Articles | Volume 19, issue 4
https://doi.org/10.5194/nhess-19-907-2019
https://doi.org/10.5194/nhess-19-907-2019
Research article
 | 
18 Apr 2019
Research article |  | 18 Apr 2019

Impact of airborne cloud radar reflectivity data assimilation on kilometre-scale numerical weather prediction analyses and forecasts of heavy precipitation events

Mary Borderies, Olivier Caumont, Julien Delanoë, Véronique Ducrocq, Nadia Fourrié, and Pascal Marquet

Related authors

Assessment and application of melting layer simulations for spaceborne radars within the RTTOV-SCATT v13.1 model
Rohit Mangla, Mary Borderies, Philippe Chambon, Alan Geer, and James Hocking
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-131,https://doi.org/10.5194/amt-2024-131, 2024
Revised manuscript accepted for AMT
Short summary
W-band radar observations for fog forecast improvement: an analysis of model and forward operator errors
Alistair Bell, Pauline Martinet, Olivier Caumont, Benoît Vié, Julien Delanoë, Jean-Charles Dupont, and Mary Borderies
Atmos. Meas. Tech., 14, 4929–4946, https://doi.org/10.5194/amt-14-4929-2021,https://doi.org/10.5194/amt-14-4929-2021, 2021
Short summary
Assimilation of wind data from airborne Doppler cloud-profiling radar in a kilometre-scale NWP system
Mary Borderies, Olivier Caumont, Julien Delanoë, Véronique Ducrocq, and Nadia Fourrié
Nat. Hazards Earth Syst. Sci., 19, 821–835, https://doi.org/10.5194/nhess-19-821-2019,https://doi.org/10.5194/nhess-19-821-2019, 2019
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
An appraisal of the value of simulated weather data for quantifying coastal flood hazard in the Netherlands
Cees de Valk and Henk van den Brink
Nat. Hazards Earth Syst. Sci., 25, 1769–1788, https://doi.org/10.5194/nhess-25-1769-2025,https://doi.org/10.5194/nhess-25-1769-2025, 2025
Short summary
Insights into thunderstorm characteristics from geostationary lightning jump and dive observations
Felix Erdmann and Dieter Roel Poelman
Nat. Hazards Earth Syst. Sci., 25, 1751–1768, https://doi.org/10.5194/nhess-25-1751-2025,https://doi.org/10.5194/nhess-25-1751-2025, 2025
Short summary
The unique features in the 4 d widespread extreme rainfall event over North China in July 2023
Jinfang Yin, Feng Li, Mingxin Li, Rudi Xia, Xinghua Bao, Jisong Sun, and Xudong Liang
Nat. Hazards Earth Syst. Sci., 25, 1719–1735, https://doi.org/10.5194/nhess-25-1719-2025,https://doi.org/10.5194/nhess-25-1719-2025, 2025
Short summary
Classifying extratropical cyclones and their impact on Finland's electricity grid: insights from 92 damaging windstorms
Ilona Láng-Ritter, Terhi Kristiina Laurila, Antti Mäkelä, Hilppa Gregow, and Victoria Anne Sinclair
Nat. Hazards Earth Syst. Sci., 25, 1697–1717, https://doi.org/10.5194/nhess-25-1697-2025,https://doi.org/10.5194/nhess-25-1697-2025, 2025
Short summary
Evaluation of machine learning approaches for large-scale agricultural drought forecasts to improve monitoring and preparedness in Brazil
Joseph W. Gallear, Marcelo Valadares Galdos, Marcelo Zeri, and Andrew Hartley
Nat. Hazards Earth Syst. Sci., 25, 1521–1541, https://doi.org/10.5194/nhess-25-1521-2025,https://doi.org/10.5194/nhess-25-1521-2025, 2025
Short summary

Cited articles

Aonashi, K. and Eito, H.: Displaced Ensemble Variational Assimilation Method to Incorporate Microwave Imager Brightness Temperatures into a Cloud-resolving Model, J. Meteorol. Soc. Jpn., 89, 175–194, https://doi.org/10.2151/jmsj.2011-301, 2011. a
Bachmann, K., Keil, C., and Weissmann, M.: Impact of radar data assimilation and orography on predictability of deep convection, Q. J. Roy. Meteor. Soc., 145, 117–130, https://doi.org/10.1002/qj.3412, 2018. a
Bloom, S. C., Takacs, L. L., da Silva, A. M., and Ledvina, D.: Data Assimilation Using Incremental Analysis Updates, Mon. Weather Rev., 124, 1256–1271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2, 1996. a
Borderies, M., Caumont, O., Augros, C., Bresson, É., Delanoë, J., Ducrocq, V., Fourrié, N., Le Bastard, T., and Nuret, M.: Simulation of W-band radar reflectivity for model validation and data assimilation, Q. J. Roy. Meteor. Soc., 144, 391–403, https://doi.org/10.1002/qj.3210, 2018. a, b, c, d, e, f
Borderies, M., Caumont, O., Delanoë, J., Ducrocq, V., and Fourrié, N.: Assimilation of wind data from airborne Doppler cloud-profiling radar in a kilometre-scale NWP system, Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-246, in review, 2018. a, b, c, d, e
Download
Short summary
The potential of W-band radar reflectivity to improve the quality of analyses and forecasts of heavy precipitation events in the Mediterranean area is investigated. The 1D + 3DVar assimilation method has been adapted to assimilate the W-band reflectivity in the Météo-France kilometre-scale NWP model AROME. The results suggest that the joint assimilation of W-band reflectivity and horizontal wind profiles lead to a slight improvement of moisture analyses and rainfall precipitation forecasts.
Share
Altmetrics
Final-revised paper
Preprint