accuracy of simulating peak
river discharge. Mateo et al. (2017) investigated the applica-
bility of a GFM at higher spatial resolutions by validating it
against a large past flood event in Thailand. They found that
validation results improved with higher spatial resolution if
multiple downstream connectivity is represented in the river
routing model.

Rather than testing and investigating a certain model com-
ponent of GFMs, Trigg et al. (2016) compared flood haz-

ard maps from six different GFMs for the African continent.
The study compared the inundated area across hazard maps
for multiple return periods and assessed how this translates
into differences in exposed gross domestic product (GDP)
and exposed population. They found large differences; for
example over the continent of Africa there is around 60 % to
70 % of disagreement between the GFMs in terms of the in-
undated area. These differences are mainly present in deltas,
arid climate zones, and wetlands. The study concludes that
in order to increase the quality of GFMs there is a demand
for more inter-comparison studies and stresses the impor-
tance of the inclusion of industry models. In reply, Bern-
hofen et al. (2018) validated the same six GFMs in Africa.
The best individual models performed at an acceptable level
compared to observations. Further findings were that models
forced by river gauged-flow data outperform models forced
by climate reanalysis data. Contrary to previous studies, no
relationship was found between performance and model spa-
tial resolution. In a follow-up study, Hoch and Trigg (2019)
proposed a validation framework for global flood models.
The aim of this framework is to understand the drivers of de-
viations between GFMs by providing standard forcing data,
validating and benchmarking model results, and sorting and
indexing reference output. This framework is in line with
the currently developed eWaterCycle II platform, which pro-
vides the above-mentioned principles for the global hydro-
logical modelling community (https://www.ewatercycle.org/,
last access: 2 January 2020; Hut et al., 2018).

In this study, we expand upon the existing work of inter-
comparison studies for global flood hazard maps. The main
aim is to carry out a comprehensive comparison of flood haz-
ard maps from eight GFMs for the country of China and as-
sess how differences in the simulated flood extent between
the models lead to differences in simulated exposed GDP and
expected annual exposed GDP. The purpose of the main aim
is (a) to assess the relative differences in the hazard output of
a wide variety of global flood models, (b) to understand and
explain these differences from the differences in the mod-
els themselves (data, methods, modelling, and output reso-
lution), and (c) to provide a simple analysis on the impact
of these differences to flood risk. This is carried out by ad-
dressing the variation in different model structures and the
variability between flood hazard maps. Contrary to previous
studies, we do examine the effect of flood protection stan-
dards on flood hazard and include pluvial flooding. We fur-
ther investigate the current differences between flood hazard
maps of GFMs, as opposed to a validation study, as the addi-
tion of the flood protection and pluvial components provide
valuable new insights in their effects on the variability in re-
sults. Our comparison uses both publicly available academic
GFMs (GLOFRIS, ECMWF, CAMA-UT, JRC, and CIMA-
UNEP) as well as industry models (Fathom, KatRisk, and
JBA) that are applied within the wider reinsurance industry.
To our knowledge, it is the first comparison study to include
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industry models, the pluvial-flood component, and the role
of flood protection on the flood hazard and exposure.

China is selected as our case study area because it poses
many challenges to flood modelling: data scarcity; a variety
of flood mechanisms spanning many climatic zones; com-
plex topography; strong anthropogenic influence on the flood
regimes, for example through river training; and a very high
concentration of exposure. Moreover, China is prone to se-
vere flood events. For example, in June 2016 alone more than
60 million people were affected by floods, resulting in an es-
timated damage of USD 22 billion (CRED, 2016). The com-
bination of data scarcity, modelling challenges, and flood im-
pacts that occur in China fit the key advantage of GFMs well,
i.e. providing hazard maps in data-poor regions. In addition,
the shear spatial scale and challenges of modelling China (in-
cluding complex topography and climate variability) provide
a unique test bed for assessing the differences between the
flood hazard maps.

This paper is set up as follows. In Sect. 2, we describe the
data and models used in this study. In Sect. 3, we describe
the (statistical) methods applied to compare the data from
the various models. In Sect. 4, we present and discuss the re-
sults, examining differences in flood hazard, exposed GDP,
and expected annual exposed GDP between GFMs; the in-
fluence of incorporating flood protection; and model agree-
ment. Conclusions and an outlook are provided in Sect. 5. In
Sect. S1 of the Supplement, we provide a detailed overview
of the models and data used.

2 Description of flood hazard maps and models

We compare flood hazard maps for different return periods
from eight different GFMs, namely CaMa-UT (Yamazaki
et al., 2011, 2014a, b), GLOFRIS (Ward et al., 2013; Win-
semius et al., 2013), JRC (Dottori et al., 2016), ECMWF
(Balsamo et al., 2015), Fathom (Sampson et al., 2015),
CIMA-UNEP (Rudari et al., 2015), KatRisk (contact Ka-
tRisk for a technical report), and JBA (contact JBA for a
technical report). An overview of the technical specifications
of the flood hazard maps is provided in Table 1. The out-
puts of the native flood hazard map of each GFM were ac-
quired between November 2017 and May 2018. Data were
downloaded or requested in their original published for-
mat (at the time of the study), and no bespoke or post-
processed maps were requested. The acquired flood haz-
ard maps do not include structural flood defences, the so-
called undefended flood hazard maps. The exception is the
CIMA-UNEP model, which has readily built-in flood pro-
tection (Sect. 2.2); these hazard maps are considered to be
undefended in this study. Noteworthy is that the Fathom
and JBA models do provide separate defended hazard maps
(Sect. 2.2). The hazard maps are either fluvial floods only
or fluvial with pluvial floods combined (Fathom, KatRisk,
and JBA), the so-called combined flood hazard maps. The

Figure 1. Two types of model structures as introduced by Trigg et
al. (2016), with the cascade model structure in blue and the gauged-
flow model structure in red.

hazard maps cover return periods (RPs) ranging from 5 to
1500 years, and the output resolutions of the native flood haz-
ard map range from 1 to 32 arcsec.

2.1 Model structures

From the eight GFMs, we identified two groups based on
the model structure described in Trigg et al. (2016): the cas-
cade model structure (CaMa-UT, GLOFRIS, JRC, ECMWF,
and KatRisk) and the gauged-flow model structure (Fathom,
CIMA-UNEP, and JBA). An overview of the modelling chain
of both model structures is shown in Fig. 1 and further ex-
plained in Sect. 2.2.1 and 2.2.2. A concise description of
the cascade model structure is provided by Winsemius et
al. (2013) and by Sampson et al. (2015) for the gauged-flow
model structure.

The general model input data used by the GFMs (i.e. river
network datasets and digital representations of the earth’s
surface like digital elevation models (DEMs), digital ter-
rain models (DTMs), or digital surface models (DSMs))
vary in type, resolution, and corrections applied. CaMa-UT,
GLOFRIS, JRC, ECMWF, CIMA-UNEP, Fathom, and Ka-
tRisk use the HydroSHEDS river network (Lehner and Grill,
2013) and SRTM3 DEM (Farr et al., 2007) at either 3 or
30 arcsec. Urban and vegetation bias corrections are applied
before use. Additionally, KatRisk applies an algorithmic fil-
tering to clean the DEM and uses manual correction to re-
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Table 1. Technical specification of the flood hazard maps of the eight GFMs.

Global flood model Flood type Return periods Output resolution

CaMa-UT Fluvial 5, 10, 20, 25, 50, 100, 200, 250, 500, 1000 18 arcsec
CIMA-UNEP1 Fluvial 25, 50, 100, 200, 500, 1000 32 arcsec
ECMWF Fluvial 5, 20, 25, 50, 75, 100, 500, 1000 18 arcsec
Fathom2 Fluvial and pluvial 5, 10, 20, 25, 50, 75, 100, 200, 250, 500, 1000 3 arcsec
JRC Fluvial 10, 20, 50, 100, 200, 500 30 arcsec
GLOFRIS Fluvial 5, 10, 25, 50, 100, 250, 500, 1000 30 arcsec
KatRisk Fluvial and pluvial 10, 20, 50, 100, 200, 500, 1500 3 arcsec
JBA3 Fluvial and pluvial 20, 50, 100, 200, 500, 1500 1 arcsec

1 CIMA-UNEP: defences are readily built-in; see Sect. 3.5 for more information. 2 Fathom: defended hazard maps contained very limited flood
defences; not included in this study. 3 JBA: includes not readily built-in flood protection layer; see Sect. 3.5 for more information.

move blockages of flow pathways. The JBA method uses
the Intermap Technologies Inc. NEXTMap World 30 digital
surface model (DSM) for China. The DSM provides global
coverage at 1 arcsec resolution. On a global scale, the JBA
method uses a bare-earth DTM to complement the DSM. The
JBA method derives the river network from elevation data
and applies extensive validation and correction before use.

The summary of model characteristics in Table 2 shows
the model structures, climate forcing datasets, GHM (when
applicable), name and type of river routing models, consid-
ered catchment size, type of digital elevation model, down-
scaled model resolution, and native output resolution of the
flood hazard maps.

2.1.1 Cascade model structure

The defining characteristics of the cascade model structure
are the use of climate forcing input datasets for the GHMs.
River routing models then calculate the continuous river flow
along river networks, calculating river and floodplain inunda-
tion dynamics. This is followed by flood frequency analysis
(FFA), which determines flood depth and extent for a given
RP or the flood volume in the case that downscaling is re-
quired.

Following the numeration of Fig. 1, the cascade modelling
chain starts with the following.

1. Climate forcing datasets provide precipitation, temper-
ature, and in some cases potential evapotranspiration
time series as input for GHMs. The datasets (JRA-25,
EU-Watch, ERA-Interim, and EC-Earth) vary in their
modelled time period, time step, resolution, and at-
mospheric processes. The modelled time periods range
from 1979 up to present day, with all periods spanning
more than 30 years to avoid bias by inter-decadal vari-
ability. The time step of the climate forcing datasets
is 6-hourly, and the horizontal resolutions range be-
tween 80 km to 1.125◦. The KatRisk model uses gridded
daily precipitation observations from the US National
Weather Service’s Climate Prediction Center (CPC) to
establish rainfall–runoff relationships in combination

with the ERA-Interim dataset that provides other at-
mospheric variables used to estimate evapotranspiration
(like wind speed, radiation, and temperature).

2. The GHMs calculate the surface and atmosphere inter-
actions. GHMs vary in modelled processes, time steps,
and resolution. The modelled processes mainly deviate
in how runoff, evapotranspiration, and snow schemes
are executed. The time steps of the GHMs are hourly
(CaMa-UT, JRC, and ECMWF), 3-hourly (CIMA-
UNEP), 6-hourly (KatRisk), or daily (GLOFRIS).
The GHM resolutions range between 3 arcsec (CIMA-
UNEP and KatRisk), 0.1◦ (CaMa-UT, JRC, and
ECMWF), and 0.5◦ (GLOFRIS). The GHMs produce
specific discharge along river networks, which is then
passed through river routing models.

3. A wide range of methods is used to model inundation
dynamics. The complexities range from 2D flood vol-
ume redistribution (GLOFRIS) and complex 2D sub-
grid topography models (CaMa-UT and ECMWF) to
2D hydrodynamic models (JRC and KatRisk). Main dif-
ferences between the river routing models are the reso-
lution and the formulation of the shallow-water equa-
tions. The resolutions range from 3 arcsec (KatRisk),
0.1◦ (JRC), and 0.25◦ (CaMa-UT and ECMWF) to
0.5◦ (GLOFRIS). The shallow-water equations used
for calculating the river routing are either local inertia
(CaMa-UT and ECMWF), kinematic wave (GLOFRIS
and JRC), or a unit hydrograph approach (KatRisk)
where upstream and lateral inflow are treated as instan-
taneous inputs to a linear time-invariant model using the
advection–diffusion equation as a response function.

4. The output of the global river routing model is used to
estimate a time series of flood volume (GLOFRIS) or
flood depth (CaMa-UT, JRC, ECMWF, and KatRisk).
Applying flood frequency analysis (FFA), annual max-
ima of local runoff and/or river discharge are extrap-
olated to RPs beyond the observational space using
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Table 2. Summary of the main model characteristics of the eight GFMs.

GFM and model characteristics CaMa-UT CIMA-UNEP ECMWF Fathom

Model type Cascade model Gauged-flow model Cascade model Gauged-flow model
Flood type Fluvial Fluvial Fluvial Fluvial and pluvial
Input dataset JRA-25 EC-Earth and GRDC ERA-Interim GRDC and USGS
Global hydrological model MATSIRO-GW Continuum model HTESSEL Not applicable
River routing model CaMa-Flood Simplified hydraulic model CaMa-Flood LISFLOOD-FP
River routing type Complex 2D sub-grid Simple 1D Complex 2D sub-grid 2D hydrodynamic
Digital elevation model SRTM 3 SRTM 3 SRTM 3 SRTM 3
Considered catchment size 500 km2 1000 km2 500 km2 50 km2

Modelled resolution 3 arcsec 3 arcsec 3 arcsec 3 and 30 arcsec
Output resolution 18 arcsec 32 arcsec 18 arcsec 3 arcsec

GFM and model characteristics JRC GLOFRIS KatRisk JBA

Model type Cascade model Cascade model Gauged-flow model Gauged-flow model
Flood type Fluvial Fluvial Fluvial and pluvial Fluvial and pluvial
Input dataset ERA-Interim EU-Watch CPC and ERA-Interim CRU TS3.2, CFSRv2,

and local data
Global hydrological model HTESSEL PCR-GLOBWB TOPMODEL modified Not applicable
River routing type LISFLOOD-Global DynRout Unit hydrographs RFlow and JFlow
River routing model 2D hydrodynamic 2D volume 2D hydrodynamic 2D hydrodynamic
Digital elevation model SRTM 3 SRTM 3 SRTM 3 NEXTMap World 30 DSM

and bare-earth DTM
Considered catchment size 5000 km2 Strahler order ≥ 6 > 4 cm flood depth No minimum
Modelled resolution 30 arcsec 30 arcsec 3 arcsec 1 arcsec
Output resolution 30 arcsec 30 arcsec 3 arcsec 1 arcsec

extreme-value distributions. All models use the Gumbel
extreme value to estimate peak values for each RP.

5. The resulting flood volumes or depths per computation
cell are downscaled to increase the output resolution. Ei-
ther the water level is downscaled (CaMa-UT, JRC, and
ECMWF) or the flood volume is redistributed to the res-
olution of the digital elevation model (GLOFRIS). The
KatRisk model does not require further downscaling.
The resolutions are 3 arcsec (CaMa-UT and ECMWF)
and 30 arcsec (JRC and GLOFRIS). The native output
resolutions are 3 arcsec (KatRisk), 18 arcsec (CaMa-UT
and ECMWF), and 30 arcsec (JRC and GLOFRIS).

2.1.2 Gauged-flow model structure

Following the numeration of Fig. 1, models belonging to
the gauged-flow model structure use gauged-discharge or
gauged-precipitation datasets as input. The modelling ap-
proaches differ between those using regionalization tech-
niques that depend on upstream catchment characteristics
(Fathom), models that need to be complemented by hydro-
logic simulations (CIMA-UNEP), and those that use em-
pirical rainfall–runoff methods (JBA). Based on the output
of these methods, the flood flow magnitude is calculated
through flood frequency analysis for given RPs that force
river routing models. The river routing models produce flood
extents and flood depths for given RPs. The gauged-flow
models in this study do not require downscaling.

1. For the water volume input, the CIMA-UNEP and
Fathom models use the Global Runoff Data Centre
(GRDC; Germany) river discharge dataset as their main
input of discharge observations. This dataset consists
of more than 9500 stations that collect their data at
daily and monthly intervals. Of these 9500 stations, only
39 are located in China. The Fathom model is com-
plemented with the United States Geological Survey
(USGS) stream gauge dataset. The JBA method uses
the Climate Research Unit (CRU) TS (Time-Series) 3.2
(> 4000 weather stations) (Harris et al., 2014) and Cli-
mate Forecast System Reanalysis (CFSR) v2 precipi-
tation dataset (Saha et al., 2010), which respectively
cover the period 1901 to 2011 and 1979 to 2009 with a
monthly and daily temporal resolution. The CFSR data
are calibrated using 25 rain gauges in China. For China,
170 river gauges are used to enable the modelling of
empirical rainfall–runoff relationships to calculate river
discharge.

2. The CIMA-UNEP and Fathom models follow the as-
sumption that inferences from data-rich catchments can
be transferred to data-poor catchments. Discharge data
are first pooled into homogeneous regions based on
catchment descriptors of climate, upstream annual rain-
fall, and catchment area, after which they are divided
into the five classes of the Köppen–Geiger climate clas-
sification (Kottek et al., 2006; Sampson et al., 2015).
Regional flood frequency curves are derived using the
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generalized extreme-value distribution and are com-
bined with the index flood to generate return period de-
sign flood hydrographs along the river network (Samp-
son et al., 2015; Smith et al., 2015).

The CIMA-UNEP model is complemented with hydro-
logic simulations using the EC-Earth climate forcing
dataset and the continuum model to ensure that results
are correct in data-scarce catchments. The JBA model
does not require regression techniques as their precipi-
tation datasets have global coverage.

3. The flood hydrographs are then used to force river
routing models that propagate the flow across digital
elevation models, calculating flood depth and extent
without the need for downscaling. As with the cas-
cade models, the river routing models of the gauged-
flow models vary in methods and complexity. JBA uses
the RFlow model for all of the large river networks
in China, except for the downstream end of the Pearl
River (Guangzhou area) and the downstream end of
the Yangtze River (Shanghai area), which are mod-
elled with JFlow in a fluvial configuration. Small rivers
(catchments < 500 km2) as well as surface water flood-
ing are modelled using JFlow in a direct-rainfall con-
figuration. The resolutions of the river routing mod-
els vary between 1 arcsec (RFlow and JFlow), 3 arcsec
(CIMA-UNEP), and 30 arcsec (Fathom). The shallow-
water equations used for calculating the river routing are
inertia (Fathom), Manning equations (CIMA-UNEP),
the combination of the normal depth and Manning equa-
tions (JBA-RFlow model), and the full shallow-water
equations (JBA-JFlow model).

2.1.3 Pluvial-flood modelling

In addition to fluvial floods, the JBA, Fathom, and KatRisk
models also simulate pluvial floods. Fathom uses a “rain-on-
grid” method for rivers and catchments smaller than 50 km2,
where flow is generated by raining directly on the DEM
at 3 arcsec in order to calculate runoff. This method uses
intensity–duration–frequency (IDF) relationships to estimate
the duration, intensity, and frequency of extreme rainfall be-
fore applying the same regression techniques for extrapo-
lation as with the fluvial component. The JBA method fol-
lows a similar approach by calculating IDF relationships at
the centroid of each CFSR tile (0.5◦× 0.5◦). Kriging is used
to interpolate between the tile centroids to create a contin-
uous rainfall surface for each RP and storm duration (three
storm durations are included; 1, 3, and 24 h). The JFlow rout-
ing model is run in this direct-rainfall approach to model
the small rivers (< 500 km2) and surface waters. The Ka-
tRisk model uses daily precipitation from the Climate Pre-
diction Centre dataset (Boulder, Colorado, USA) to simulate
rainfall over catchments smaller than 500 km2. The precipi-
tation dataset combines all available historical data sources

for daily and sub-daily global coverage from 1979 to real-
time measurements, which are longer for monthly data. The
data are checked for errors and to ensure spatial and tem-
poral consistency. A 2D storage cell (diffusive-wave) model
is used to calculate pluvial-flood patterns. The runoff is dis-
tributed uniformly across a catchment and routed according
to topography at 3 arcsec. The flow (surface runoff fraction)
is calibrated using river gauged-discharge data.

2.2 Defended hazard maps and external flood
protection layers

Of all global flood models considered in this study, three in-
clude options for considering the impact of structural flood
defences on the hazard maps.

The CIMA-UNEP hazard maps are the only maps that
contain a level of built-in flood protection, which cannot be
removed. They incorporate flood protection standards by cre-
ating a defence ellipsoid around large cities, with the size be-
ing dependent on the GDP. All flooding within this ellipsoid
is removed in post-processing, and the defences are assumed
to fail above a standard of protection of RP200. Hence, this
also means that for the CIMA-UNEP model the undefended
baseline hazard maps are not available for this study.

Alongside the undefended hazard maps, Fathom also pro-
vided flood hazard maps with integrated flood protection.
JBA further provided a dataset of defences (largely for dense
urban areas) that can be superimposed on the flood hazard
maps to create a defended set of flood maps per return pe-
riod.

To allow for comparison between the individual GFMs, we
decided to include defences only in a post-processing step
using non-built-in layers of defences, meaning that Fathom’s
defended maps were not used in this study. Section 3.5 de-
scribes the post-processing step in more detail.

The two flood protection layers used in this study are (1) a
county-level defence layer and (2) a city-level defence layer.
The first layer was created by Du (2018) and describes stan-
dards of protection (SoPs) on an administrative county level
covering the whole of China. It can be considered as a kind
of policy layer, as it makes assumptions about the degree of
protection based on goods to be protected. This layer was
developed by dividing counties into urban or rural areas. The
urban-area SoPs are based on GDP and population datasets
from the Chinese government. The GDP dataset is converted
into a weighted population dataset and is then combined with
the population dataset to calculate the maximum urban pro-
tection for a given county. The rural-area SoP is based on
the assumption that farmland is a key indicator for flood pro-
tection due to its importance for providing food security for
the large population of China. The area of farmland is de-
rived from a governmental land use map and is combined
with the population dataset to calculate the maximum SoP
for each county. The urban and rural areas within the coun-
ties are then combined to create a nationwide layer of flood
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protection standards. The SoPs of the layer range from 10
in rural counties (western China) to 200 in urban counties
(eastern China).

The second layer is the high-resolution JBA flood protec-
tion layer for defended areas and is from hereon in referred
to as the city-level defence layer. The layer is a national layer
that contains SoP polygons with a focus on urban areas. The
defended areas are determined using a variety of the best
available third-party sources. Some of the defended areas
were excluded by JBA, as it is likely that flooding might oc-
cur from surrounding undefended areas. The SoP attributed
to each defended area is determined from the local available
data source. Where it was not known, the defended area was
attributed to the SoP of either the neighbouring defence data
or the regional average. In total, the layer covers only 1.74 %
of the area of China.

3 Methodology

We assess the agreement between the flood hazard maps of
the eight GFMs by calculating the inundated area for the
whole of China and by applying a model agreement index
that calculates the agreement on inundation per grid cell. We
include a GDP layer to study how the inundated area relates
to exposed GDP and the amount of expected annual exposed
GDP and how model agreement relates to agreement on the
amount of exposed GDP. By including flood protection stan-
dards we can assess the effects of these layers on the previ-
ously mentioned types of analyses, adding to the knowledge
of the importance of including such layers in further stud-
ies. In addition, we ensure a fair and accurate comparison of
the flood hazard through the use of a data homogenization
scheme.

3.1 Data homogenization

We acquired the undefended flood hazard maps of the global
flood models (GFM) in their native output format. The dif-
ference in resolutions and output formats requires an initial
homogenization of the data. Firstly, the hazard maps were
masked to the case study area extent. The extent includes
continental China, excluding Hong Kong SAR, Macau SAR,
and Taiwan. Thirdly, we disaggregated the hazard maps to
a 3 arcsec resolution. The chosen resolution is a balance be-
tween minimizing the loss of data quality while maintaining
manageable file sizes and processing time. The disaggrega-
tion was conducted with the nearest-neighbour resampling
technique, meaning that a single 30 arcsec grid cell is re-
sampled to 10 3 arcsec grid cells with the same value. The
Fathom and KatRisk model outputs did not require resam-
pling, as their hazard maps are native at 3 arcsec. The JBA
flood hazard maps were aggregated to 3 arcsec from their
native 1 arcsec hazard map resolution. Fourthly, the hazard
maps were converted from representing flood depth, when

available, to flood extent by changing all grid cell values
larger than 0 to 1. This decision was made due to the lack
of flood depth availability in all flood hazard maps. Lastly,
“permanent” waterbodies were removed from the flood haz-
ard maps. The GFMs disagree on the inundation of lakes and
rivers. To avoid a large positive bias in the hit rate, we re-
moved these “neutral waterbodies” from the hazard maps us-
ing an independent dataset. The global surface water 1984–
2015 dataset from the Joint Research Centre (Pekel et al.,
2016) was modified to represent neutral waterbodies as areas
that are inundated 80 % of the time or more during the 1984
to 2015 period. This percentage of occurrence ensures that
permanent lakes and rivers are removed, whilst minimizing
the removal of floodplain inundation.

3.2 Inundation percentages

We compared the amount of the inundated area between the
different flood hazard maps with and without flood protection
standards. To accurately calculate the inundated area in km2

we implemented the Haversine method (Brummelen, 2013).
Using this method we created a grid containing the accurate
size in km2 of each grid cell. Next, we divided the inundated
area of the flood hazard maps by the total land area of China
to express the results as an percentage of the inundated area
of the total land area of China.

3.3 Exposed GDP and expected annual exposed GDP

The exposed GDP was calculated by overlaying the flood
hazard maps with a gridded GDP layer created by Kummu
et al. (2018). This layer has a native resolution of 30 arcsec
and represents the year 2015. We first adjusted the resolution
of the GDP layer to 3 arcsec using the bilinear resampling
technique. Next, we multiplied the homogenized flood extent
hazard maps with the GDP layer to obtain the exposed-GDP
value for each inundated grid cell. The results were then di-
vided by the total GDP of China to express the exposed GDP
as a percentage of the total GDP of China. In addition, we
calculated the expected annual exposed GDP (EAE-GDP)
following the method of Apel et al. (2016). The EAE-GDP
is the result of the flood event probability of exceedance (P )
and its exposure (E).

R =

n∑
i=1

1Pi ·Ei

1Pi = Pi+1−Pi

1Ei =
1
2

(Ei +Ei+1) (1)

R is the EAE-GDP. 1P is the change in annual probability of
exceedance where P = 1/T , and T is the return period (RP)
(Triet et al., 2018). E is the exposed GDP; i is the numerator
of T under consideration (with i = 1 representing RP5 in this
study); and n is the number of considered RPs. The RPs that
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Table 3. M (MAI) calculation based on an example grid with a river
indicated in bold with a value of 0.

Example calculation

1 2 4 0 3 3 N = 5 (number of models)
1 2 4 0 0 0 A= 23 (maximum inundated area)
2 4 0 4 4 4 a2= 6
4 0 4 2 2 1 a3= 2
0 4 2 1 1 1 a4= 9

M = (2/5× 6)+ (3/5× 2)+ (4/5× 9)/23
M = 10.8/23= 0.47

were not represented by the individual GFMs were filled to
ensure that the lack of especially low-RP data does not distort
the actual EAE. The data gaps were filled using linear inter-
polation and extrapolation for RP5 to RP1500 based on the
exposed-GDP percentage results. This can have a large ef-
fect on the results of GFMs that lack lower-RP flood hazard
maps, as they will likely have an overestimation of exposed
GDP due to linear extrapolation.

3.4 Model agreement index

The model agreement index (MAI) was introduced by Trigg
et al. (2016) as a measure for expressing model agreement
on a grid cell level. We calculated the MAI for the RPs 20–
25, 50, 100, and 500 because these are available for all eight
GFMs. A distinction is made between the fluvial and com-
bined hazard maps. Before MAI calculation, the binary haz-
ard maps (data homogenization processes) were aggregated
(stacked), resulting in grid cell values ranging from 0 to 7 for
the fluvial hazard maps and grid cell values ranging from 0
to 3 for the combined hazard maps. KatRisk’s maps produce
combined fluvial and pluvial flood hazard and are therefore
not included in the fluvial MAI calculation.

M =

∑n
i=2

i
N
· ai

A
, (2)

where M is the model agreement index (MAI), N is the num-
ber of models under consideration, i the number of models
in agreement, ai is the inundated area for the number (i) of
models in agreement, and A is the total inundated area of all
models under consideration.

The MAI formula in Eq. (2) has an output value between
0 (no agreement) and 1 (perfect agreement). The formula
only takes into account inundated grid cells in order to avoid
misrepresentation of model agreement. The large number of
non-inundated grid cells would create bias due to a high hit
rate. An example of a model agreement grid with MAI cal-
culation is provided in Table 3.

3.5 Defended hazard maps

We assess the influence of flood protection on the inundated
area, exposed GDP, EAE-GDP, and MAI using two different

types of defences to reflect two typically used strategies for
modelling structural defences: (a) a county-level and largely
policy-based defence layer and (b) a national-level defence
layer with a focus on urban areas on a city scale that de-
lineates defences only in areas of the highest exposure (de-
scribed in Sect. 2.2). The undefended hazard maps of all
models considered in this study were used. For the special
case of the CIMA-UNEP flood hazard maps, which include
a built-in defence layer, we still superimpose the defence lay-
ers. The defended flood hazard maps are created by masking
areas that are protected for a given standard of protection
(SoP). For example, a grid cell that is inundated at RP100
and has a protection level of SoP100 is considered to be not
inundated and is therefore masked in the flood hazard map.

4 Results and discussion

4.1 Spatial distribution of floods

Figure 2 shows the RP100 flood extent for both fluvial
(Fig. 2a) and combined fluvial and pluvial flooding (Fig. 2b)
across China. Noticeable are the large inundated areas in the
Xinjiang province of northwestern China and the northeast-
ern provinces of Heilongjiang, Jilin, and Liaoning, as well as
the large deltas located in the east. The latter consists of the
large cities of Beijing and Shanghai (among others) and is
therefore a region of high exposure.

4.2 Inundated area and flood protection

The comparison of the inundated area (expressed as a per-
centage of the total land area of China) between different
models is shown in Fig. 3a–c. The figures show both the flu-
vial hazard maps and the combined hazard maps (fluvial and
pluvial floods), with RPs ranging from 5 to 1500. Results are
shown for the undefended layers (Fig. 3a) and the defended
layers (Fig. 3b and c).

Focusing first on the undefended fluvial hazard maps in
Fig. 3a (solid lines), the predicted spread in percentage of
the inundated area ranges between 4.3 % and 9.8 % for RP20
and 5.8 % and 14.2 % for RP500. The CaMa-UT, GLOFRIS,
and JRC models show very similar results across RPs and
generally low amounts in percentage of the inundated area
compared to the other GFMs. The ECMWF, Fathom, and
CIMA-UNEP models show similar results across RPs and
moderate amounts in percentage of the inundated area. JBA’s
maps produce the highest percentage of the inundated area
across all RPs.

The differences and similarities in results cannot be ex-
plained by differences in model structure alone. The GFMs
with the closest resemblance in model structure and model
components (Table 2) are the CaMa-UT and ECMWF mod-
els, and the results differ up to a factor of 2. These mod-
els use different climate forcing datasets (JRA reanalysis and
ERA-Interim) and GHMs (MATSIRO-GW and HTESSEL);
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Figure 2. Aggregated flood hazard maps for both flood types, where the numbers and corresponding colours indicate the number of models in
agreement on the inundation of a grid cell. (a) Aggregated undefended fluvial-flood hazard maps of seven GFMs for RP100. (b) Aggregated
undefended combined (fluvial and pluvial) flood hazard maps of three GFMs for RP100.

the rest of the model structure is similar. From the resem-
blance in model structures of the CaMa-UT and ECMWF
models it can be inferred that the difference in global climate
forcing and GHM have large effects on the percentage of the
inundated area.

The difference in the inundated area between low and high
RPs is small for the majority of models (Fig. 3a), with the ex-
ception of the Fathom and JBA models. The CaMa-UT and
ECMWF models show a similar increment across the dif-
ferent RPs (though there is a large absolute difference be-
tween the two models), which is possibly caused by the sim-
ilar output resolution (18 arcsec) and considered catchment
size (500 km2). GFMs with higher output resolutions and
smaller considered catchment sizes tend to have larger incre-
ments between different RPs in the results, such as the JBA
model. Moreover, the high output resolution and the inclu-
sion of catchments of very small sizes in the JBA model are
likely the reason for the hazard maps to predict inundation
percentages significantly higher than the other models.

For the six GFMs (excluding JBA and KatRisk) that were
used in the study of Trigg et al. (2016), percentages of the
area inundated in our study for China for the undefended flu-
vial hazard map are similar to those found in Africa by Trigg
et al. (2016). For example, the inundation percentages range
from 3 % to 8.2 % for RP20 and 3.5 % to 9.5 % for RP500,
and the results are highest for the ECMWF and Fathom mod-

els in both studies. However, the results based on the CIMA-
UNEP model are very different, with a relatively high per-
centage of inundation (double) in our study compared to the
study of Trigg et al. (2016). However, it should be noted that
the output resolution of the CIMA-UNEP hazard maps used
in our study (32 arcsec or ∼ 1 km) is lower than the resolu-
tion used by Trigg et al. (2016) (3 arcsec or ∼ 90 m). Rudari
et al. (2015) tested the role of output resolution on the haz-
ard maps of CIMA-UNEP. They found that aggregating data
from 3 to 32 arcsec has major implications; for 22 case study
areas investigated in East Asia, they found an increase of in-
undation amount by a factor of 2 on average. Their findings
correspond well with the difference in CIMA-UNEP results
between both studies and further underline the large influ-
ence of output resolution on flood hazard maps.

The combined hazard maps shown in Fig. 3a (Fathom, Ka-
tRisk, and JBA models; dashed lines) show less variation for
a given RP than the undefended fluvial hazard maps. The
values vary between 8.0 % and 10.5 % for RP20 and 15.2 %
and 17.7 % for RP500. The difference in the inundated area
between the JBA fluvial and combined hazard maps is rela-
tively stable across increasing RPs. However, this is not the
case with the Fathom model that shows larger differences
with increasing RP. The higher amounts of inundation per-
centage due to the addition of pluvial floods (2 percentage
points for Fathom and 0.9 percentage points for JBA for
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Figure 3. Results of multiple-return-period fluvial and combined hazard maps of eight GFMs. The results of the fluvial hazard maps (_F) are
represented by a continuous line, and those of the combined hazard maps (_FP) are represented by an interrupted line. The RPs range from 5
to 1500 and are displayed on a logarithmic horizontal axis. (a) Percentage of the inundated area of China of undefended fluvial and combined
hazard maps. (b) Percentage of the inundated area of China of county-level defended fluvial and combined hazard maps. (c) Percentage of
the inundated area of China of city-level defended fluvial and combined hazard maps. (d) Exposed-GDP percentage of China of undefended
fluvial and combined hazard maps. (e) Exposed-GDP percentage of China of county-level defended fluvial and combined hazard maps.
(f) Exposed-GDP percentage of city-level defended fluvial and combined hazard maps.

RP100) highlight the importance of including pluvial floods
in flood hazard assessments at a large scale.

Next, we examine the results of the defended flood hazard
map shown in Fig. 3b–c. The defended county-level flood
hazard map results in Fig. 3b are based on the assumption
of complete protection against RP10 (rural areas) and up
to RP200 (in urban areas) and no protection against RP250
floods and higher. The results show the percentage of the
inundated area for RP20 ranging between 0.2 % and 1.5 %.
The effect of including flood protection is largest for low
RPs and becomes smaller with an increasing RP. The re-
sults for RP100 vary between 4.4 % and 12.7 %. Compared
to the undefended hazard maps the spread of results is re-
duced from 6.2 percentage points to 1.3 percentage points
for RP20 and from 8.8 percentage points to 8.3 percentage
points for RP100. The small difference between undefended
and defended county-level maps at RP100 is explained by
the presence of flood protection in the economically prosper-
ous and densely populated counties in eastern China, leaving
more counties prone to flooding.

The defended city-level hazard map results in Fig. 3c do
not assume complete protection against a given RP flood.
The results are similar to the results of the undefended flood

hazard maps because of the coverage of 1.74 % of China for
this flood protection layer.

4.3 Exposed GDP and flood protection

The exposed-GDP results (expressed as percentage of the to-
tal GDP of China) for the fluvial and combined hazard maps
are shown in Fig. 3d–f, for RPs ranging from 5 to 1500 years,
with and without flood protection. Results for the undefended
exposed GDP (Fig. 3d) vary between 13.9 % and 27.8 % for
RP20 and between 17.9 % and 33.4 % for RP100. Multiple
similarities are found between the inundated-area (Fig. 3a)
results and the exposed-GDP (Fig. 3d) results. The CaMa-
UT, GLOFRIS, and JRC models have the lowest percent-
ages for both types of results per RP. Similarly, the com-
bined hazard maps of the KatRisk, Fathom, and JBA mod-
els have the highest percentages. The main difference is for
the ECMWF model, which has the highest percentages of
exposed GDP between RP5 and RP100, as this is different
from the inundated-area results in which the inundated area
is close to the average of all GFM results. Additionally, the
Fathom model estimates relatively low exposed-GDP per-
centages compared to the fluvial percentage of the inundated
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area, which were close to the average. These results depict
that a high amount of the inundated area does not necessary
lead to a high amount of exposed GDP and vice versa.

The high exposed-GDP percentages of the ECMWF
model are caused by the inundation of densely populated
deltas in eastern China. The inundated area alone does
not give an adequate representation of the difference be-
tween models in terms of their use for assessing the im-
pacts of floods. This is further illustrated by the relatively
low exposed-GDP percentages of the Fathom model, which
is due to simulated inundation in large parts of the sparsely
populated regions of western China. The CIMA-UNEP re-
sults show a large increase in exposed-GDP percentage be-
tween RP500 and RP1000 of 12.1 percentage points, caused
by the exceedance of the built-in level of flood protection of
large cities.

The defended county-level exposed-GDP results in Fig. 3e
vary between 0.1 % and 0.2 % for RP20 and between
8.8 % and 17.6 % for RP100. Compared to the undefended
exposed-GDP results (Fig. 3d), the effect of including
county-level flood protection standards is larger for exposed
GDP than the inundated area. Generally, the variability be-
tween models in exposed GDP is very small between RP20
and increases towards RP100. At RP250 and higher the vari-
ability of results increases more due to floods exceeding the
design values of the defences for the large cities (where GDP
is concentrated) in the delta areas. This has a larger effect on
the exposed GDP of the fluvial hazard maps of the CaMa-UT,
GLOFRIS, JRC, and Fathom models than on the combined
hazard maps of KatRisk, Fathom, and JBA models.

The results of the city-level defended exposed GDP in
Fig. 3f vary between 9.4 % and 18.5 % for RP20 and be-
tween 17.3 % and 32.5 % for RP100. Contrary to the small
effect of city-level defences on the inundated-area results,
the impact is large for the exposed-GDP results in respect
to the small coverage of China (1.74 %). For example, the
ECMWF model has a lower exposed GDP of 15.8 % for the
city defended scenario as compared to 27.8 % for the unde-
fended scenario at RP5. The city defended results show less
variability for the lower RPs than for the undefended exposed
GDP. The variability among the GFMs increases between
RP50 and RP100 from 9.6 % to 15.2 % because the highest
assumed level of flood protection for this layer is RP100.

These results highlight the importance of including locally
detailed flood protection data for the correct representation
of exposed GDP. Adding information from a policy layer
can further improve the risk assessment on a countrywide
scale but needs careful validation of the uniform per-county
total protection assumptions. Also, ideally, flood protection
standards are already incorporated within the river routing
models of the various GFMs instead of incorporation during
post-processing.

4.4 Expected annual exposure

The expected annual exposed-GDP (EAE-GDP) results
shown in Table 4 are expressed as a percentage of the total
GDP of China. Generally, these results reflect the findings of
the per-RP comparison in the previous sections. The CIMA-
UNEP model simulates much lower EAE-GDP than the other
models for the undefended and defended county-level EAE-
GDP, which is due to the large difference in inundation per-
centages, caused by incorporated flood protection, between
RP25 and RP50. Extrapolation of these results to RP5 leads
to very low exposed-GDP percentage estimates and therefore
results in a low EAE-GDP value. This is not the case for the
defended county-level EAE-GDP due to all models agreeing
on low amounts of exposed GDP for RP20 and RP25. The
agreement between GFMs causes the defended county-level
variation to be small, at 0.29 percentage points.

4.5 Model agreement

The model agreement maps shown in Fig. 2a–b depict the
model agreement at the grid cell level for undefended flu-
vial and combined hazard maps for RP100. The areas with
highest model agreement are mainly situated next to large
rivers or deltas in eastern and northwestern China. Compar-
ing the results of both flood type hazard maps, it appears that
the combined flood hazard maps (Fig. 2b) have higher model
agreement for these flood hotspots. Furthermore, the com-
bined hazard maps show an increased level of detail due to
higher native output resolutions. An overview of the model
agreement index (MAI) for the whole of China is provided
in Table 5.

The MAI scores for RP100 are 0.29 for the fluvial haz-
ard maps and 0.38 for the three combined hazard maps. The
change in MAI between RPs is the largest between RP20(–
25) and RP50 for both undefended flood type hazard maps
and reduces slightly at higher RPs. Comparing the results
of the undefended and county-level defended hazard maps,
the defended hazard maps have lower MAI scores for both
flood types below RP500, and there is no difference between
MAI scores for the defended and undefended maps at RP500
and above as no flood defences are in place. The city-scale
defended hazard maps are not included in the MAI results
section due to the small change in the inundated area and
therefore model agreement.

Model disagreement occurs mainly at the floodplain edges
and on the modelling of smaller streams and rivers due to
differences in considered catchment size of the GFMs. This
effect is more pronounced for smaller RPs.

The average MAI scores on a province level shown in
Fig. 4a–b show the spatial differences of model agreement
in China. MAI scores are higher (0.30–0.60) in the north-
western and eastern provinces for the fluvial hazard map in
Fig. 4a. The same map shows that model agreement is low in
western China, the provinces in the south, and especially the
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Table 4. EAE-GDP results of the eight GFMs for the undefended, county-level defended, and city-level defended exposed-GDP scenarios.
The values are expressed as EAE-GDP percentages of China.

Global flood Flood Undefended Defended county-level Defended city-level
model type EAE-GDP EAE-GDP EAE-GDP

(% total GDP) (% total GDP) (% total GDP)

CaMa-UT Fluvial 2.34 0.07 1.56
CIMA-UNEP Fluvial 0.53 0.19 0.50
ECMWF Fluvial 5.59 0.10 3.26
Fathom Fluvial 1.91 0.08 1.44
JRC Fluvial 3.56 0.11 1.98
GLOFRIS Fluvial 3.10 0.36 1.93
JBA Fluvial 5.14 0.10 3.48

KatRisk Combined 3.55 0.19 2.47
Fathom Combined 3.18 0.12 2.28
JBA Combined 5.55 0.10 3.71

Figure 4. The spatial distribution of average MAI results on a province level for RP100 in China. (a) MAI scores for an undefended fluvial
hazard map (seven GFMs). (b) MAI scores for an undefended combined hazard map (three GFMs).

island of Hainan, with MAI scores between 0.10 and 0.30.
The combined hazard map results in Fig. 4b show a differ-
ent spatial distribution of MAI scores. The scores are high-
est in the northern provinces (0.50–0.65), some of the south-
ern provinces (0.50–0.55), and the eastern provinces (0.55–
0.60). The delta areas in the eastern and northeastern regions
and the provinces in western China have lower MAI scores
(0.35–0.50) than the previously mentioned regions.

These results indicate the importance of modelled catch-
ment size and output resolution of the GFMs for the haz-
ard maps. For example, the fluvial hazard maps of the JRC
model only include catchments larger than 5000 km2, while
the Fathom model includes catchment sizes of 50 km2 and
larger for their fluvial hazard maps. This mismatch between
models results in lower MAI scores. This is further illus-
trated by the low MAI score for the relatively small island
of Hainan in the south of China, which is not modelled by
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Table 5. MAI results for the undefended and county-level defended
fluvial and combined hazard maps for multiple RPs.

Number of Flood Return Undefended County defended
GFMs type period MAI (–) MAI (–)

7 Fluvial 20–25 0.26 –
7 Fluvial 50 0.28 0.26
7 Fluvial 100 0.29 0.28
7 Fluvial 500 0.29 0.29

3 Combined 20 0.35 0.23
3 Combined 50 0.37 0.34
3 Combined 100 0.39 0.38
3 Combined 500 0.41 0.41

all GFMs. A plausible cause of the combined hazard maps
having higher model agreement in the mountainous parts of
China is again the similarity in modelled catchment size and
output resolution, as they capture smaller headwater catch-
ments. For the end user the higher MAI in these regions
demonstrates more robustness in results and therefore shows
that the selection of GFM should be considered based on the
location of interest.

4.6 Limitations

The comparison of flood hazard maps is based on flood ex-
tent, where every grid cell is considered as fully inundated at
more than 0 cm of flood depth. In this study we did not test
the effect of this assumption on the results. A possible ef-
fect is the overestimation of flood extent by coarse-resolution
models, as for example a grid cell with a small amount
of inundation can be disaggregated to multiple inundated
grid cells and therefore misrepresent the native flood hazard
maps. A future study would benefit from testing multiple in-
undation thresholds for converting flood depth to flood extent
or by adding methods to compare inundation depth.

An additional limitation is the lack of RPs, especially the
lower RPs, that shape the EAE-GDP results. Linear extrapo-
lation of exposed-GDP results to RP5 can misrepresent how
GFMs simulate low-RP floods. This affects the EAE-GDP
because the results of low-RP floods have a larger weight
on the results than high-RP floods. Future studies should test
multiple extrapolation and or interpolation methods.

Our study has focused solely on the inter-comparison of
the outputs of the eight GFMs and has not attempted a valida-
tion against past flood event footprints or results of regional
flood maps. Therefore, results can currently only be inter-
preted relative to one another. In addition, this study does
not portray a complete picture of a full flood risk assessment
and should not be interpreted as such. The hazard component
shows high amounts of uncertainty, as illustrated by the rele-
vance of the flood defence assumptions which are larger than
the variability between GFMs. The modelling of vulnerabil-
ity and exposure would even add more levels of uncertainty
to the outcome of a flood risk assessment.

5 Conclusions and outlook

The main aim of this study was to carry out a comprehen-
sive comparison of flood hazard maps from eight GFMs for
the country of China and assess how differences in the sim-
ulated flood extent between the models lead to differences in
simulated exposed GDP and expected annual exposed GDP.

The main findings of this study are the following.

– Variations exist up to a factor of 4 between the flood
hazard map outputs of GFMs in terms of the inundated
area and exposed GDP.

– The GFMs that were assessed by Trigg et al. (2016)
for the African continent showed similar results to this
study, with the exception of the CIMA-UNEP model.

– The difference in the CIMA-UNEP model results be-
tween these studies underline the importance of the na-
tive output resolution of the flood hazard maps, which
is in line with previous findings of Rudari et al. (2015).

– The GFMs with the closest resemblance in model struc-
ture and model components, i.e. the CaMa-UT and
ECMWF models, differ up to a factor of 2. Their model
setup deviates in terms of the used climate forcing
datasets and GHMs, highlighting the large effect of
these model inputs on the results.

– Higher model agreement is found for combined haz-
ard maps than for fluvial hazard maps. This is due to
greater similarity in the native output resolution and the
considered catchment size of the three models (Fathom,
JBA, and KatRisk) that include pluvial flooding. Fur-
thermore, the spatial distribution of model agreement
differs between both types of flood hazard maps on a
province level.

– Pluvial flooding (both flooding of headwater catchments
and off-floodplain flooding) is a highly important form
of flooding (for China). Depending on the minimum
catchment size used for modelling fluvial floods, adding
pluvial flooding can increase the expected annual ex-
posed GDP by as much as 1.3 percentage points.

– Incorporation of external flood protection standards in
the flood hazard maps reduces the variability of inunda-
tion and exposed GDP between GFMs. Knowledge of
structural defences in high-exposure areas is key in ad-
equately assessing the overall risk of a country. County-
level (policy-level) defence knowledge can help to fur-
ther improve the results but needs to be checked care-
fully.

– The inclusion of industry models that currently model
flooding at a higher resolution both on the grid as
well as on the catchment level and that additionally in-
clude a pluvial-flooding component strongly improved

https://doi.org/10.5194/nhess-20-3245-2020 Nat. Hazards Earth Syst. Sci., 20, 3245–3260, 2020
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Figure 5. Flowchart describing practitioners’ flood hazard map selection criteria.

the inter-model comparison and provides important new
benchmarks for flood exposure.

GFMs are complex modelling chains, with assumptions and
uncertainties in the input data, the individual model compo-
nents, and their parameterization. In our study we can draw
some preliminary conclusions on the impact of certain mod-
elling decisions on the flood hazard map outputs. However,
we cannot conclude on GFM quality or the quality of an indi-
vidual model component. For the latter, a systematic compar-
ison framework is required, in which each of these modelling
components and parameters would be tested individually and
in unison. The proposed model comparison framework of
Hoch and Trigg (2019) could therefore greatly benefit our
current understanding of global flood hazard.

Based on our conclusions we advise practitioners to follow
the flowchart in Fig. 5 when selecting flood hazard maps. The
order of the flowchart does not indicate the relative impor-
tance of each component. First, a selection should be made
based on the inclusion of (external) flood protection stan-
dards. Second, the practitioner should include pluvial floods
when relevant in the study area. Third, the minimum catch-
ment size and modelled resolution should fit the case study
area and the required level of detail of the hazard maps.
Fourth, the type of forcing product should be evaluated based
on origin (reanalyses, gauged, radar, or satellite) and qual-
ity. Fifth, the model structure and specifications should be
selected based on the GHM and river routing model charac-
teristics.

In the future, multiple improvements are expected that can
greatly benefit GFMs and their use for risk assessment. In
terms of climate data, the ERA5 climate reanalysis dataset
(the successor of ERA-Interim) has been released, leading
to an increase of spatial and temporal resolution, among
other aspects. GFMs can greatly benefit from next-generation
DEMs, which will increase model resolution, result in better
parameterization of hydrodynamic modelling, and have the
potential for capturing flood defences. Improvements on cur-
rent DEMs have been made by the creation of the Merit DEM
(Yamazaki et al., 2019), which better captures river networks.

This study highlights the importance of pluvial flooding as
a main contributor to flood risk that, if unaccounted for, can
lead to a strong underestimation of the total flood risk. For
future studies we recommend to further complete the com-
parison with coastal flooding that is increasingly available
as either an integrated component of the global flood mod-
els under investigation or as separate hazard global layers
(Couasnon et al., 2020). Further, we can illustrate the effect

of flood defences on overall flood risk and the strong sensi-
tivity to this parameter that dominates most other input and
modelling uncertainties.

Code availability. Code used for analyses is available at https:
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