Articles | Volume 20, issue 6
https://doi.org/10.5194/nhess-20-1689-2020
https://doi.org/10.5194/nhess-20-1689-2020
Research article
 | 
08 Jun 2020
Research article |  | 08 Jun 2020

Event generation for probabilistic flood risk modelling: multi-site peak flow dependence model vs. weather-generator-based approach

Benjamin Winter, Klaus Schneeberger, Kristian Förster, and Sergiy Vorogushyn

Related authors

An open-source MEteoroLOgical observation time series DISaggregation Tool (MELODIST v0.1.1)
Kristian Förster, Florian Hanzer, Benjamin Winter, Thomas Marke, and Ulrich Strasser
Geosci. Model Dev., 9, 2315–2333, https://doi.org/10.5194/gmd-9-2315-2016,https://doi.org/10.5194/gmd-9-2315-2016, 2016
Short summary

Related subject area

Hydrological Hazards
Brief communication: Stay local or go global? On the construction of plausible counterfactual scenarios to assess flash flood hazards
Paul Voit and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 24, 4609–4615, https://doi.org/10.5194/nhess-24-4609-2024,https://doi.org/10.5194/nhess-24-4609-2024, 2024
Short summary
Integrating susceptibility maps of multiple hazards and building exposure distribution: a case study of wildfires and floods for the province of Quang Nam, Vietnam
Chinh Luu, Giuseppe Forino, Lynda Yorke, Hang Ha, Quynh Duy Bui, Hanh Hong Tran, Dinh Quoc Nguyen, Hieu Cong Duong, and Matthieu Kervyn
Nat. Hazards Earth Syst. Sci., 24, 4385–4408, https://doi.org/10.5194/nhess-24-4385-2024,https://doi.org/10.5194/nhess-24-4385-2024, 2024
Short summary
Tangible and intangible ex post assessment of flood-induced damage to cultural heritage
Claudia De Lucia, Michele Amaddii, and Chiara Arrighi
Nat. Hazards Earth Syst. Sci., 24, 4317–4339, https://doi.org/10.5194/nhess-24-4317-2024,https://doi.org/10.5194/nhess-24-4317-2024, 2024
Short summary
A multivariate statistical framework for mixed storm types in compound flood analysis
Pravin Maduwantha, Thomas Wahl, Sara Santamaria-Aguilar, Robert Jane, James F. Booth, Hanbeen Kim, and Gabriele Villarini
Nat. Hazards Earth Syst. Sci., 24, 4091–4107, https://doi.org/10.5194/nhess-24-4091-2024,https://doi.org/10.5194/nhess-24-4091-2024, 2024
Short summary
Invited perspectives: safeguarding the usability and credibility of flood hazard and risk assessments
Bruno Merz, Günter Blöschl, Robert Jüpner, Heidi Kreibich, Kai Schröter, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci., 24, 4015–4030, https://doi.org/10.5194/nhess-24-4015-2024,https://doi.org/10.5194/nhess-24-4015-2024, 2024
Short summary

Cited articles

Achleitner, S., Schöber, J., Rinderer, M., Leonhardt, G., Schöberl, F., Kirnbauer, R., and Schönlaub, H.: Analyzing the operational performance of the hydrological models in an alpine flood forecasting system, J. Hydrol., 412–413, 90–100, https://doi.org/10.1016/j.jhydrol.2011.07.047, 2012. a
Achleitner, S., Huttenlau, M., Winter, B., Reiss, J., Plörer, M., and Hofer, M.: Temporal development of flood risk considering settlement dynamics and local flood protection measures on catchment scale: An Austrian case study, Int. J. River Basin Manage., 14, 273–285, https://doi.org/10.1080/15715124.2016.1167061, 2016. a
Andrieu, C., Freitas, N., Doucet, A., and Jordan, M.: An Introduction to MCMC for Machine Learning, Mach. Learn., 50, 5–43, https://doi.org/10.1023/A:1020281327116, 2003. a
Archfield, S. A., Pugliese, A., Castellarin, A., Skøien, J. O., and Kiang, J. E.: Topological and canonical kriging for design flood prediction in ungauged catchments: An improvement over a traditional regional regression approach?, Hydrol. Earth Syst. Sci., 17, 1575–1588, https://doi.org/10.5194/hess-17-1575-2013, 2013. a
Bavay, M. and Egger, T.: MeteoIO 2.4.2: a preprocessing library for meteorological data, Geosci. Model Dev., 7, 3135–3151, https://doi.org/10.5194/gmd-7-3135-2014, 2014. a, b
Download
Short summary
In this paper two different methods to generate spatially coherent flood events for probabilistic flood risk modelling are compared: on the one hand, a semi-conditional multi-variate dependence model applied to discharge observations and, on the other hand, a continuous hydrological modelling of synthetic meteorological fields generated by a multi-site weather generator. The results of the two approaches are compared in terms of simulated spatial patterns and overall flood risk estimates.
Altmetrics
Final-revised paper
Preprint