Articles | Volume 20, issue 1
https://doi.org/10.5194/nhess-20-107-2020
https://doi.org/10.5194/nhess-20-107-2020
Research article
 | 
14 Jan 2020
Research article |  | 14 Jan 2020

Improving sub-seasonal forecast skill of meteorological drought: a weather pattern approach

Doug Richardson, Hayley J. Fowler, Christopher G. Kilsby, Robert Neal, and Rutger Dankers

Related authors

Assessing rainfall radar errors with an inverse stochastic modelling framework
Amy Charlotte Green, Chris G. Kilsby, and András Bárdossy
EGUsphere, https://doi.org/10.5194/egusphere-2024-26,https://doi.org/10.5194/egusphere-2024-26, 2024
Short summary
Non-asymptotic distributions of water extremes: Superlative or superfluous?
Francesco Serinaldi, Federico Lombardo, and Chris G. Kilsby
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-234,https://doi.org/10.5194/hess-2023-234, 2023
Preprint under review for HESS
Short summary
A systematic review of climate change science relevant to Australian design flood estimation
Conrad Wasko, Seth Westra, Rory Nathan, Acacia Pepler, Timothy Raupach, Andrew Dowdy, Fiona Johnson, Michelle Ho, Kathleen McInnes, Doerte Jakob, Jason Evans, Gabriele Villarini, and Hayley Fowler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-232,https://doi.org/10.5194/hess-2023-232, 2023
Revised manuscript accepted for HESS
Short summary
Intercomparison of global reanalysis precipitation for flood risk modelling
Fergus McClean, Richard Dawson, and Chris Kilsby
Hydrol. Earth Syst. Sci., 27, 331–347, https://doi.org/10.5194/hess-27-331-2023,https://doi.org/10.5194/hess-27-331-2023, 2023
Short summary
Multi-physics ensemble snow modelling in the western Himalaya
David M. W. Pritchard, Nathan Forsythe, Greg O'Donnell, Hayley J. Fowler, and Nick Rutter
The Cryosphere, 14, 1225–1244, https://doi.org/10.5194/tc-14-1225-2020,https://doi.org/10.5194/tc-14-1225-2020, 2020
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Return levels of extreme European windstorms, their dependency on the North Atlantic Oscillation, and potential future risks
Matthew D. K. Priestley, David B. Stephenson, Adam A. Scaife, Daniel Bannister, Christopher J. T. Allen, and David Wilkie
Nat. Hazards Earth Syst. Sci., 23, 3845–3861, https://doi.org/10.5194/nhess-23-3845-2023,https://doi.org/10.5194/nhess-23-3845-2023, 2023
Short summary
Wind as a natural hazard in Poland
Tadeusz Chmielewski and Piotr A. Bońkowski
Nat. Hazards Earth Syst. Sci., 23, 3839–3844, https://doi.org/10.5194/nhess-23-3839-2023,https://doi.org/10.5194/nhess-23-3839-2023, 2023
Short summary
Climatological occurrences of hail and tornadoes associated with mesoscale convective systems in the United States
Jingyu Wang, Jiwen Fan, and Zhe Feng
Nat. Hazards Earth Syst. Sci., 23, 3823–3838, https://doi.org/10.5194/nhess-23-3823-2023,https://doi.org/10.5194/nhess-23-3823-2023, 2023
Short summary
Characteristics of cloud-to-ground lightning (CG) and differences between +CG and −CG strokes in China regarding the China National Lightning Detection Network
Ruijiao Jiang, Guoping Zhang, Shudong Wang, Bing Xue, Zhengshuai Xie, Tingzhao Yu, Kuoyin Wang, Jin Ding, and Xiaoxiang Zhu
Nat. Hazards Earth Syst. Sci., 23, 3747–3759, https://doi.org/10.5194/nhess-23-3747-2023,https://doi.org/10.5194/nhess-23-3747-2023, 2023
Short summary
The climatology and nature of warm-season convective cells in cold-frontal environments over Germany
George Pacey, Stephan Pfahl, Lisa Schielicke, and Kathrin Wapler
Nat. Hazards Earth Syst. Sci., 23, 3703–3721, https://doi.org/10.5194/nhess-23-3703-2023,https://doi.org/10.5194/nhess-23-3703-2023, 2023
Short summary

Cited articles

Ahrens, B. and Walser, A.: Information-Based Skill Scores for Probabilistic Forecasts, Mon. Weather Rev., 136, 352–363, https://doi.org/10.1175/2007mwr1931.1, 2008. 
Alexander, L. V. and Jones, P. D.: Updated Precipitation Series for the U.K. and Discussion of Recent Extremes, Atmos. Sci. Lett., 1, 142–150, 2000. 
Arnal, L., Cloke, H. L., Stephens, E., Wetterhall, F., Prudhomme, C., Neumann, J., Krzeminski, B., and Pappenberger, F.: Skilful seasonal forecasts of streamflow over Europe?, Hydrol. Earth Syst. Sci., 22, 2057–2072, https://doi.org/10.5194/hess-22-2057-2018, 2018. 
Baker, L. H., Shaffrey, L. C., and Scaife, A. A.: Improved seasonal prediction of UK regional precipitation using atmospheric circulation, Int. J. Climatol., 38, 437–453, https://doi.org/10.1002/joc.5382, 2018. 
Download
Short summary
Models are not particularly skilful at forecasting rainfall more than 15 d in advance. However, they are often better at predicting atmospheric variables such as mean sea-level pressure (MSLP). Comparing a range of models, we show that UK winter and autumn rainfall and drought prediction skill can be improved by utilising forecasts of MSLP-based weather patterns (WPs) and subsequently estimating rainfall using the historical WP–precipitation relationships.
Altmetrics
Final-revised paper
Preprint