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Abstract. Flood risk assessment is an important prerequisite
for risk management decisions. To estimate the risk, i.e. the
probability of damage, flood damage needs to be either sys-
tematically recorded over a long period or modelled for a
series of synthetically generated flood events. Since damage
records are typically rare, time series of plausible, spatially
coherent event precipitation or peak discharges need to be
generated to drive the chain of process models. In the present
study, synthetic flood events are generated by two different
approaches to modelling flood risk in a meso-scale alpine
study area (Vorarlberg, Austria). The first approach is based
on the semi-conditional multi-variate dependence model ap-
plied to discharge series. The second approach relies on the
continuous hydrological modelling of synthetic meteorolog-
ical fields generated by a multi-site weather generator and
using an hourly disaggregation scheme. The results of the
two approaches are compared in terms of simulated spatial
patterns of peak discharges and overall flood risk estimates.
It could be demonstrated that both methods are valid ap-
proaches for risk assessment with specific advantages and
disadvantages. Both methods are superior to the traditional
assumption of a uniform return period, where risk is com-
puted by assuming a homogeneous return period (e.g. 100-
year flood) across the entire study area.

1 Introduction

In recent decades several large flood events occurred across
Europe resulting in direct damage exceeding EUR 1 billion
(Kundzewicz et al., 2013). Growing flood damage due to
socio-economic and land-use changes as well as a possi-
ble increase of flood hazards in a warmer climate (Hoegh-
Guldberg et al., 2018) calls for robust flood risk assessment.
A reliable estimation of flood damage is an essential prereq-
uisite for profound decision making (de Moel et al., 2015).
The most straightforward estimation of possible flood risk
would be a statistical evaluation of documented flood dam-
age across the area of interest. In practice, systematic damage
records are rare and mostly not available for longer periods
(Downton and Pilke, 2005), whereas the major interest, for
example in the re-insurance industry, is on losses due to ex-
treme events such as the 200-year return period to fulfil the
Solvency II Directive regulations (European Union, 2009).

Following the European flood directive, flood risk is de-
fined as “the combination of the probability of a flood event
and of the potential adverse consequences [. . . ]” (European
Union, 2007). In other words, flood risk is defined by the
probability of damage. Hence, for risk estimation, a flood
event, including its probability of occurrence (hazard) on the
one hand and the vulnerability of exposed values on the other
hand, needs to be considered (Klijn et al., 2015). Since risk
assessment is currently not feasible based on empirical data,
modelling approaches based on synthetic flood scenarios are
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often deployed (e.g. Lamb et al., 2010; Falter et al., 2015;
Schneeberger et al., 2019).

In a traditional approach, the hydrological load is esti-
mated by means of extreme-value statistics using river gauge
data and transformed into corresponding inundated areas by
hydrodynamic models (Teng et al., 2017). The monetary
damage can then be assessed in combination with suscepti-
bility functions which describe the relationship between one
or more flood hazard characteristics (e.g. inundation depth
and flow velocity) and damage for the elements at risk (Merz
et al., 2010). This approach implies two strong assumptions.
First, the return period of flood discharge is assumed to be
equal to the return period of the resulting damage. Second, a
uniform return period across the entire study area is consid-
ered and resulting damage estimates are accumulated. The
first assumption can be relaxed by modelling a continuous
series of synthetic flood events. As a result, a long series of
damage values can be generated and used for analysing dam-
age frequency distribution (Achleitner et al., 2016). The sec-
ond assumption of homogeneous flood return periods may be
valid for small areas (de Moel et al., 2015). With increasing
scale, the assumption of a homogeneous return period be-
comes unlikely, as precipitation and flood footprints are inho-
mogeneous in space. This assumption can lead to an overesti-
mation of risk for specific return periods in large river basins
(Thieken et al., 2015; Vorogushyn et al., 2018; Metin et al.,
2020). To overcome the second limitation, realistic spatially
heterogeneous events need to be generated across the area of
interest which fully represent the spatial variability of flood-
ing (Schneeberger et al., 2019).

Generation of spatially heterogeneous flood events in
terms of precipitation fields or discharges is of current sci-
entific interest (Keef et al., 2013; Falter et al., 2015; Falter,
2016; de Moel et al., 2015; Speight et al., 2017; Diederen
et al., 2019; Diederen and Liu, 2019; Schneeberger et al.,
2019). There are different approaches to generating large
event series of heterogeneous flood events. One possibil-
ity is the application of multi-variate statistical methods to
discharge series, such as copula models (Jongman et al.,
2014; Serinaldi and Kilsby, 2017; Brunner et al., 2019) or
the semi-parametric conditional model proposed by Heffer-
nan and Tawn (2004) (hereinafter referred to as “HT-model”
or “HTm”). These models consider the pairwise dependence
of peak discharges at multiple locations and generate syn-
thetic series of multiple dependent flow peaks. The second
possibility is based on the generation of spatially distributed
meteorological fields by a weather generator, either station-
based with subsequent interpolation (Falter et al., 2016; Fal-
ter, 2016; Breinl et al., 2017; Evin et al., 2018; Raynaud
et al., 2019) or raster-based (Buishand and Brandsma, 2001;
Peleg et al., 2017). Synthetic meteorological fields are sub-
sequently used to drive hydrological simulations to generate
streamflow values across the study area.

The two presented approaches estimate the hydrological
load in the river network at multiple locations but are dif-

ferent in their nature. This leads to the key question of the
present study: does it matter which approach is chosen in
the context of flood risk modelling, and what are the advan-
tages and disadvantages of the two? We answer this question
by comparing the set of heterogeneous flood events from the
HT-model with the one resulting from a weather generator
and subsequent rainfall–runoff modelling. Both methods are
embedded in a probabilistic flood risk model used to estimate
the effect of chosen methods on flood losses. To the best of
the authors’ knowledge, there is no study to date in which
the two approaches are directly compared. Additionally, the
flood risk corresponding to homogeneous flood scenarios of
certain return periods (“traditional” approach) is derived and
compared to the other two approaches.

This paper is organised as follows: first, the study area is
shortly described. In Sect. 2 the flood risk model is intro-
duced and the two different approaches for heterogeneous
event generation are presented in details. Section 3 presents
the results of the comparison, which are discussed in the
following section. Finally, conclusions summarise the major
findings.

2 Study area

The flood risk model is applied in the westernmost province
of Austria, Vorarlberg. The region is characterised by a
strong altitudinal gradient between the Rhine River valley
(≈ 400 m a.s.l.) and the high mountain ranges of the Alps
(> 3000 m a.s.l.). As a result of the high relief energy, the
rivers are characterised by a fast hydrological response with
short concentration times. The mountainous landscape of in
total 2600 km2 is dominated by forest, meadows and pastures
with only small percentage of settlement area (Sauter et al.,
2019). Due to steep topography, asset values are concentrated
in the lowlands of larger valley floors, especially alongside
the Rhine and Ill rivers. Vorarlberg is characterised by one of
the highest precipitation amounts in Austria, conditioned by
predominantly westerly flows and strong orographic effects
(BMLFUW, 2007). During the last decades, the province
was affected by several severe flood events in 1999, 2002,
2005 and 2013. The most devastating recent flood event in
August 2005 caused about EUR 180 million direct tangible
losses for the private and public sector, including infrastruc-
ture (Habersack and Krapesch, 2006). Figure 1 provides an
overview of the study area, including the river network, set-
tlement areas and locations of river gauging stations as well
as meteorological stations.

3 Methods and data

The probabilistic flood risk model (PRAMo) used in the pre-
sented work consists of three different modules: the haz-
ard module comprising the generation of long time series of
flood events; the vulnerability module used to evaluate pos-
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Figure 1. Study area and the location of meteorological and river
gauging stations.

sible adverse consequences of flood events with a certain ex-
ceedance probability; and the risk assessment module, which
combines the results of the hazard and vulnerability mod-
ules to estimate the loss per event and resulting risk (Schnee-
berger et al., 2019). The output of the flood risk model con-
sists of expected annual damage and exceedance probabil-
ity curves of damage. PRAMo was previously driven by
the synthetic flood event series of coherent peak discharges
generated by the HT-model (Schneeberger and Steinberger,
2018). A second event generation approach based on a multi-
site, multi-variate weather generator and continuous rainfall–
runoff modelling was recently introduced by Winter et al.
(2019) and is used for comparison with the HT-model-based
approach and the assumption of homogeneous return peri-
ods. Figure 2 provides an overview of the modules and the
simulation steps, which are described in more details in the
following.

In this study, data of 17 gauging stations (1971–2013) are
applied for the HT approach. The continuous simulation of
the WeGen approach is based on daily time series from 1971
to 2013 for 45 meteorological stations (cf. Fig. 1). At hourly
time steps data for only 23 sites starting from 2001 are avail-

able. Stations without hourly information were interpolated
by an inverse distance-weighting (IDW) scheme (for details
see Winter et al., 2019).

3.1 Hazard module I: HT-model

The hazard module generates time series of spatially dis-
tributed synthetic flood events. In the first approach, we ap-
ply the conditional extreme-value model (HT-model) pro-
posed by Heffernan and Tawn (2004) to peak flows. In this
approach, flood events are understood as a set of spatially
consistent peak discharges at multiple locations of stream
gauges. Spatial consistency is ensured by considering the
correlation structure of peak flows from the past observation
period. Discharge time series at 17 gauges across the study
area are used to parameterise the HT-model. In the first step,
the observed data are standardised by a marginal model to a
Laplace distribution. In the second step, the dependency be-
tween the stations is modelled for the case of peak flow at one
station being above a certain threshold. According to Lamb
et al. (2010), the HT-model can be interpreted as a multi-site
peak-over-threshold approach. Due to strong seasonality of
streamflow in Vorarlberg, the HT-model is separately param-
eterised for winter and summer periods (Schneeberger and
Steinberger, 2018).

For the set of synthetic flood peaks at each of the 17 gauge
locations we estimate the return period based on the gener-
alised extreme value (GEV). A flood event is characterised
by exceedance of a certain streamflow at a single location or
multiple locations with a defined time period. As a thresh-
old for defining a widespread flood event, a return period
of 30 years was selected in the present study. The output
of the HT-model in terms of synthetic flood peaks is avail-
able at the locations of gauging stations. Hence, for the river
segments without observations, the flows and their respec-
tive return periods need to be estimated. We apply the top-
kriging approach (Skøien et al., 2006) for the spatial inter-
polation of model results to the entire river network. This
method takes into account the nested structure of river catch-
ments, which makes the results more robust compared to tra-
ditional regional regression-based approaches (Laaha et al.,
2014; Archfield et al., 2013). A more detailed description of
the HT-model is provided in Schneeberger and Steinberger
(2018) and Schneeberger et al. (2019).

3.2 Hazard module II: WeGen

The second approach is based on a stochastic weather gen-
erator used to drive a hydrological model. Long-term daily
precipitation and temperature series are generated, with a
multi-site, multi-variate weather generator based on the auto-
regressive model (Hundecha et al., 2009). Daily precipitation
amounts are generated from mixed gamma and generalised
Pareto distributions fitted to individual weather stations. The
mixed distribution is shown to better capture extreme pre-
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Figure 2. Flowchart of the PRAMo flood risk model including two different approaches for flood event generation.

cipitation while robustly modelling the bulk of precipitation
amounts (Vrac and Naveau, 2007). With respect to seasonal
patterns, the fitting is applied on a monthly basis. Occur-
rence and amount of precipitation are modelled considering
the autocorrelation and inter-site correlation structure. The
mean temperature is then modelled conditioned to the simu-
lated precipitation (Hundecha and Merz, 2012). As the study
area is characterised by mostly alpine topography with short
catchment response times, the hydrological model needs to
be driven by meteorological input at sub-daily resolution to
estimate realistic peak flows (e.g. Dastorani et al., 2013). A
non-parametric k-nearest-neighbour algorithm based on the
method of fragments is applied to disaggregate the gener-
ated daily values to hourly time steps (Winter et al., 2019).
For a day to disaggregate, the generated daily values of tem-
perature and precipitation from the weather generator are
compared against observed daily data at all stations. Subse-
quently, k-nearest neighbours in terms of lowest Euclidean
distances between generated and observed daily values are
selected. Next, one matching day is randomly sampled from
the selected neighbours, and the corresponding relative tem-
poral patterns from the match day are transferred to the input
day (method of fragments). In contrast to the previous study
(Winter et al., 2019), a centred moving window of 30 d is ap-
plied instead of the identical months in order to restrict the
search of possible matching days. The modification increases

the variability between the disaggregated days and reduces
the maximum search distance on a temporal scale, especially
for days at the beginning and end of a month.

Following the generation of meteorological data at the lo-
cations of the weather stations, a spatial interpolation to con-
tinuous meteorological fields is necessary for the application
of the rainfall–runoff model. Complex methods for spatial
interpolation can be applied (e.g. Goovaerts, 2000; Plouffe
et al., 2015); however, for the long-term simulation a compu-
tationally efficient approach is needed. The interpolation was
carried out by a inverse distance-weighting scheme including
a stepwise lapse rate to account for the complex topography
(Bavay and Egger, 2014).

Finally, the semi-distributed conceptual rainfall–runoff
model HQsim is applied to simulate streamflow across all
catchments of the study area (Kleindienst, 1996). HQsim is
forced by precipitation and temperature data and has previ-
ously been used in various studies in alpine catchment areas
(e.g. Senfter et al., 2009; Achleitner et al., 2012; Dobler and
Pappenberger, 2013; Bellinger, 2015; Winter et al., 2019). A
simulated annealing algorithm is used for the model calibra-
tion against observed discharge data at the gauging stations
(Andrieu et al., 2003). From a long synthetic discharge se-
ries, relevant flood events are identified and extracted. For
this, a flood frequency analysis at all points of interest based
on fitting the GEV distribution using the L moments is car-
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ried out. Analogously to the HT-model approach, a threshold
of a 30-year return period, at least at one site across the study
area is applied to define relevant flood events. A more de-
tailed description of the modelling chain, including the dis-
aggregation procedure, is given in Winter et al. (2019).

3.3 Vulnerability module

While the hazard module computes the hydrological load,
the vulnerability module assesses the possible negative con-
sequences in terms of exposed objects and monetary dam-
age. The module is based on the widely used approach of
combining the exposure and susceptibility of elements at
risk in the inundated areas (Koivumäki et al., 2010; Merz
et al., 2010; Huttenlau and Stötter, 2011; Meyer et al., 2013;
Cammerer et al., 2013; de Moel et al., 2015; Falter, 2016;
Wagenaar et al., 2016). The module calculates losses for
each community in the study area for a number of prede-
fined return periods (or probabilities) (i.e. RP= 30, 50, 100,
200 and 300 years). The results of the vulnerability module
are loss–probability relations for each community, describ-
ing the expected damage for the corresponding return peri-
ods. To derive a continuous relation, a linear interpolation
between available data points (RP damage) is applied. The
loss–probability relations are used as input in the risk assess-
ment module and combined with the simulated return periods
(hazard module) at each community to derive risk curves.

At the scale of a community (on average 28 km2), a ho-
mogeneous return period of hydrological load is assumed
and associated with the total community loss. For the loss
calculation we use “official” inundation maps. The inunda-
tion maps are based on 1-D hydrodynamic modelling in ru-
ral areas and 2-D modelling in urban areas (IAWG, 2010).
The boundary conditions for the hydrodynamic simulation
are taken from the Austrian flood risk zoning project HORA
(Merz et al., 2008).

The estimation of monetary damage for the elements at
risk is based on the relative damage functions combined with
the total asset values. A damage function describes the rela-
tive loss of value as a function of water depth (Merz et al.,
2010). If available, additional damage influencing parame-
ters, such as flow velocity or contamination, can be con-
sidered for damage assessment (Merz et al., 2013). In ac-
cordance with Schneeberger et al. (2019), the one paramet-
ric damage model of Borter (1999) is applied in the present
study. The damage model was derived for Switzerland, which
is a direct neighbour to the Austrian province Vorarlberg with
a similar topography and building structure. More precise
site-specific damage functions are not available for the study
region.

The damage estimation is conducted on a single-object ba-
sis for residential buildings only. To derive the flood losses,
the available inundation maps are combined with the as-
set datasets and damage function. Subsequently, the object-
based loss data are aggregated for each community. The ab-

solute building values indexed to 2013 according to the con-
struction price index (Statistik Austria, 2019) are derived by
calculating mean cubature values from local insurance data
and transferred to the entire building stock of the study area
(Huttenlau et al., 2015). Since derived values are based on
insurance data, they are consequently defined as replacement
values.

3.4 Risk assessment module

The risk assessment module brings together the results of the
hazard and vulnerability modules to generate a time series
of losses and calculates the resulting risk curve for the area
of interest (Schneeberger et al., 2019). In order to combine
the results, each spatial unit (community) is represented by
a defined model node point in the river network. For each
generated heterogeneous flood scenario, the recurrence in-
tervals are derived for all model node points (hazard mod-
ule) and combined with the respective loss–probability rela-
tion to compute losses (vulnerability module). By integrating
the losses at all model node points, i.e. for each community,
the total loss for every generated event can be calculated. By
evaluating the overall modelled time series of events, a con-
tinuous time series of damage is generated. Finally, the time
series of damage can be statistically analysed to derive the
expected annual damage (EAD) and to construct risk curves
(Schneeberger et al., 2019). More detailed information about
the vulnerability and risk assessment module, including a
schematic overview of the module interaction, is provided
in Schneeberger et al. (2019).

3.5 Assessment of spatial coherence of generated events

A core element of the probabilistic flood risk model is the
generation of plausible, spatially heterogeneous flood events.
To investigate the spatial coherence of synthetic events gen-
erated by two different approaches, two spatial dependence
measures proposed by Keef et al. (2009) are applied. The first
measure Pi,j (p) describes the probability that a dependent
site i exceeds a certain threshold, given that a conditional
site j is exceeding a threshold qp(Qj ) as well:

Pi,j (p)= Pr
(
Qi > qp (Qi) |Qj > qp

(
Qj

))
, (1)

where (p) is the level of extremeness (quantile) and Qi and
Qj are the dependent and conditioned runoff series, respec-
tively. The calculation of the thresholds is based on a 3 d
block maximum, which was found to be appropriate in this
region (Schneeberger and Steinberger, 2018). The second
spatial dependence measure Nj (p) is an overall summary
metric and describes the average probability of all dependent
sites i to be high, given that the conditional site j is high,
defined as

Nj (p)=

∑
i 6=j

Pr
(
Qi > qp (Qi) |Qj > qp

(
Qj

))
n− 1

. (2)
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Figure 3. Validation results of the weather generator and the revised disaggregation procedure for all stations (n= 45). The bars represent
the median and the 5–95 % quantile range of 100 realisations for the weather generator and disaggregation. (a) Weather generator: 99 %
quantile of daily precipitation for generated data compared with observed data for spring, summer and autumn. (b) Disaggregation: 99.9 %
quantile of 13 years of disaggregated data is compared to observed data, for the precipitation sum of 1, 3 and 6 h duration.

In the case of the WeGen approach the dependence matri-
ces were computed for the peak discharges at the gauging
station locations resulting from the combined simulations of
the weather generator and rainfall–runoff model.

4 Results

4.1 Simulation results of the continuous modelling
approach (WeGen)

To assess the performance of the continuous modelling ap-
proach, extreme precipitation of simulated data is compared
to observed station data (daily: 1971–2013; hourly: 2001–
2013) for the weather generator and disaggregation proce-
dure. The median and the uncertainty range represented by
the 5 and 95 % quantiles of 100 model realisations are com-
pared to the observed data. Figure 3a shows the results for
the 99 % quantile of daily precipitation (wet days) for all
45 station and spring (March–April–May), summer (June–
July–August) and autumn (September–October–November).
In general, the characteristics of the observed daily precipi-
tation are well reproduced by the weather generator. A few
stations, however, show a slight underestimation in sum-
mer (mainly June and August). The validation results for all

months separately, including maximum and minimum simu-
lated daily temperatures, are provided by Winter et al. (2019).
To validate the disaggregation procedure, the hourly data are
first aggregated to daily data and subsequently disaggregated
back to hourly time steps. For the comparison of disaggre-
gated precipitation, 99, 99.9 and 99.95 % quantiles are calcu-
lated and compared to the observed values. The results for the
99.9 % quantile show a good agreement between observed
and simulated precipitation intensities for the three analysed
rainfall durations: 1, 3 and 6 h (Fig. 3b). Results for the 99
and 99.95 % quantile are shown in Winter et al. (2019).

The rainfall–runoff model is calibrated (2001–2007) and
validated (2008–2013) in a classical split-sample approach
(Klemeš, 1986) for all catchments of the study area against
observed river gauging data. On average, a Nash–Sutcliffe
efficiency (NSE; Nash and Sutcliffe, 1970) of 0.68 and 0.67
and a Kling–Gupta efficiency (KGE; Kling et al., 2012)
of 0.75 and 0.74 are achieved for the calibration and vali-
dation periods, respectively. Detailed results for the individ-
ual catchments, including a comparison of design flood es-
timates with a flood frequency analysis and a design storm
approach, are given in Winter et al. (2019).
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Figure 4. Comparison of observed (42 years) and simulated conditioned exceedance probability Pi,j (p). The range of the simulated results
is based on 42 years of simulation with 100 realisations. The plots in the lower triangle correspond to the HT model, whereas those in the
upper triangle show the WeGen results.

4.2 Spatial patterns of generated flood events

For the analysis of spatial coherence, 100 simulations us-
ing each of the two event generation approaches (HT-model
and WeGen) were carried out. Each simulation comprised
42 years of data corresponding to the length of the observed
discharge series. Figure 4 illustrates exemplary results for
four gauging stations and both methods. Each plot shows the
dependence measure between the two stations depicted on

the maps in the principal diagonal. The gauges Kennelbach
and Gisingen are the two largest catchments of the study
area (about 80 % of the total area). The examples Schruns
and Thal are subcatchments of Gisingen and Kennelbach,
respectively, and thus represent two strongly related gauge
pairs. The measure is calculated for discharge values with
exceedance probability between p = 0.99 and p = 0.997,
above which the data are too few (n < 15) to calculate a
meaningful Pi,j value. Based on the empirical distribution
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Figure 5. Spatial dependence measure Nj (p) for the community node points at the river network and three different return periods. The
results show the median for the HT-model and WeGen approach based on 30 realisations of 1000 years of simulation.

function of the 3 d block maxima series, a p value of 0.99
refers to a return period of approximately 1 year, and a
p value of 0.997 refers to a return period of roughly 3 years.

In general, the spatial dependence declines with the level
of extremeness. For more extreme runoff situations, the de-
pendence structure is less stable and prone to a large vari-
ability. The HT-model results in the lower triangle repro-
duce the observed spatial patterns between the stations well.
The observed measure is in ≈ 90 % of the cases inside
the simulated data range (2.5–97.5 % quantile). The results
of the WeGen approach follow the general observed pat-
terns of lower dependence (e.g. Pi,j (p)≈ 0.2 for Thal (2)
vs. Schruns (4)) and higher dependence (e.g. Pi,j (p)≈ 0.5
for Kennelbach (1) vs. Thal (2)). However, the results are bi-
ased towards a higher dependence, such that only half of the
results correspond well to the observed data.

To analyse the dependence structure of high flows across
the study area, the measure Nj (p) is calculated for all node
points corresponding to different communities. The measure
is calculated for p values corresponding to the 1-, 10- and
100-year return period. As the simulation of the two ap-
proaches is not limited to the length of the observed data,
the results are based on the median of 30 realisations of
1000 years of HT-model and WeGen simulations (Fig. 5).
The length is chosen to be far above the highest return pe-
riod of available homogeneous inundation data (RP300), and
the number of 30 realisations is dictated by the computa-
tional limitations of the continuous simulation at an hourly
time step. Both approaches (see Fig. 5a–c) show a decline of
spatial dependence towards higher return periods. The gen-
eral patterns of lower spatial dependence in the southern part
of the study area and of the individual northern catchments

are visible. The node points downstream are characterised by
a higher dependence. For a high return period of 100 years
(Fig. 5c), the simulated spatial dependence is higher for the
HT-model than for the WeGen results in contrast to the find-
ings for the lower return periods. The results are regionally
different. Whereas the dependence measure is higher for the
HT-model in the western part of the study area, the north-
eastern catchments show a higher degree of dependence for
the WeGen approach.

4.3 Comparison of risk curves

To compare the effect of the two approaches of synthetic
event generation on the overall estimated loss, flood risk
curves are calculated. Confidence intervals are derived based
on 30 realisations of 1000-year simulations. Furthermore,
the risk curve based on the assumption of homogeneous re-
turn period floods across all catchments is derived based
on five inundation maps corresponding to the return peri-
ods between 30 and 300 years. The two synthetic event gen-
erators result in a comparable range of overall estimated
flood risk (see Fig. 6). The WeGen approach systemati-
cally overestimates the risk computed by the HT-model.
The relative difference between the estimated median values
((WeGen−HTm) / WeGen) is approximately 17.5 %. The un-
certainty increases with increasing return period of damage
alongside the extrapolation of the input time series. On aver-
age 172 damage events are generated per 1000 years of simu-
lation in the WeGen approach, compared to about 167 for the
HT-model. Both approaches show a significantly lower dam-
age in comparison to the assumption of homogeneous sce-
narios for specific return periods. The estimated damage of
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Figure 6. Risk curves for WeGen and HT-model approach in com-
parison to the results of a homogeneous scenario. The median
and quantile confidence intervals are based on 30 realisations of
1000 years of simulation. Monetary values are normalised to the
year 2013.

a homogeneous 100-year flood scenario is ≈ 50 % above the
HT-model results and still 40 % above the WeGen approach.

The sets of generated heterogeneous flood events reflect a
large variability of plausible spatial patterns. Hence the esti-
mated flood risk is the result of a combination of these pat-
terns. Figure 7 shows multiple examples of generated flood
events corresponding to an estimated damage of EUR 100±
1 million for both model approaches. The general severity in
terms of flood hazard (without consideration of flood risk)
is given by the unit of flood hazard (UoFH). The measure
UoFH is a simple proxy of hazard severity defined as the total
number of sites at which the threshold of 30 years return pe-
riod is exceeded (Schneeberger et al., 2019). Even though the
selected severity of displayed flood event is rather high, some
of the generated events are still spatially limited. The event
with the lowest UoFH of 46 corresponds to ≈ 50 % of all
sites exceeding the 30-year threshold. The most widespread
event (UoFH= 77) corresponds to about 90 % of the sites
exceeding the threshold. This result reflects the spatial dis-
tributions of elements at risk with a settlement concentration
alongside the larger valley areas in the study area (cf. Fig. 1).
Thus, the damage corresponding to an event is largely influ-
enced by the region affected. If the overall comparison is con-
ducted at hazard level only, the impact of widespread flood
events may be overestimated, while the impact of spatially
limited events in densely populated areas is underestimated.

5 Discussion

Both approaches, the HT-model and the WeGen approach,
simulate complex, spatially heterogeneous patterns of syn-
thetic flood events. In the present study, the HT-model out-
performs the WeGen approach in terms of reproducing the
observed dependence patterns of peak flows at the gaug-

ing stations. The HT-model makes use of the observed river
gauging data and models their dependence structure directly.
In contrast, the WeGen approach models the dependence
structure only indirectly based on the meteorological input
data.

The overall river network and especially small ungauged
tributaries do however rely on the top-kriging interpolation in
the case of the HT-model approach and are not able to react
independently to the larger river system. This explains the
higher dependence structure on the community node points,
while at the river gauges the results do correspond well to the
observed values. Nevertheless, in both cases the capability to
capture spatial effects of a certain spatial scale in the end
depends on the density of the measuring network and its data
quality.

The WeGen approach seems to overestimate the overall
spatial dependence in the study area in comparison to the
observed values. This was also found in a previous study,
comparing a different set of gauging stations (Winter et al.,
2019). One possible reason could be that the spatial interpo-
lation of the meteorological data by the rather simple IDW
approach, without consideration of shading or other effects,
and the rather short length of hourly input data for the disag-
gregation procedure might affect the spatial patterns towards
a stronger dependence. More importantly, the WeGen model
itself seems to overestimate the dependence between stations
particularly for higher return period thresholds. This is in line
with the results of the recent evaluation of the weather gener-
ator (Ullrich et al., 2019), which suggest an overestimation of
correlation of extreme precipitation between individual sta-
tions leading to an overestimation of areal rainfall. The corre-
lation structure of the weather generator is fitted on a monthly
basis, independently of the rainfall intensities, and thus does
mix low-intensity, large-scale rainfalls and small-scale con-
vective events. The simulated stronger spatial dependence in
certain areas with high damage potential also contributes to
the higher flood risk estimate by the WeGen approach.

Only one possible combination of weather generator, dis-
aggregation procedure and rainfall–runoff model was applied
for the WeGen approach. Thus, by the application of an al-
ternative weather generator with different assumptions about
the spatial dependence or tail distribution, the resulting risk
estimates may change. This counts as well for the applica-
tion of a different rainfall–runoff model or alternative disag-
gregation procedure (e.g. Müller-Thomy et al., 2018). Thus,
the result of a higher risk estimate for the WeGen approach
in comparison to the HT approach can not be generalised to
other model combinations.

The two approaches to synthetic event generation differ
substantially in terms of estimated damage from the one as-
suming a uniform return period across the whole study area
(Fig. 6). The flood losses for individual return periods above
the 30-year threshold under the homogeneous assumption are
largely overestimated. This result confirms the necessity to
take heterogeneous spatial patterns into account. An event
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Figure 7. Examples of flood events with an estimated flood damage of EUR 100± 1 million flood damage for the HT-model and WeGen
approach. The general severity of flood events is characterised by the unit of flood hazard (UoFH).

where every community in the study area is affected by dis-
charges exceeding the 30-year return period during a single
event is rare. Based on a total of 30 000 years of simulation,
less then 10 % of the communities experience losses simul-
taneously in more than 50 % of events (Fig. 8). It can be ex-
pected that with increasing spatial scale the likelihood that
a large number of communities will experience high return
period discharges and losses in a single event will decrease
(Metin et al., 2020). Therefore, generation of spatially con-
sistent heterogeneous flood events is particularly important
with increasing spatial scale. At the same time, considering
dependence of meteorological and hydrological variables at
multiple locations with increasing scale and an increasing
number of dependent locations becomes more challenging.

A fundamental difference between the two approaches
resides in the way of considering the hydrological pro-
cesses. The HT-model takes a purely statistical approach by
analysing the dependence of peak discharges above a cer-
tain threshold. It does not explicitly consider hydrological
processes which generate extremes. For instance, the non-
linearity of catchment response is not explicitly taken into
account, but only so far it is imprinted in the previously ob-
served peaks used for model parameterisation. The combina-
tion of the weather generator and rainfall–runoff modelling
describes the hydrological processes in a spatially consis-
tent and time-continuous way. Hence, the effect of soil mois-
ture accumulation and pre-event catchment conditions are
explicitly modelled. By the application of a fully distributed,
physically based model, the hydrological process description
could even be improved, for example, by solving full en-
ergy balance equations for snow melt or evapotranspiration
(e.g. Förster et al., 2014, 2018). On the downside, a further
increase in model complexity might compromise the model

Figure 8. Relative number of flood events exceeding a 30-year flood
threshold and corresponding relative number of affected communi-
ties. The results are based on 30 000 years of simulation.

parameter identifiability, increase calibration effort and com-
putational burden, and increase input data demand (tempera-
ture, precipitation, radiation, humidity and wind speed).

In general, continuous hydrological modelling generates
full hydrographs at all locations, which allows for direct cou-
pling with hydraulic models as, for example, applied in Falter
et al. (2015) and Falter (2016). The direct coupling of the We-
Gen approach with a 1-D to 2-D hydrodynamic model would
also allow consideration of hydrodynamic interactions in the
river network and their possible effect on the risk estimates.
This may, for example, be the reduction of risk downstream
due to dike overtopping and failure upstream. In the case of
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Table 1. Summary of advantages and disadvantages of the WeGen and HT-model approach to generating heterogeneous flood events.

Categories HT-model WeGen

Computational complexity (+) Low processing costs (local processing) (−) Processing intensive (HPC necessary)
(−) Complex data interfaces between

different models

Output (−) Return periods at all sites for modelled (+) Continuous hydrographs at all modelled
events only sites

Hydraulic coupling (−) Event hydrographs need to be deducted (+) Continuous description of hydraulic
to drive a hydraulic model boundary conditions allows unsteady

hydraulic modelling

Processes (−) No information about individual (+) Continuous description of hydrological
hydrological processes system and modelled processes

Hydrological changes (−) No explicit modelling of scenarios (e.g. (+) Scenarios can be modelled explicitly
climate or land-use scenarios) possible (e.g. climate or land-use scenarios)

(+) Runoff trends can be integrated

Transferability (+) Model is well transferable to other study (−) Model chain is transferable; however
areas all components must be set up and

calibrated for new study areas

the HT-model, only peak discharge of events is estimated, not
the entire hydrograph. Hence, these results cannot be used
directly as a boundary condition for unsteady hydraulic sim-
ulations. Assumptions on the shape of a hydrograph would
be required.

In addition, the continuous modelling approach is capa-
ble of explicitly modelling scenarios of changing hydrolog-
ical boundary conditions. For instance, changes in the cli-
mate system can be taken into account in the generation of
meteorological fields by conditioning the rainfall and tem-
perature probability distributions (e.g. Hundecha and Merz,
2012). Also possible changes in land use can be considered
by parameterising hydrological models accordingly (Rogger
et al., 2017). As the HT-model approach is based on observed
streamflow only, change scenarios may be included in terms
of trends. However, they cannot be modelled explicitly. A
continuous simulation approach requires a vast amount of
processed data, including multiple data interfaces between
the different modelling steps and results in high computa-
tional costs. This is especially true if sub-daily simulations
are applied that require an additional disaggregation scheme.
In contrast, the purely statistical HT-model shows its merit
with its efficient data processing, easily applicable on local
computers. A further advantage of the HT-model is the trans-
ferability of the approach. While each of the modelling steps
of the continuous approach, from the weather generator to
the hydrological models, needs to be implemented, calibrated
and validated for every new study area, the HT-model only
needs to be fitted to new discharge time series which is less
complex. Different advantages and disadvantages of both ap-
proaches are summarised in Table 1.

The presented approaches are subject to different uncer-
tainties. The confidence intervals presented in Fig. 6 are,
for example, based on the random processes generating het-
erogeneous flood events of each method (multiple realisa-
tions). However, there are other uncertainties which are not
explicitly addressed, for example uncertainties related to the
topological kriging of the HT-model results or uncertain-
ties related to the hydrological model in the WeGen ap-
proach. Some uncertainties pertain to both methods, such as
the choice and fitting of the extreme-value distributions. A
comprehensive assessment by propagating the uncertainties
of all sub-models throughout the model chain is currently
precluded by computational constraints particularly relevant
for the WeGen approach.

A further important point, currently not considered in both
approaches, is dike failure scenarios. In the study area, for
example, no inundation is considered for the Rhine River due
to its high protection level. Nonetheless, the probability of a
dike failure is non-zero and could have a devastating effect.
In this sense, the consideration of flood volumes beside peak
estimates could be another important extension to describe
the severity of flood events (e.g. Dung et al., 2015; Lamb
et al., 2016).

A traditional validation of the overall risk model in terms
of a comparison of observed to simulated data is hardly pos-
sible as comprehensive databases of loss events are often not
available (Thieken et al., 2015). In the present study, damage
data based on an insurance portfolio were available for the
2005 event. The data are, however, only a subset of the over-
all elements at risk, and, due to rather low sublimits (maxi-
mum insurance payout), the full losses remain unknown. Fi-
nally, without a larger set of loss events it is not possible to
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assign a meaningful return period to the 2005 event to val-
idate the risk outcome in a traditional way. Nonetheless, by
applying and comparing different methods, the plausibility
of the results can be checked (Molinari et al., 2019). Fur-
thermore, the uncertainties related to the choice of methods
for generating heterogeneous flood events seem to be lower
in comparison to other aspects of the probabilistic flood risk
model, such as the choice of the applied damage functions
(Winter et al., 2018).

6 Conclusions

The question of whether the choice of method for generating
heterogeneous flood events for flood risk modelling matters
can be answered in different ways. Both approaches, the HT-
model and continuous WeGen approach, were generally ca-
pable of modelling spatially plausible flood events across the
study area. By direct comparison to observed spatial patterns,
the HT-model approach performed better than the WeGen ap-
proach in our study area in terms of correctly representing
the observed dependence structure. A stronger modelled de-
pendence of extreme precipitation resulted in high areal rain-
fall in the WeGen approach and higher overall risk compared
to the HT-model. The median damage from 30 000 years of
simulation is about 17.5 % larger in the WeGen approach
than in the HT-model. The representation of the dependence
structure for simulation of extremes needs to be further im-
proved for the weather generator. Nevertheless, the choice
of method for generating heterogeneous flood events might
have a smaller impact than, for example, the choice of the
applied damage functions (Winter et al., 2018).

To conclude, both methods are valid approaches to over-
coming the simplified assumption of uniform return period
across a study area. Accordingly, when designing a flood risk
study, the choice of the approach should consider the specific
advantages and disadvantages of the two methods and data
availability. If computational efficiency and quick transfer-
ability are in focus, the HT-model approach might be a bet-
ter choice. In contrast, if unsteady hydraulic modelling is re-
quired for the targeted application, the continuous modelling
of generated meteorological fields is more appropriate.
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