Articles | Volume 19, issue 8
https://doi.org/10.5194/nhess-19-1723-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-19-1723-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating the impact of model complexity on flood wave propagation and inundation extent with a hydrologic–hydrodynamic model coupling framework
Department of Physical Geography, Utrecht University, P.O. Box 80115, 3508 TC Utrecht, Utrecht, the Netherlands
Deltares, P.O. Box 177, 2600 MH Delft, the Netherlands
IGDORE Institute, Utrecht, the Netherlands
Witteveen + Bos, 7411 TJ Deventer, the Netherlands
Dirk Eilander
Deltares, P.O. Box 177, 2600 MH Delft, the Netherlands
Institute for Environmental Studies, VU Amsterdam, 1081 HV Amsterdam, the Netherlands
Hiroaki Ikeuchi
Institute for Environmental Studies, VU Amsterdam, 1081 HV Amsterdam, the Netherlands
Department of Civil Engineering, University of Tokyo, Tokyo, 153-8505, Japan
Fedor Baart
Deltares, P.O. Box 177, 2600 MH Delft, the Netherlands
Hessel C. Winsemius
Deltares, P.O. Box 177, 2600 MH Delft, the Netherlands
Department of Civil Engineering, TU Delft, 2628 CN Delft, the Netherlands
Related authors
Jerom P.M. Aerts, Jannis M. Hoch, Gemma Coxon, Nick C. van de Giesen, and Rolf W. Hut
EGUsphere, https://doi.org/10.5194/egusphere-2023-1156, https://doi.org/10.5194/egusphere-2023-1156, 2023
Short summary
Short summary
Hydrological model performance involves comparing simulated states and fluxes with observed counterparts. Often, it is overlooked that there is inherent uncertainty surrounding the observations. This can significantly impact the results. In this publication, we emphasize the significance of accounting for observation uncertainty in model comparison. We propose a practical method that is applicable for any observational time series with available uncertainty estimations.
Jannis M. Hoch, Edwin H. Sutanudjaja, Niko Wanders, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 27, 1383–1401, https://doi.org/10.5194/hess-27-1383-2023, https://doi.org/10.5194/hess-27-1383-2023, 2023
Short summary
Short summary
To facilitate locally relevant simulations over large areas, global hydrological models (GHMs) have moved towards ever finer spatial resolutions. After a decade-long quest for hyper-resolution (i.e. equal to or smaller than 1 km), the presented work is a first application of a GHM at 1 km resolution over Europe. This not only shows that hyper-resolution can be achieved but also allows for a thorough evaluation of model results at unprecedented detail and the formulation of future research.
Jamie Towner, Hannah L. Cloke, Ervin Zsoter, Zachary Flamig, Jannis M. Hoch, Juan Bazo, Erin Coughlan de Perez, and Elisabeth M. Stephens
Hydrol. Earth Syst. Sci., 23, 3057–3080, https://doi.org/10.5194/hess-23-3057-2019, https://doi.org/10.5194/hess-23-3057-2019, 2019
Short summary
Short summary
This study presents an intercomparison analysis of eight global hydrological models (GHMs), assessing their ability to simulate peak river flows in the Amazon basin. Results indicate that the meteorological input is the most influential component of the hydrological modelling chain, with the recent ERA-5 reanalysis dataset significantly improving the ability to simulate flood peaks in the Peruvian Amazon. In contrast, calibration of the Lisflood routing model was found to have no impact.
Edwin H. Sutanudjaja, Rens van Beek, Niko Wanders, Yoshihide Wada, Joyce H. C. Bosmans, Niels Drost, Ruud J. van der Ent, Inge E. M. de Graaf, Jannis M. Hoch, Kor de Jong, Derek Karssenberg, Patricia López López, Stefanie Peßenteiner, Oliver Schmitz, Menno W. Straatsma, Ekkamol Vannametee, Dominik Wisser, and Marc F. P. Bierkens
Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, https://doi.org/10.5194/gmd-11-2429-2018, 2018
Short summary
Short summary
PCR-GLOBWB 2 is an integrated hydrology and water resource model that fully integrates water use simulation and consolidates all features that have been developed since PCR-GLOBWB 1 was introduced. PCR-GLOBWB 2 can have a global coverage at 5 arcmin resolution and supersedes PCR-GLOBWB 1, which has a resolution of 30 arcmin only. Comparing the 5 arcmin with 30 arcmin simulations using discharge data, we clearly find improvement in the model performance of the higher-resolution model.
Jannis M. Hoch, Jeffrey C. Neal, Fedor Baart, Rens van Beek, Hessel C. Winsemius, Paul D. Bates, and Marc F. P. Bierkens
Geosci. Model Dev., 10, 3913–3929, https://doi.org/10.5194/gmd-10-3913-2017, https://doi.org/10.5194/gmd-10-3913-2017, 2017
Short summary
Short summary
To improve flood hazard assessments, it is vital to model all relevant processes. We here present GLOFRIM, a framework for coupling hydrologic and hydrodynamic models to increase the number of physical processes represented in hazard computations. GLOFRIM is openly available, versatile, and extensible with more models. Results also underpin its added value for model benchmarking, showing that not only model forcing but also grid properties and the numerical scheme influence output accuracy.
Jannis M. Hoch, Arjen V. Haag, Arthur van Dam, Hessel C. Winsemius, Ludovicus P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 117–132, https://doi.org/10.5194/hess-21-117-2017, https://doi.org/10.5194/hess-21-117-2017, 2017
Short summary
Short summary
Modelling inundations is pivotal to assess current and future flood hazard, and to define sound measures and policies. Yet, many models focus on the hydrologic or hydrodynamic aspect of floods only. We combined both by spatially coupling a hydrologic with a hydrodynamic model. This way we are able to balance the weaknesses of each model with the strengths of the other. We found that model coupling can indeed strongly improve discharge simulation, and see big potential in our approach.
Hubert T. Samboko, Sten Schurer, Hubert H. G. Savenije, Hodson Makurira, Kawawa Banda, and Hessel Winsemius
Geosci. Instrum. Method. Data Syst., 12, 155–169, https://doi.org/10.5194/gi-12-155-2023, https://doi.org/10.5194/gi-12-155-2023, 2023
Short summary
Short summary
The study investigates how low-cost technology can be applied in data-scarce catchments to improve water resource management. More specifically, we investigate how drone technology can be combined with low-cost real-time kinematic positioning (RTK) global navigation satellite system (GNSS) equipment and subsequently applied to a 3D hydraulic model so as to generate more physically based rating curves.
Dirk Eilander, Anaïs Couasnon, Frederiek C. Sperna Weiland, Willem Ligtvoet, Arno Bouwman, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 2251–2272, https://doi.org/10.5194/nhess-23-2251-2023, https://doi.org/10.5194/nhess-23-2251-2023, 2023
Short summary
Short summary
This study presents a framework for assessing compound flood risk using hydrodynamic, impact, and statistical modeling. A pilot in Mozambique shows the importance of accounting for compound events in risk assessments. We also show how the framework can be used to assess the effectiveness of different risk reduction measures. As the framework is based on global datasets and is largely automated, it can easily be applied in other areas for first-order assessments of compound flood risk.
Jerom P.M. Aerts, Jannis M. Hoch, Gemma Coxon, Nick C. van de Giesen, and Rolf W. Hut
EGUsphere, https://doi.org/10.5194/egusphere-2023-1156, https://doi.org/10.5194/egusphere-2023-1156, 2023
Short summary
Short summary
Hydrological model performance involves comparing simulated states and fluxes with observed counterparts. Often, it is overlooked that there is inherent uncertainty surrounding the observations. This can significantly impact the results. In this publication, we emphasize the significance of accounting for observation uncertainty in model comparison. We propose a practical method that is applicable for any observational time series with available uncertainty estimations.
Job C. M. Dullaart, Sanne Muis, Hans de Moel, Philip J. Ward, Dirk Eilander, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 23, 1847–1862, https://doi.org/10.5194/nhess-23-1847-2023, https://doi.org/10.5194/nhess-23-1847-2023, 2023
Short summary
Short summary
Coastal flooding is driven by storm surges and high tides and can be devastating. To gain an understanding of the threat posed by coastal flooding and to identify areas that are especially at risk, now and in the future, it is crucial to accurately model coastal inundation and assess the coastal flood hazard. Here, we present a global dataset with hydrographs that represent the typical evolution of an extreme sea level. These can be used to model coastal inundation more accurately.
Jannis M. Hoch, Edwin H. Sutanudjaja, Niko Wanders, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 27, 1383–1401, https://doi.org/10.5194/hess-27-1383-2023, https://doi.org/10.5194/hess-27-1383-2023, 2023
Short summary
Short summary
To facilitate locally relevant simulations over large areas, global hydrological models (GHMs) have moved towards ever finer spatial resolutions. After a decade-long quest for hyper-resolution (i.e. equal to or smaller than 1 km), the presented work is a first application of a GHM at 1 km resolution over Europe. This not only shows that hyper-resolution can be achieved but also allows for a thorough evaluation of model results at unprecedented detail and the formulation of future research.
Bas Johan Marinus Wullems, Claudia Catharina Brauer, Fedor Baart, and Albrecht Henricus Weerts
EGUsphere, https://doi.org/10.5194/egusphere-2023-217, https://doi.org/10.5194/egusphere-2023-217, 2023
Short summary
Short summary
In deltas, salt water sometimes intrudes far inland and causes problems with freshwater availability. We created a model to forecast salt concentrations at a critical location in the Rhine-Meuse delta in the Netherlands. It requires a rather small number of data to make a prediction and runs fast. It predicts the occurrence of salt concentration peaks well, but underestimates the highest peaks. Its speed gives water managers more time to reduce the problems caused by salt intrusion.
Dirk Eilander, Anaïs Couasnon, Tim Leijnse, Hiroaki Ikeuchi, Dai Yamazaki, Sanne Muis, Job Dullaart, Arjen Haag, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 823–846, https://doi.org/10.5194/nhess-23-823-2023, https://doi.org/10.5194/nhess-23-823-2023, 2023
Short summary
Short summary
In coastal deltas, flooding can occur from interactions between coastal, riverine, and pluvial drivers, so-called compound flooding. Global models however ignore these interactions. We present a framework for automated and reproducible compound flood modeling anywhere globally and validate it for two historical events in Mozambique with good results. The analysis reveals differences in compound flood dynamics between both events related to the magnitude of and time lag between drivers.
Eric Mortensen, Timothy Tiggeloven, Toon Haer, Bas van Bemmel, Dewi Le Bars, Sanne Muis, Dirk Eilander, Frederiek Sperna Weiland, Arno Bouwman, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-284, https://doi.org/10.5194/nhess-2022-284, 2023
Revised manuscript under review for NHESS
Short summary
Short summary
Current levels of coastal flood risk are projected to increase in coming decades due to various reasons, e.g., sea-level rise, land subsidence, and coastal urbanisation; action is needed to minimize this future risk. We evaluate dykes and coastal levees, foreshore vegetation, zoning restrictions, and dry-proofing on the global scale to estimate what level of risk reductions are possible. We demonstrate that there are several potential adaptation pathways forward for certain areas of the world.
Willem J. van Verseveld, Albrecht H. Weerts, Martijn Visser, Joost Buitink, Ruben O. Imhoff, Hélène Boisgontier, Laurène Bouaziz, Dirk Eilander, Mark Hegnauer, Corine ten Velden, and Bobby Russell
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-182, https://doi.org/10.5194/gmd-2022-182, 2022
Preprint under review for GMD
Short summary
Short summary
We present the wflow_sbm distributed hydrologic model, recently released by Deltares, as part of the Wflow.jl open-source modelling framework in the programming language Julia. Wflow_sbm has a fast run-time making it suitable for large-scale modelling. Wflow_sbm models can be set a priori for any catchment with the Python tool HydroMT-Wflow based on globally available datasets, which results in satisfactory to good performance (without much tuning). We show this for a number of specific cases.
Hubert T. Samboko, Sten Schurer, Hubert H. G. Savenije, Hodson Makurira, Kawawa Banda, and Hessel Winsemius
Geosci. Instrum. Method. Data Syst., 11, 1–23, https://doi.org/10.5194/gi-11-1-2022, https://doi.org/10.5194/gi-11-1-2022, 2022
Short summary
Short summary
The study was conducted along the Luangwa River in Zambia. It combines low-cost instruments such as UAVs and GPS kits to collect data for the purposes of water management. A novel technique which seamlessly merges the dry and wet bathymetry before application in a hydraulic model was applied. Successful implementation resulted in water authorities with small budgets being able to monitor flows safely and efficiently without significant compromise on accuracy.
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021, https://doi.org/10.5194/hess-25-5287-2021, 2021
Short summary
Short summary
Digital elevation models and derived flow directions are crucial to distributed hydrological modeling. As the spatial resolution of models is typically coarser than these data, we need methods to upscale flow direction data while preserving the river structure. We propose the Iterative Hydrography Upscaling (IHU) method and show it outperforms other often-applied methods. We publish the multi-resolution MERIT Hydro IHU hydrography dataset and the algorithm as part of the pyflwdir Python package.
Jerom P. M. Aerts, Steffi Uhlemann-Elmer, Dirk Eilander, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 3245–3260, https://doi.org/10.5194/nhess-20-3245-2020, https://doi.org/10.5194/nhess-20-3245-2020, 2020
Short summary
Short summary
We compare and analyse flood hazard maps from eight global flood models that represent the current state of the global flood modelling community. We apply our comparison to China as a case study, and for the first time, we include industry models, pluvial flooding, and flood protection standards. We find substantial variability between the flood hazard maps in the modelled inundated area and exposed gross domestic product (GDP) across multiple return periods and in expected annual exposed GDP.
Petra Hulsman, Hessel C. Winsemius, Claire I. Michailovsky, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 24, 3331–3359, https://doi.org/10.5194/hess-24-3331-2020, https://doi.org/10.5194/hess-24-3331-2020, 2020
Short summary
Short summary
In the absence of discharge data in ungauged basins, remotely sensed river water level data, i.e. altimetry, may provide valuable information to calibrate hydrological models. This study illustrated that for large rivers in data-scarce regions, river altimetry data from multiple locations combined with GRACE data have the potential to fill this gap when combined with estimates of the river geometry, thereby allowing a step towards more reliable hydrological modelling in data-scarce regions.
Philip J. Ward, Veit Blauhut, Nadia Bloemendaal, James E. Daniell, Marleen C. de Ruiter, Melanie J. Duncan, Robert Emberson, Susanna F. Jenkins, Dalia Kirschbaum, Michael Kunz, Susanna Mohr, Sanne Muis, Graeme A. Riddell, Andreas Schäfer, Thomas Stanley, Ted I. E. Veldkamp, and Hessel C. Winsemius
Nat. Hazards Earth Syst. Sci., 20, 1069–1096, https://doi.org/10.5194/nhess-20-1069-2020, https://doi.org/10.5194/nhess-20-1069-2020, 2020
Short summary
Short summary
We review the scientific literature on natural hazard risk assessments at the global scale. In doing so, we examine similarities and differences between the approaches taken across the different hazards and identify potential ways in which different hazard communities can learn from each other. Finally, we discuss opportunities for learning from methods and approaches being developed and applied to assess natural hazard risks at more continental or regional scales.
Timothy Tiggeloven, Hans de Moel, Hessel C. Winsemius, Dirk Eilander, Gilles Erkens, Eskedar Gebremedhin, Andres Diaz Loaiza, Samantha Kuzma, Tianyi Luo, Charles Iceland, Arno Bouwman, Jolien van Huijstee, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 1025–1044, https://doi.org/10.5194/nhess-20-1025-2020, https://doi.org/10.5194/nhess-20-1025-2020, 2020
Short summary
Short summary
We present a framework to evaluate the benefits and costs of coastal adaptation through dikes to reduce future flood risk. If no adaptation takes place, we find that global coastal flood risk increases 150-fold by 2080, with sea-level rise contributing the most. Moreover, 15 countries account for 90 % of this increase; that adaptation shows high potential to cost-effectively reduce flood risk. The results will be integrated into the Aqueduct Global Flood Analyzer web tool.
Anaïs Couasnon, Dirk Eilander, Sanne Muis, Ted I. E. Veldkamp, Ivan D. Haigh, Thomas Wahl, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, https://doi.org/10.5194/nhess-20-489-2020, 2020
Short summary
Short summary
When a high river discharge coincides with a high storm surge level, this can exarcebate flood level, depth, and duration, resulting in a so-called compound flood event. These events are not currently included in global flood models. In this research, we analyse the timing and correlation between modelled discharge and storm surge level time series in deltas and estuaries. Our results provide a first indication of regions along the global coastline with a high compound flooding potential.
Jamie Towner, Hannah L. Cloke, Ervin Zsoter, Zachary Flamig, Jannis M. Hoch, Juan Bazo, Erin Coughlan de Perez, and Elisabeth M. Stephens
Hydrol. Earth Syst. Sci., 23, 3057–3080, https://doi.org/10.5194/hess-23-3057-2019, https://doi.org/10.5194/hess-23-3057-2019, 2019
Short summary
Short summary
This study presents an intercomparison analysis of eight global hydrological models (GHMs), assessing their ability to simulate peak river flows in the Amazon basin. Results indicate that the meteorological input is the most influential component of the hydrological modelling chain, with the recent ERA-5 reanalysis dataset significantly improving the ability to simulate flood peaks in the Peruvian Amazon. In contrast, calibration of the Lisflood routing model was found to have no impact.
Menno W. Straatsma, Jan M. Fliervoet, Johan A. H. Kabout, Fedor Baart, and Maarten G. Kleinhans
Nat. Hazards Earth Syst. Sci., 19, 1167–1187, https://doi.org/10.5194/nhess-19-1167-2019, https://doi.org/10.5194/nhess-19-1167-2019, 2019
Short summary
Short summary
Climate adaptation of deltas is a hot topic given their high population density in many countries. We quantified trade-offs between hydraulics, potential biodiversity, implementation costs, and the number of land owners involved, using a newly developed tool called RiverScape. With our approach, we move towards finding integrated solutions at the scale of a large river in a delta to support the negotiations among stakeholders in the decision-making process.
Edwin H. Sutanudjaja, Rens van Beek, Niko Wanders, Yoshihide Wada, Joyce H. C. Bosmans, Niels Drost, Ruud J. van der Ent, Inge E. M. de Graaf, Jannis M. Hoch, Kor de Jong, Derek Karssenberg, Patricia López López, Stefanie Peßenteiner, Oliver Schmitz, Menno W. Straatsma, Ekkamol Vannametee, Dominik Wisser, and Marc F. P. Bierkens
Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, https://doi.org/10.5194/gmd-11-2429-2018, 2018
Short summary
Short summary
PCR-GLOBWB 2 is an integrated hydrology and water resource model that fully integrates water use simulation and consolidates all features that have been developed since PCR-GLOBWB 1 was introduced. PCR-GLOBWB 2 can have a global coverage at 5 arcmin resolution and supersedes PCR-GLOBWB 1, which has a resolution of 30 arcmin only. Comparing the 5 arcmin with 30 arcmin simulations using discharge data, we clearly find improvement in the model performance of the higher-resolution model.
Jannis M. Hoch, Jeffrey C. Neal, Fedor Baart, Rens van Beek, Hessel C. Winsemius, Paul D. Bates, and Marc F. P. Bierkens
Geosci. Model Dev., 10, 3913–3929, https://doi.org/10.5194/gmd-10-3913-2017, https://doi.org/10.5194/gmd-10-3913-2017, 2017
Short summary
Short summary
To improve flood hazard assessments, it is vital to model all relevant processes. We here present GLOFRIM, a framework for coupling hydrologic and hydrodynamic models to increase the number of physical processes represented in hazard computations. GLOFRIM is openly available, versatile, and extensible with more models. Results also underpin its added value for model benchmarking, showing that not only model forcing but also grid properties and the numerical scheme influence output accuracy.
Naze Candogan Yossef, Rens van Beek, Albrecht Weerts, Hessel Winsemius, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 4103–4114, https://doi.org/10.5194/hess-21-4103-2017, https://doi.org/10.5194/hess-21-4103-2017, 2017
Short summary
Short summary
This paper presents a skill assessment of the global seasonal streamflow forecasting system FEWS-World. For 20 large basins of the world, forecasts using the ESP procedure are compared to forecasts using actual S3 seasonal meteorological forecast ensembles by ECMWF. The results are discussed in the context of prevailing hydroclimatic conditions per basin. The study concludes that in general, the skill of ECMWF S3 forecasts is close to that of the ESP forecasts.
Tom Brouwer, Dirk Eilander, Arnejan van Loenen, Martijn J. Booij, Kathelijne M. Wijnberg, Jan S. Verkade, and Jurjen Wagemaker
Nat. Hazards Earth Syst. Sci., 17, 735–747, https://doi.org/10.5194/nhess-17-735-2017, https://doi.org/10.5194/nhess-17-735-2017, 2017
Short summary
Short summary
The increasing number and severity of floods, driven by e.g. urbanization, subsidence and climate change, create a growing need for accurate and timely flood maps. At the same time social media is a source of much real-time data that is still largely untapped in flood disaster management. This study illustrates that inherently uncertain data from social media can be used to derive information about flooding.
Jannis M. Hoch, Arjen V. Haag, Arthur van Dam, Hessel C. Winsemius, Ludovicus P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 117–132, https://doi.org/10.5194/hess-21-117-2017, https://doi.org/10.5194/hess-21-117-2017, 2017
Short summary
Short summary
Modelling inundations is pivotal to assess current and future flood hazard, and to define sound measures and policies. Yet, many models focus on the hydrologic or hydrodynamic aspect of floods only. We combined both by spatially coupling a hydrologic with a hydrodynamic model. This way we are able to balance the weaknesses of each model with the strengths of the other. We found that model coupling can indeed strongly improve discharge simulation, and see big potential in our approach.
Paolo Scussolini, Jeroen C. J. H. Aerts, Brenden Jongman, Laurens M. Bouwer, Hessel C. Winsemius, Hans de Moel, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 16, 1049–1061, https://doi.org/10.5194/nhess-16-1049-2016, https://doi.org/10.5194/nhess-16-1049-2016, 2016
Short summary
Short summary
Assessments of flood risk, on global to local scales, are becoming more urgent with ongoing climate change and with rapid socioeconomic developments. Such assessments need information about existing flood protection, still largely unavailable. Here we present the first open-source database of FLood PROtection Standards, FLOPROS, which enables more accurate modelling of flood risk. We also invite specialists to contribute new information to this evolving database.
F. Wetterhall, H. C. Winsemius, E. Dutra, M. Werner, and E. Pappenberger
Hydrol. Earth Syst. Sci., 19, 2577–2586, https://doi.org/10.5194/hess-19-2577-2015, https://doi.org/10.5194/hess-19-2577-2015, 2015
Short summary
Short summary
Dry spells can have a devastating impact on agricuture in areas where irrigation is not available. Forecasting these dry spells could enhance preparedness in sensitive regions and avoid economic loss due to harvest failure. In this study, ECMWF seasonal forecasts are applied in the Limpopo basin in southeastern Africa to forecast dry spells in the seasonal rains. The results indicate skill in the forecast which is further improved by post-processing of the precipitation forecasts.
P. Trambauer, M. Werner, H. C. Winsemius, S. Maskey, E. Dutra, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 19, 1695–1711, https://doi.org/10.5194/hess-19-1695-2015, https://doi.org/10.5194/hess-19-1695-2015, 2015
H. C. Winsemius, E. Dutra, F. A. Engelbrecht, E. Archer Van Garderen, F. Wetterhall, F. Pappenberger, and M. G. F. Werner
Hydrol. Earth Syst. Sci., 18, 1525–1538, https://doi.org/10.5194/hess-18-1525-2014, https://doi.org/10.5194/hess-18-1525-2014, 2014
U. Ehret, H. V. Gupta, M. Sivapalan, S. V. Weijs, S. J. Schymanski, G. Blöschl, A. N. Gelfan, C. Harman, A. Kleidon, T. A. Bogaard, D. Wang, T. Wagener, U. Scherer, E. Zehe, M. F. P. Bierkens, G. Di Baldassarre, J. Parajka, L. P. H. van Beek, A. van Griensven, M. C. Westhoff, and H. C. Winsemius
Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014, https://doi.org/10.5194/hess-18-649-2014, 2014
H. C. Winsemius, L. P. H. Van Beek, B. Jongman, P. J. Ward, and A. Bouwman
Hydrol. Earth Syst. Sci., 17, 1871–1892, https://doi.org/10.5194/hess-17-1871-2013, https://doi.org/10.5194/hess-17-1871-2013, 2013
T. Euser, H. C. Winsemius, M. Hrachowitz, F. Fenicia, S. Uhlenbrook, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 17, 1893–1912, https://doi.org/10.5194/hess-17-1893-2013, https://doi.org/10.5194/hess-17-1893-2013, 2013
R. S. Westerhoff, M. P. H. Kleuskens, H. C. Winsemius, H. J. Huizinga, G. R. Brakenridge, and C. Bishop
Hydrol. Earth Syst. Sci., 17, 651–663, https://doi.org/10.5194/hess-17-651-2013, https://doi.org/10.5194/hess-17-651-2013, 2013
Related subject area
Hydrological Hazards
Better prepared but less resilient: the paradoxical impact of frequent flood experience on adaptive behavior and resilience
Assessing the spatial spread–skill of ensemble flood maps with remote-sensing observations
An integrated modeling approach to evaluate the impacts of nature-based solutions of flood mitigation across a small watershed in the southeast United States
Indicator-to-impact links to help improve agricultural drought preparedness in Thailand
The potential of open-access data for flood estimations: uncovering inundation hotspots in Ho Chi Minh City, Vietnam, through a normalized flood severity index
Analyzing the informative value of alternative hazard indicators for monitoring drought hazard for human water supply and river ecosystems at the global scale
A methodological framework for the evaluation of short-range flash-flood hydrometeorological forecasts at the event scale
Assessing the ability of a new seamless short-range ensemble rainfall product to anticipate flash floods in the French Mediterranean area
Hydrological drought forecasting under a changing environment in the Luanhe River basin
A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe – Part 2: Historical context and relation to climate change
Brief communication: The potential use of low-cost acoustic sensors to detect rainfall for short-term urban flood warnings
Brief communication: On the extremeness of the July 2021 precipitation event in western Germany
Hydraulic response of a tropical urban estuary to a typhoon event: case study of Ho Chi Minh City and typhoon Usagi
A climate-conditioned catastrophe risk model for UK flooding
A globally applicable framework for compound flood hazard modeling
Transferability of data-driven models to predict urban pluvial flood water depth in Berlin, Germany
Brief communication: Inclusiveness in designing an early warning system for flood resilience
Evolution of multivariate drought hazard, vulnerability and risk in India under climate change
A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe – Part 1: Event description and analysis
Bare-earth DEM generation from ArcticDEM and its use in flood simulation
Comparison of estimated flood exposure and consequences generated by different event-based inland flood inundation maps
How uncertain are precipitation and peak flow estimates for the July 2021 flooding event?
Estimating the likelihood of roadway pluvial flood based on crowdsourced traffic data and depression-based DEM analysis
A multi-strategy-mode waterlogging-prediction framework for urban flood depth
Multiscale flood risk assessment under climate change: the case of the Miño River in the city of Ourense, Spain
Sensitivity analysis of erosion on the landward slope of an earthen flood defence submitted to wave overtoppings
Interactions between precipitation, evapotranspiration and soil-moisture-based indices to characterize drought with high-resolution remote sensing and land-surface model data
Sentinel-1 based analysis of the Pakistan Flood in 2022
Rare flood scenarios for a rapidly growing high-mountain city: Pokhara, Nepal
Brief communication: Impact forecasting could substantially improve the emergency management of deadly floods: case study July 2021 floods in Germany
Brief communication: Western Europe flood in 2021 – mapping agriculture flood exposure from synthetic aperture radar (SAR)
Comprehensive space–time hydrometeorological simulations for estimating very rare floods at multiple sites in a large river basin
A new index to quantify the extremeness of precipitation across scales
Effectiveness of Sentinel-1 and Sentinel-2 for flood detection assessment in Europe
Assessing flood hazard changes using climate model forcing
Characterizing multivariate coastal flooding events in a semi-arid region: the implications of copula choice, sampling, and infrastructure
Different drought types and the spatial variability in their hazard, impact, and propagation characteristics
More than heavy rain turning into fast-flowing water – a landscape perspective on the 2021 Eifel floods
Integrated drought risk assessment to support adaptive policymaking in the Netherlands
INSYDE-BE: adaptation of the INSYDE model to the Walloon region (Belgium)
Assessing flooding impact to riverine bridges: an integrated analysis
Warming of 0.5 °C may cause double the economic loss and increase the population affected by floods in China
First application of the Integrated Karst Aquifer Vulnerability (IKAV) method – potential and actual vulnerability in Yucatán, Mexico
Brief communication: Seismological analysis of flood dynamics and hydrologically triggered earthquake swarms associated with Storm Alex
System vulnerability to flood events and risk assessment of railway systems based on national and river basin scales in China
Machine-learning blends of geomorphic descriptors: value and limitations for flood hazard assessment across large floodplains
A performance-based approach to quantify atmospheric river flood risk
Estimating soil moisture conditions for drought monitoring with random forests and a simple soil moisture accounting scheme
Extreme-coastal-water-level estimation and projection: a comparison of statistical methods
Spatiotemporal evolution and meteorological triggering conditions of hydrological drought in the Hun River basin, NE China
Lisa Köhler, Torsten Masson, Sabrina Köhler, and Christian Kuhlicke
Nat. Hazards Earth Syst. Sci., 23, 2787–2806, https://doi.org/10.5194/nhess-23-2787-2023, https://doi.org/10.5194/nhess-23-2787-2023, 2023
Short summary
Short summary
We analyzed the impact of flood experience on adaptive behavior and self-reported resilience. The outcomes draw a paradoxical picture: the most experienced people are the most adapted but the least resilient. We find evidence for non-linear relationships between the number of floods experienced and resilience. We contribute to existing knowledge by focusing specifically on the number of floods experienced and extending the rare scientific literature on the influence of experience on resilience.
Helen Hooker, Sarah L. Dance, David C. Mason, John Bevington, and Kay Shelton
Nat. Hazards Earth Syst. Sci., 23, 2769–2785, https://doi.org/10.5194/nhess-23-2769-2023, https://doi.org/10.5194/nhess-23-2769-2023, 2023
Short summary
Short summary
Ensemble forecasts of flood inundation produce maps indicating the probability of flooding. A new approach is presented to evaluate the spatial performance of an ensemble flood map forecast by comparison against remotely observed flooding extents. This is important for understanding forecast uncertainties and improving flood forecasting systems.
Betina I. Guido, Ioana Popescu, Vidya Samadi, and Biswa Bhattacharya
Nat. Hazards Earth Syst. Sci., 23, 2663–2681, https://doi.org/10.5194/nhess-23-2663-2023, https://doi.org/10.5194/nhess-23-2663-2023, 2023
Short summary
Short summary
We used an integrated model to evaluate the impacts of nature-based solutions (NBSs) on flood mitigation across the Little Pee Dee and Lumber River watershed, the Carolinas, US. This area is strongly affected by climatic disasters, which are expected to increase due to climate change and urbanization, so exploring an NBS approach is crucial for adapting to future alterations. Our research found that NBSs can have visible effects on the reduction in hurricane-driven flooding.
Maliko Tanguy, Michael Eastman, Eugene Magee, Lucy J. Barker, Thomas Chitson, Chaiwat Ekkawatpanit, Daniel Goodwin, Jamie Hannaford, Ian Holman, Liwa Pardthaisong, Simon Parry, Dolores Rey Vicario, and Supattra Visessri
Nat. Hazards Earth Syst. Sci., 23, 2419–2441, https://doi.org/10.5194/nhess-23-2419-2023, https://doi.org/10.5194/nhess-23-2419-2023, 2023
Short summary
Short summary
Droughts in Thailand are becoming more severe due to climate change. Understanding the link between drought impacts on the ground and drought indicators used in drought monitoring systems can help increase a country's preparedness and resilience to drought. With a focus on agricultural droughts, we derive crop- and region-specific indicator-to-impact links that can form the basis of targeted mitigation actions and an improved drought monitoring and early warning system in Thailand.
Leon Scheiber, Mazen Hoballah Jalloul, Christian Jordan, Jan Visscher, Hong Quan Nguyen, and Torsten Schlurmann
Nat. Hazards Earth Syst. Sci., 23, 2313–2332, https://doi.org/10.5194/nhess-23-2313-2023, https://doi.org/10.5194/nhess-23-2313-2023, 2023
Short summary
Short summary
Numerical models are increasingly important for assessing urban flooding, yet reliable input data are oftentimes hard to obtain. Taking Ho Chi Minh City as an example, this paper explores the usability and reliability of open-access data to produce preliminary risk maps that provide first insights into potential flooding hotspots. As a key novelty, a normalized flood severity index is presented which combines flood depth and duration to enhance the interpretation of hydro-numerical results.
Claudia Herbert and Petra Döll
Nat. Hazards Earth Syst. Sci., 23, 2111–2131, https://doi.org/10.5194/nhess-23-2111-2023, https://doi.org/10.5194/nhess-23-2111-2023, 2023
Short summary
Short summary
This paper presents a new method for selecting streamflow drought hazard indicators for monitoring drought hazard for human water supply and river ecosystems in large-scale drought early warning systems. Indicators are classified by their inherent assumptions about the habituation of people and ecosystems to the streamflow regime and their level of drought characterization, namely drought magnitude (water deficit at a certain point in time) and severity (cumulated magnitude since drought onset).
Maryse Charpentier-Noyer, Daniela Peredo, Axelle Fleury, Hugo Marchal, François Bouttier, Eric Gaume, Pierre Nicolle, Olivier Payrastre, and Maria-Helena Ramos
Nat. Hazards Earth Syst. Sci., 23, 2001–2029, https://doi.org/10.5194/nhess-23-2001-2023, https://doi.org/10.5194/nhess-23-2001-2023, 2023
Short summary
Short summary
This paper proposes a methodological framework designed for event-based evaluation in the context of an intense flash-flood event. The evaluation adopts the point of view of end users, with a focus on the anticipation of exceedances of discharge thresholds. With a study of rainfall forecasts, a discharge evaluation and a detailed look at the forecast hydrographs, the evaluation framework should help in drawing robust conclusions about the usefulness of new rainfall ensemble forecasts.
Juliette Godet, Olivier Payrastre, Pierre Javelle, and François Bouttier
EGUsphere, https://doi.org/10.5194/egusphere-2023-907, https://doi.org/10.5194/egusphere-2023-907, 2023
Short summary
Short summary
This article results from a research master project which was part of a natural hazards program developed by the French Ministry for the Environment. The objective of this work was to investigate one of the possible ways to improve the operational flash flood warning service: the addition of rainfall forecasts upstream of the forecasting chain. The results showed that the tested forecast product, which is new and experimental, has a real added value compared to other classical forecast products.
Min Li, Mingfeng Zhang, Runxiang Cao, Yidi Sun, and Xiyuan Deng
Nat. Hazards Earth Syst. Sci., 23, 1453–1464, https://doi.org/10.5194/nhess-23-1453-2023, https://doi.org/10.5194/nhess-23-1453-2023, 2023
Short summary
Short summary
It is an important disaster reduction strategy to forecast hydrological drought. In order to analyse the impact of human activities on hydrological drought, we constructed the human activity factor based on the method of restoration. With the increase of human index (HI) value, hydrological droughts tend to transition to more severe droughts. The conditional distribution model involving of human activity factor can further improve the forecasting accuracy of drought in the Luanhe River basin.
Patrick Ludwig, Florian Ehmele, Mário J. Franca, Susanna Mohr, Alberto Caldas-Alvarez, James E. Daniell, Uwe Ehret, Hendrik Feldmann, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Michael Kunz, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 1287–1311, https://doi.org/10.5194/nhess-23-1287-2023, https://doi.org/10.5194/nhess-23-1287-2023, 2023
Short summary
Short summary
Heavy precipitation in July 2021 led to widespread floods in western Germany and neighboring countries. The event was among the five heaviest precipitation events of the past 70 years in Germany, and the river discharges exceeded by far the statistical 100-year return values. Simulations of the event under future climate conditions revealed a strong and non-linear effect on flood peaks: for +2 K global warming, an 18 % increase in rainfall led to a 39 % increase of the flood peak in the Ahr river.
Nadav Peleg, Herminia Torelló-Sentelles, Grégoire Mariéthoz, Lionel Benoit, João P. Leitão, and Francesco Marra
Nat. Hazards Earth Syst. Sci., 23, 1233–1240, https://doi.org/10.5194/nhess-23-1233-2023, https://doi.org/10.5194/nhess-23-1233-2023, 2023
Short summary
Short summary
Floods in urban areas are one of the most common natural hazards. Due to climate change enhancing extreme rainfall and cities becoming larger and denser, the impacts of these events are expected to increase. A fast and reliable flood warning system should thus be implemented in flood-prone cities to warn the public of upcoming floods. The purpose of this brief communication is to discuss the potential implementation of low-cost acoustic rainfall sensors in short-term flood warning systems.
Katharina Lengfeld, Paul Voit, Frank Kaspar, and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 23, 1227–1232, https://doi.org/10.5194/nhess-23-1227-2023, https://doi.org/10.5194/nhess-23-1227-2023, 2023
Short summary
Short summary
Estimating the severity of a rainfall event based on the damage caused is easy but highly depends on the affected region. A less biased measure for the extremeness of an event is its rarity combined with its spatial extent. In this brief communication, we investigate the sensitivity of such measures to the underlying dataset and highlight the importance of considering multiple spatial and temporal scales using the devastating rainfall event in July 2021 in central Europe as an example.
Francisco Rodrigues do Amaral, Nicolas Gratiot, and Thierry Pellarin
EGUsphere, https://doi.org/10.5194/egusphere-2023-396, https://doi.org/10.5194/egusphere-2023-396, 2023
Short summary
Short summary
We investigate typhoon Usagi's impact on the Saigon river traversing Ho Chi Minh City, Vietnam. We propose an in-depth analysis of the effect on water levels and discharge of the Saigon river and its connection to the extreme precipitation and coastal storm surge. It was found that precipitation presents a 10 hour time lag to the peak river discharge which evacuates only 1.5 % of available water. Additionally, it was found that the coastal tides control the river even during the event.
Paul D. Bates, James Savage, Oliver Wing, Niall Quinn, Christopher Sampson, Jeffrey Neal, and Andrew Smith
Nat. Hazards Earth Syst. Sci., 23, 891–908, https://doi.org/10.5194/nhess-23-891-2023, https://doi.org/10.5194/nhess-23-891-2023, 2023
Short summary
Short summary
We present and validate a model that simulates current and future flood risk for the UK at high resolution (~ 20–25 m). We show that UK flood losses were ~ 6 % greater in the climate of 2020 compared to recent historical values. The UK can keep any future increase to ~ 8 % if all countries implement their COP26 pledges and net-zero ambitions in full. However, if only the COP26 pledges are fulfilled, then UK flood losses increase by ~ 23 %; and potentially by ~ 37 % in a worst-case scenario.
Dirk Eilander, Anaïs Couasnon, Tim Leijnse, Hiroaki Ikeuchi, Dai Yamazaki, Sanne Muis, Job Dullaart, Arjen Haag, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 823–846, https://doi.org/10.5194/nhess-23-823-2023, https://doi.org/10.5194/nhess-23-823-2023, 2023
Short summary
Short summary
In coastal deltas, flooding can occur from interactions between coastal, riverine, and pluvial drivers, so-called compound flooding. Global models however ignore these interactions. We present a framework for automated and reproducible compound flood modeling anywhere globally and validate it for two historical events in Mozambique with good results. The analysis reveals differences in compound flood dynamics between both events related to the magnitude of and time lag between drivers.
Omar Seleem, Georgy Ayzel, Axel Bronstert, and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 23, 809–822, https://doi.org/10.5194/nhess-23-809-2023, https://doi.org/10.5194/nhess-23-809-2023, 2023
Short summary
Short summary
Data-driven models are becoming more of a surrogate that overcomes the limitations of the computationally expensive 2D hydrodynamic models to map urban flood hazards. However, the model's ability to generalize outside the training domain is still a major challenge. We evaluate the performance of random forest and convolutional neural networks to predict urban floodwater depth and investigate their transferability outside the training domain.
Tahmina Yasmin, Kieran Khamis, Anthony Ross, Subir Sen, Anita Sharma, Debashish Sen, Sumit Sen, Wouter Buytaert, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 23, 667–674, https://doi.org/10.5194/nhess-23-667-2023, https://doi.org/10.5194/nhess-23-667-2023, 2023
Short summary
Short summary
Floods continue to be a wicked problem that require developing early warning systems with plausible assumptions of risk behaviour, with more targeted conversations with the community at risk. Through this paper we advocate the use of a SMART approach to encourage bottom-up initiatives to develop inclusive and purposeful early warning systems that benefit the community at risk by engaging them at every step of the way along with including other stakeholders at multiple scales of operations.
Venkataswamy Sahana and Arpita Mondal
Nat. Hazards Earth Syst. Sci., 23, 623–641, https://doi.org/10.5194/nhess-23-623-2023, https://doi.org/10.5194/nhess-23-623-2023, 2023
Short summary
Short summary
In an agriculture-dependent, densely populated country such as India, drought risk projection is important to assess future water security. This study presents the first comprehensive drought risk assessment over India, integrating hazard and vulnerability information. Future drought risk is found to be more significantly driven by increased vulnerability resulting from societal developments rather than climate-induced changes in hazard. These findings can inform planning for drought resilience.
Susanna Mohr, Uwe Ehret, Michael Kunz, Patrick Ludwig, Alberto Caldas-Alvarez, James E. Daniell, Florian Ehmele, Hendrik Feldmann, Mário J. Franca, Christian Gattke, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Marc Scheibel, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 525–551, https://doi.org/10.5194/nhess-23-525-2023, https://doi.org/10.5194/nhess-23-525-2023, 2023
Short summary
Short summary
The flood event in July 2021 was one of the most severe disasters in Europe in the last half century. The objective of this two-part study is a multi-disciplinary assessment that examines the complex process interactions in different compartments, from meteorology to hydrological conditions to hydro-morphological processes to impacts on assets and environment. In addition, we address the question of what measures are possible to generate added value to early response management.
Yinxue Liu, Paul D. Bates, and Jeffery C. Neal
Nat. Hazards Earth Syst. Sci., 23, 375–391, https://doi.org/10.5194/nhess-23-375-2023, https://doi.org/10.5194/nhess-23-375-2023, 2023
Short summary
Short summary
In this paper, we test two approaches for removing buildings and other above-ground objects from a state-of-the-art satellite photogrammetry topography product, ArcticDEM. Our best technique gives a 70 % reduction in vertical error, with an average difference of 1.02 m from a benchmark lidar for the city of Helsinki, Finland. When used in a simulation of rainfall-driven flooding, the bare-earth version of ArcticDEM yields a significant improvement in predicted inundation extent and water depth.
Joseph L. Gutenson, Ahmad A. Tavakoly, Mohammad S. Islam, Oliver E. J. Wing, William P. Lehman, Chase O. Hamilton, Mark D. Wahl, and T. Christopher Massey
Nat. Hazards Earth Syst. Sci., 23, 261–277, https://doi.org/10.5194/nhess-23-261-2023, https://doi.org/10.5194/nhess-23-261-2023, 2023
Short summary
Short summary
Emergency managers use event-based flood inundation maps (FIMs) to plan and coordinate flood emergency response. We perform a case study test of three different FIM frameworks to see if FIM differences lead to substantial differences in the location and magnitude of flood exposure and consequences. We find that the FIMs are very different spatially and that the spatial differences do produce differences in the location and magnitude of exposure and consequences.
Mohamed Saadi, Carina Furusho-Percot, Alexandre Belleflamme, Ju-Yu Chen, Silke Trömel, and Stefan Kollet
Nat. Hazards Earth Syst. Sci., 23, 159–177, https://doi.org/10.5194/nhess-23-159-2023, https://doi.org/10.5194/nhess-23-159-2023, 2023
Short summary
Short summary
On 14 July 2021, heavy rainfall fell over central Europe, causing considerable damage and human fatalities. We analyzed how accurate our estimates of rainfall and peak flow were for these flooding events in western Germany. We found that the rainfall estimates from radar measurements were improved by including polarimetric variables and their vertical gradients. Peak flow estimates were highly uncertain due to uncertainties in hydrological model parameters and rainfall measurements.
Arefeh Safaei-Moghadam, David Tarboton, and Barbara Minsker
Nat. Hazards Earth Syst. Sci., 23, 1–19, https://doi.org/10.5194/nhess-23-1-2023, https://doi.org/10.5194/nhess-23-1-2023, 2023
Short summary
Short summary
Climate change, urbanization, and aging infrastructure contribute to flooding on roadways. This study evaluates the potential for flood reports collected from Waze – a community-based navigation app – to predict these events. Waze reports correlate primarily with low-lying depressions on roads. Therefore, we developed two data-driven models to determine whether roadways will flood. Analysis showed that in the city of Dallas, drainage area and imperviousness are the most significant contributors.
Zongjia Zhang, Jun Liang, Yujue Zhou, Zhejun Huang, Jie Jiang, Junguo Liu, and Lili Yang
Nat. Hazards Earth Syst. Sci., 22, 4139–4165, https://doi.org/10.5194/nhess-22-4139-2022, https://doi.org/10.5194/nhess-22-4139-2022, 2022
Short summary
Short summary
An innovative multi-strategy-mode waterlogging-prediction framework for predicting waterlogging depth is proposed in the paper. The framework selects eight regression algorithms for comparison and tests the prediction accuracy and robustness of the model under different prediction strategies. Ultimately, the accuracy of predicting water depth after 30 min can exceed 86.1 %. This can aid decision-making in terms of issuing early warning information and determining emergency responses in advance.
Diego Fernández-Nóvoa, Orlando García-Feal, José González-Cao, Maite deCastro, and Moncho Gómez-Gesteira
Nat. Hazards Earth Syst. Sci., 22, 3957–3972, https://doi.org/10.5194/nhess-22-3957-2022, https://doi.org/10.5194/nhess-22-3957-2022, 2022
Short summary
Short summary
A multiscale analysis, where the historical and future precipitation data from the CORDEX project were used as input in a hydrological model (HEC-HMS) that, in turn, feeds a 2D hydraulic model (Iber+), was applied to the case of the Miño-Sil basin (NW Spain), specifically to Ourense city, in order to analyze future changes in flood hazard. Detailed flood maps indicate an increase in the frequency and intensity of future floods, implying an increase in flood hazard in important areas of the city.
Clément Lutringer, Adrien Poupardin, Philippe Sergent, Abdelkrim Bennabi, and Jena Jeong
EGUsphere, https://doi.org/10.5194/egusphere-2022-1204, https://doi.org/10.5194/egusphere-2022-1204, 2022
Short summary
Short summary
We developped a system able to to predict, knowing the appropriate characteristics of the flood defence structure and sea state, the return periods of potentially dangerous events as well as a ranking of parameters by order of uncertainty. The model is a combination of statistical and empirical methods that have been applied to a mediterranean earthen dyke. This shows that the most important characteristics of the dyke are its geometrical features such as its height slope angles.
Jaime Gaona, Pere Quintana-Seguí, María José Escorihuela, Aaron Boone, and María Carmen Llasat
Nat. Hazards Earth Syst. Sci., 22, 3461–3485, https://doi.org/10.5194/nhess-22-3461-2022, https://doi.org/10.5194/nhess-22-3461-2022, 2022
Short summary
Short summary
Droughts represent a particularly complex natural hazard and require explorations of their multiple causes. Part of the complexity has roots in the interaction between the continuous changes in and deviation from normal conditions of the atmosphere and the land surface. The exchange between the atmospheric and surface conditions defines feedback towards dry or wet conditions. In semi-arid environments, energy seems to exceed water in its impact over the evolution of conditions, favoring drought.
Florian Roth, Bernhard Bauer-Marschallinger, Mark Edwin Tupas, Christoph Reimer, Peter Salamon, and Wolfgang Wagner
EGUsphere, https://doi.org/10.5194/egusphere-2022-1061, https://doi.org/10.5194/egusphere-2022-1061, 2022
Short summary
Short summary
In August and September 2022, millions of people were impacted by a severe flood event in Pakistan. Since many roads and other infrastructure were destroyed, satellite data was the only way of providing large scale information of the flood's impact. Based on the flood mapping algorithm developed at Technische Universität Wien (TU Wien), we mapped an area of 30,492 km2 to be flooded at least once during the study's time period. This affected area matches about the total area of Belgium.
Melanie Fischer, Jana Brettin, Sigrid Roessner, Ariane Walz, Monique Fort, and Oliver Korup
Nat. Hazards Earth Syst. Sci., 22, 3105–3123, https://doi.org/10.5194/nhess-22-3105-2022, https://doi.org/10.5194/nhess-22-3105-2022, 2022
Short summary
Short summary
Nepal’s second-largest city has been rapidly growing since the 1970s, although its valley has been affected by rare, catastrophic floods in recent and historic times. We analyse potential impacts of such floods on urban areas and infrastructure by modelling 10 physically plausible flood scenarios along Pokhara’s main river. We find that hydraulic effects would largely affect a number of squatter settlements, which have expanded rapidly towards the river by a factor of up to 20 since 2008.
Heiko Apel, Sergiy Vorogushyn, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 22, 3005–3014, https://doi.org/10.5194/nhess-22-3005-2022, https://doi.org/10.5194/nhess-22-3005-2022, 2022
Short summary
Short summary
The paper presents a fast 2D hydraulic simulation model for flood propagation that enables operational forecasts of spatially distributed inundation depths, flood extent, flow velocities, and other flood impacts. The detailed spatial forecast of floods and flood impacts is a large step forward from the currently operational forecasts of discharges at selected gauges, thus enabling a more targeted flood management and early warning.
Kang He, Qing Yang, Xinyi Shen, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 22, 2921–2927, https://doi.org/10.5194/nhess-22-2921-2022, https://doi.org/10.5194/nhess-22-2921-2022, 2022
Short summary
Short summary
This study depicts the flood-affected areas in western Europe in July 2021 and particularly the agriculture land that was under flood inundation. The results indicate that the total inundated area over western Europe is about 1920 km2, of which 1320 km2 is in France. Around 64 % of the inundated area is agricultural land. We expect that the agricultural productivity in western Europe will have been severely impacted.
Daniel Viviroli, Anna E. Sikorska-Senoner, Guillaume Evin, Maria Staudinger, Martina Kauzlaric, Jérémy Chardon, Anne-Catherine Favre, Benoit Hingray, Gilles Nicolet, Damien Raynaud, Jan Seibert, Rolf Weingartner, and Calvin Whealton
Nat. Hazards Earth Syst. Sci., 22, 2891–2920, https://doi.org/10.5194/nhess-22-2891-2022, https://doi.org/10.5194/nhess-22-2891-2022, 2022
Short summary
Short summary
Estimating the magnitude of rare to very rare floods is a challenging task due to a lack of sufficiently long observations. The challenge is even greater in large river basins, where precipitation patterns and amounts differ considerably between individual events and floods from different parts of the basin coincide. We show that a hydrometeorological model chain can provide plausible estimates in this setting and can thus inform flood risk and safety assessments for critical infrastructure.
Paul Voit and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 22, 2791–2805, https://doi.org/10.5194/nhess-22-2791-2022, https://doi.org/10.5194/nhess-22-2791-2022, 2022
Short summary
Short summary
To better understand how the frequency and intensity of heavy precipitation events (HPEs) will change with changing climate and to adapt disaster risk management accordingly, we have to quantify the extremeness of HPEs in a reliable way. We introduce the xWEI (cross-scale WEI) and show that this index can reveal important characteristics of HPEs that would otherwise remain hidden. We conclude that the xWEI could be a valuable instrument in both disaster risk management and research.
Angelica Tarpanelli, Alessandro C. Mondini, and Stefania Camici
Nat. Hazards Earth Syst. Sci., 22, 2473–2489, https://doi.org/10.5194/nhess-22-2473-2022, https://doi.org/10.5194/nhess-22-2473-2022, 2022
Short summary
Short summary
We analysed 10 years of river discharge data from almost 2000 sites in Europe, and we extracted flood events, as proxies of flood inundations, based on the overpasses of Sentinel-1 and Sentinel-2 satellites to derive the percentage of potential inundation events that they were able to observe. Results show that on average 58 % of flood events are potentially observable by Sentinel-1 and only 28 % by Sentinel-2 due to the obstacle of cloud coverage.
David P. Callaghan and Michael G. Hughes
Nat. Hazards Earth Syst. Sci., 22, 2459–2472, https://doi.org/10.5194/nhess-22-2459-2022, https://doi.org/10.5194/nhess-22-2459-2022, 2022
Short summary
Short summary
A new method was developed to estimate changes in flood hazard under climate change. We use climate projections covering New South Wales, Australia, with two emission paths of business as usual and one with reduced emissions. We apply our method to the lower floodplain of the Gwydir Valley with changes in flood hazard provided over the next 90 years compared with the previous 50 years. We find that changes in flood hazard decrease over time within the Gwydir Valley floodplain.
Joseph T. D. Lucey and Timu W. Gallien
Nat. Hazards Earth Syst. Sci., 22, 2145–2167, https://doi.org/10.5194/nhess-22-2145-2022, https://doi.org/10.5194/nhess-22-2145-2022, 2022
Short summary
Short summary
Coastal flooding can result from multiple flood drivers (e.g., tides, waves, river flows, rainfall) occurring at the same time. This study characterizes flooding events caused by high marine water levels and rain. Results show that wet-season coinciding sampling may better describe extreme flooding events in a dry, tidally dominated region. A joint-probability-based function is then used to estimate sea wall impacts on urban coastal flooding.
Erik Tijdeman, Veit Blauhut, Michael Stoelzle, Lucas Menzel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 22, 2099–2116, https://doi.org/10.5194/nhess-22-2099-2022, https://doi.org/10.5194/nhess-22-2099-2022, 2022
Short summary
Short summary
We identified different drought types with typical hazard and impact characteristics. The summer drought type with compounding heat was most impactful. Regional drought propagation of this drought type exhibited typical characteristics that can guide drought management. However, we also found a large spatial variability that caused distinct differences among propagating drought signals. Accordingly, local multivariate drought information was needed to explain the full range of drought impacts.
Michael Dietze, Rainer Bell, Ugur Ozturk, Kristen L. Cook, Christoff Andermann, Alexander R. Beer, Bodo Damm, Ana Lucia, Felix S. Fauer, Katrin M. Nissen, Tobias Sieg, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 22, 1845–1856, https://doi.org/10.5194/nhess-22-1845-2022, https://doi.org/10.5194/nhess-22-1845-2022, 2022
Short summary
Short summary
The flood that hit Europe in July 2021, specifically the Eifel, Germany, was more than a lot of fast-flowing water. The heavy rain that fell during the 3 d before also caused the slope to fail, recruited tree trunks that clogged bridges, and routed debris across the landscape. Especially in the upper parts of the catchments the flood was able to gain momentum. Here, we discuss how different landscape elements interacted and highlight the challenges of holistic future flood anticipation.
Marjolein J. P. Mens, Gigi van Rhee, Femke Schasfoort, and Neeltje Kielen
Nat. Hazards Earth Syst. Sci., 22, 1763–1776, https://doi.org/10.5194/nhess-22-1763-2022, https://doi.org/10.5194/nhess-22-1763-2022, 2022
Short summary
Short summary
Many countries have to prepare for droughts by proposing policy actions to increase water supply, reduce water demand, or limit the societal impact. Societal cost–benefit analysis is required to support decision-making for a range of future scenarios, accounting for climate change and socio-economic developments. This paper presents a framework to assess drought policy actions based on quantification of drought risk and exemplifies it for the Netherlands’ drought risk management strategy.
Anna Rita Scorzini, Benjamin Dewals, Daniela Rodriguez Castro, Pierre Archambeau, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 22, 1743–1761, https://doi.org/10.5194/nhess-22-1743-2022, https://doi.org/10.5194/nhess-22-1743-2022, 2022
Short summary
Short summary
This study presents a replicable procedure for the adaptation of synthetic, multi-variable flood damage models among countries that may have different hazard and vulnerability features. The procedure is exemplified here for the case of adaptation to the Belgian context of a flood damage model, INSYDE, for the residential sector, originally developed for Italy. The study describes necessary changes in model assumptions and input parameters to properly represent the new context of implementation.
Maria Pregnolato, Andrew O. Winter, Dakota Mascarenas, Andrew D. Sen, Paul Bates, and Michael R. Motley
Nat. Hazards Earth Syst. Sci., 22, 1559–1576, https://doi.org/10.5194/nhess-22-1559-2022, https://doi.org/10.5194/nhess-22-1559-2022, 2022
Short summary
Short summary
The interaction of flow, structure and network is complex, and yet to be fully understood. This study aims to establish rigorous practices of computational fluid dynamics (CFD) for modelling hydrodynamic forces on inundated bridges, and understanding the consequences of such impacts on the surrounding network. The objectives of this study are to model hydrodynamic forces as the demand on the bridge structure, to advance a structural reliability and network-level analysis.
Lulu Liu, Jiangbo Gao, and Shaohong Wu
Nat. Hazards Earth Syst. Sci., 22, 1577–1590, https://doi.org/10.5194/nhess-22-1577-2022, https://doi.org/10.5194/nhess-22-1577-2022, 2022
Short summary
Short summary
The impact of extreme events is increasing with global warming. Based on future scenario data and an improved quantitative assessment model of natural-disaster risk, this study analyses the spatial and temporal patterns of floods in China at 1.5 °C and 2 °C of global warming, quantitatively assesses the socioeconomic risks posed by floods, and determines the integrated risk levels. Global warming of 1.5 °C can effectively reduce the population affected and the economic risks of floods.
Miguel Moreno-Gómez, Carolina Martínez-Salvador, Rudolf Liedl, Catalin Stefan, and Julia Pacheco
Nat. Hazards Earth Syst. Sci., 22, 1591–1608, https://doi.org/10.5194/nhess-22-1591-2022, https://doi.org/10.5194/nhess-22-1591-2022, 2022
Short summary
Short summary
Current vulnerability methods, as tools to protect groundwater resources from pollution, present some limitations and drawbacks: the roles of population and economic activities are not considered by such methods. The methodology presented in this work combines natural characteristics and human-driven conditions of a given region to improve the process of groundwater vulnerability analysis. Results indicate the reliability of this alternative method to improve groundwater protection strategies.
Małgorzata Chmiel, Maxime Godano, Marco Piantini, Pierre Brigode, Florent Gimbert, Maarten Bakker, Françoise Courboulex, Jean-Paul Ampuero, Diane Rivet, Anthony Sladen, David Ambrois, and Margot Chapuis
Nat. Hazards Earth Syst. Sci., 22, 1541–1558, https://doi.org/10.5194/nhess-22-1541-2022, https://doi.org/10.5194/nhess-22-1541-2022, 2022
Short summary
Short summary
On 2 October 2020, the French Maritime Alps were struck by an extreme rainfall event caused by Storm Alex. Here, we show that seismic data provide the timing and velocity of the propagation of flash-flood waves along the Vésubie River. We also detect 114 small local earthquakes triggered by the rainwater weight and/or its infiltration into the ground. This study paves the way for future works that can reveal further details of the impact of Storm Alex on the Earth’s surface and subsurface.
Weihua Zhu, Kai Liu, Ming Wang, Philip J. Ward, and Elco E. Koks
Nat. Hazards Earth Syst. Sci., 22, 1519–1540, https://doi.org/10.5194/nhess-22-1519-2022, https://doi.org/10.5194/nhess-22-1519-2022, 2022
Short summary
Short summary
We present a simulation framework to analyse the system vulnerability and risk of the Chinese railway system to floods. To do so, we develop a method for generating flood events at both the national and river basin scale. Results show flood system vulnerability and risk of the railway system are spatially heterogeneous. The event-based approach shows how we can identify critical hotspots, taking the first steps in developing climate-resilient infrastructure.
Andrea Magnini, Michele Lombardi, Simone Persiano, Antonio Tirri, Francesco Lo Conti, and Attilio Castellarin
Nat. Hazards Earth Syst. Sci., 22, 1469–1486, https://doi.org/10.5194/nhess-22-1469-2022, https://doi.org/10.5194/nhess-22-1469-2022, 2022
Short summary
Short summary
We retrieve descriptors of the terrain morphology from a digital elevation model of a 105 km2 study area and blend them through decision tree models to map flood susceptibility and expected water depth. We investigate this approach with particular attention to (a) the comparison with a selected single-descriptor approach, (b) the goodness of decision trees, and (c) the performance of these models when applied to data-scarce regions. We find promising pathways for future research.
Corinne Bowers, Katherine A. Serafin, and Jack Baker
Nat. Hazards Earth Syst. Sci., 22, 1371–1393, https://doi.org/10.5194/nhess-22-1371-2022, https://doi.org/10.5194/nhess-22-1371-2022, 2022
Short summary
Short summary
Atmospheric rivers (ARs) cause significant flooding on the US west coast. We present a new Performance-based Atmospheric River Risk Analysis (PARRA) framework that connects models of atmospheric forcings, hydrologic impacts, and economic consequences to better estimate losses from AR-induced river flooding. We apply the PARRA framework to a case study in Sonoma County, CA, USA, and show that the framework can quantify the potential benefit of flood mitigation actions such as home elevation.
Yves Tramblay and Pere Quintana Seguí
Nat. Hazards Earth Syst. Sci., 22, 1325–1334, https://doi.org/10.5194/nhess-22-1325-2022, https://doi.org/10.5194/nhess-22-1325-2022, 2022
Short summary
Short summary
Monitoring soil moisture is important during droughts, but very few measurements are available. Consequently, land-surface models are essential tools for reproducing soil moisture dynamics. In this study, a hybrid approach allowed for regionalizing soil water content using a machine learning method. This approach proved to be efficient, compared to the use of soil property maps, to run a simple soil moisture accounting model, and therefore it can be applied in various regions.
Maria Francesca Caruso and Marco Marani
Nat. Hazards Earth Syst. Sci., 22, 1109–1128, https://doi.org/10.5194/nhess-22-1109-2022, https://doi.org/10.5194/nhess-22-1109-2022, 2022
Short summary
Short summary
We comparatively evaluate the predictive performance of traditional and new approaches to estimate the probability distributions of extreme coastal water levels. The metastatistical approach maximizes the use of observational information and provides reliable estimates of high quantiles with respect to traditional methods. Leveraging the increased estimation accuracy afforded by this approach, we investigate future changes in the frequency of extreme total water levels.
Shupeng Yue, Xiaodan Sheng, and Fengtian Yang
Nat. Hazards Earth Syst. Sci., 22, 995–1014, https://doi.org/10.5194/nhess-22-995-2022, https://doi.org/10.5194/nhess-22-995-2022, 2022
Short summary
Short summary
To develop drought assessment and early warning systems, it is necessary to explore the characteristics of drought and its propagation process. In this article, a generalized and efficient drought research framework is studied and verified. It includes the evaluation of the spatiotemporal evolution, the construction of the return period calculation model, and the quantitative analysis of the meteorological trigger conditions of drought based on an improved Bayesian network model.
Cited articles
Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial
formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010.
Bernhofen, M., Whyman, C., Trigg, M. A., Sleigh, P. A., Smith, A. M., Sampson, C. C., Yamazaki, D., Ward, P. J., Rudari, R., Pappenberger, F.,
Dottori, F., Salamon, P., and Winsemius, H. C.: A first collective validation
of global fluvial flood models for major floods in Nigeria and Mozambique,
Environ. Res. Lett., 13, 104007, https://doi.org/10.1088/1748-9326/aae014, 2018.
Beven, K., Cloke, H., Pappenberger, F., Lamb, R., and Hunter, N.: Hyperresolution information and hyperresolution ignorance in modelling the
hydrology of the land surface, Sci. China Earth Sci., 58, 25–35,
https://doi.org/10.1007/s11430-014-5003-4, 2015.
Biancamaria, S., Bates, P. D., Boone, A., and Mognard, N. M.: Large-scale
coupled hydrologic and hydraulic modelling of the Ob river in Siberia, J. Hydrol., 379, 136–150, https://doi.org/10.1016/j.jhydrol.2009.09.054, 2009.
Bierkens, M. F. P., Bell, V. A., Burek, P., Chaney, N., Condon, L. E., David, C. H., de Roo, A., Döll, P., Drost, N., Famiglietti, J. S., M., Gochis, D. J., Houser, P., Hut, R., Keune, J., Kollet, S., Maxwell, R. M., Reager, J. T., Samaniego, L., Sudicky, E., Sutanudjaja, E. H., van de Giesen, N., Winsemius, H., and Wood, E. F.: Hyper-resolution global hydrological modelling: what is next: “Everywhere and locally relevant,” Hydrol. Process., 29, 310–320, https://doi.org/10.1002/hyp.10391, 2015.
de Almeida, G. A. M. and Bates, P.: Applicability of the local inertial
approximation of the shallow water equations to flood modeling, Water Resour. Res., 49, 4833–4844, https://doi.org/10.1002/wrcr.20366, 2013.
Eilander, D. and Hoch, J.: DirkEilander/glofrim_v2.0-experiments: nhess
publication release, https://doi.org/10.5281/zenodo.3346803, 2019.
Felder, G., Zischg, A., and Weingartner, R.: The effect of coupling hydrologic and hydrodynamic models on probable maximum flood estimation, J. Hydrol., 550, 157–165, https://doi.org/10.1016/j.jhydrol.2017.04.052, 2017.
Fewtrell, T. J., Bates, P. D., Horritt, M. S., and Hunter, N. M.: Evaluating
the effect of scale in flood inundation modelling in urban environments,
Hydrol. Process., 22, 5107–5118, https://doi.org/10.1002/hyp.7148, 2008.
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D.,
Watanabe, S., Kim, H., and Kanae, S.: Global flood risk under climate change,
Nat. Clim. Change, 3, 816–821, https://doi.org/10.1038/nclimate1911, 2013.
Hoch, J. M. and Trigg, M. A.: Advancing global flood hazard simulations by improving comparability, benchmarking, and integration of global flood models, Environ. Res. Lett., 14, 034001, https://doi.org/10.1088/1748-9326/aaf3d3, 2019.
Hoch, J. M., Haag, A. V., van Dam, A., Winsemius, H. C., van Beek, L. P. H.,
and Bierkens, M. F. P.: Assessing the impact of hydrodynamics on large-scale
flood wave propagation – a case study for the Amazon Basin, Hydrol. Earth Syst. Sci., 21, 117–132, https://doi.org/10.5194/hess-21-117-2017, 2017a.
Hoch, J. M., Neal, J. C., Baart, F., van Beek, R., Winsemius, H. C., Bates,
P. D., and Bierkens, M. F. P.: GLOFRIM v1.0 – A globally applicable
computational framework for integrated hydrological–hydrodynamic modelling,
Geosci. Model Dev., 10, 3913–3929, https://doi.org/10.5194/gmd-10-3913-2017, 2017b.
Hoch, J. M., Van Beek, L. P. H., Winsemius, H. C., and Bierkens, M. F. P.:
Benchmarking flexible meshes and regular grids for large-scale fluvial
inundation modelling, Adv. Water Resour., 121, 350–360,
https://doi.org/10.1016/j.advwatres.2018.09.003, 2018.
Hoch, J. M., Eilander, D., Ikeuchi, H., and Baart, F.: openearth/glofrim: NHESS article release, https://doi.org/10.5281/zenodo.3364388, 2019.
Hunter, N. M., Bates, P. D., Horritt, M. S., and Wilson, M. D.: Simple
spatially-distributed models for predicting flood inundation: A review,
Geomorphology, 90, 208–225, https://doi.org/10.1016/j.geomorph.2006.10.021, 2007.
Ikeuchi, H., Hirabayashi, Y., Yamazaki, D., Kiguchi, M., Koirala, S.,Nagano, T., Kotera, A., and Kanae, S.: Modeling complex flow dynamics of fluvial floods exacerbated by sea level rise in the Ganges–Brahmaputra–Meghna Delta, Environ. Res. Lett., 10, 124011, https://doi.org/10.1088/1748-9326/10/12/124011, 2015.
Ikeuchi, H., Hirabayashi, Y., Yamazaki, D., Muis, S., Ward, P. J., Winsemius, H. C., Verlaan, M., and Kanae, S.: Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model: Model development and its application to 2007 Cyclone Sidr in Bangladesh, J. Adv. Modeling Earth Syst., 9, 1847–1862, https://doi.org/10.1002/2017MS000943, 2017.
Islam, A. S., Haque, A., and Bala, S. K.: Hydrologic characteristics of floods in Ganges–Brahmaputra–Meghna (GBM) delta, Nat. Hazards, 54, 797–811, https://doi.org/10.1007/s11069-010-9504-y, 2010.
Jongman, B., Ward, P. J., and Aerts, J. C. J. H.: Global exposure to river
and coastal flooding: Long term trends and changes, Global Environ. Change, 22, 823–835, https://doi.org/10.1016/j.gloenvcha.2012.07.004, 2012.
Kernkamp, H. W. J., Van Dam, A., Stelling, G. S., and de Goede, E. D.: Efficient scheme for the shallow water equations on unstructured grids with
application to the Continental Shelf, Ocean Dynam., 61, 1175–1188,
https://doi.org/10.1007/s10236-011-0423-6, 2011.
Kotera, A., Nagano, T., Hanittinan, P., and Koontanakulvong, S.: Assessing
the degree of flood damage to rice crops in the Chao Phraya delta, Thailand,
using MODIS satellite imaging, Paddy Water Environ., 14, 271–280, 2016.
Lian, Y., Chan, I.-C., Singh, J., Demissie, M., Knapp, V., and Xie, H.:
Coupling of hydrologic and hydraulic models for the Illinois River Basin,
J. Hydrol., 344, 210–222, https://doi.org/10.1016/j.jhydrol.2007.08.004, 2007.
Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H., and Ward, P. J.:
A global reanalysis of storm surges and extreme sea levels, Nat. Commun., 7, 11969, https://doi.org/10.1038/ncomms11969, 2016.
Neal, J., Schumann, G., and Bates, P.: A subgrid channel model for simulating
river hydraulics and floodplain inundation over large and data sparse areas:
Floodplain Inundation Over Large Areas, Water Resour. Res., 48, W11506, https://doi.org/10.1029/2012WR012514, 2012a.
Neal, J., Villanueva, I., Wright, N., Willis, T., Fewtrell, T., and Bates, P.: How much physical complexity is needed to model flood inundation?, Hydrol. Process., 26, 2264–2282, https://doi.org/10.1002/hyp.8339, 2012b.
Peckham, S. D., Hutton, E. W. H., and Norris, B.: A component-based approach
to integrated modeling in the geosciences: The design of CSDMS, Comput. Geosci., 53, 3–12, https://doi.org/10.1016/j.cageo.2012.04.002, 2013.
Schellekens, J., Van Verseveld, W., Euser, T., Winsemius, H. C., Thiange, C., Bouaziz, L., Tollenaar, D., and De Vries, S.: openstreams/wflow:
master-unstable, available at: https://github.com/openstreams/wflow,
last access: 9 August 2019.
Sutanudjaja, E. H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H. C.,
Drost, N., van der Ent, R. J., de Graaf, I. E. M., Hoch, J. M., de Jong, K.,
Karssenberg, D., López López, P., Peßenteiner, S., Schmitz, O.,
Straatsma, M. W., Vannametee, E., Wisser, D., and Bierkens, M. F. P.: PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model,
Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, 2018.
Syvitski, J. P. M., Hutton, E. H., Piper, M., Overeem, I., Kettner, A., and
Peckham, S. D.: Plug and play component modeling – the CSDMS 2.0 approach,
in: Proceedings of the 7th Intl. Congress on Env. Modelling and Software,
International Environmental Modelling and Software Society, San Diego, 2014.
Tessler, Z. D., Vörösmarty, C. J., Grossberg, M., Gladkova, I.,
Aizenman, H., Syvitski, J. P. M., and Foufoula-Georgiou, E.: Profiling risk
and sustainability in coastal deltas of the world, Science, 349, 638–643, 2015.
Towner, J., Cloke, H. L., Zsoter, E., Flamig, Z., Hoch, J. M., Bazo, J., Coughlan de Perez, E., and Stephens, E. M.: Assessing the performance of global hydrological models for capturing peak river flows in the Amazon basin, Hydrol. Earth Syst. Sci., 23, 3057–3080, https://doi.org/10.5194/hess-23-3057-2019, 2019.
Trigg, M. A., Birch, C. E., Neal, J. C., Bates, P. D., Smith, A., Sampson, C. C., Yamazaki, D., Hirabayashi, Y., Pappenberger, F., Dutra, E., Ward, P. J., Winsemius, H. C., Salamon, P., Dottori, F., Rudari, R., Kappes, M. S., Simpson, A. L., Hadzilacos, G., and Fewtrell, T. J.: The credibility challenge for global fluvial flood risk analysis, Environ. Res. Lett., 11, 094014, https://doi.org/10.1088/1748-9326/11/9/094014, 2016.
Visser, H., Bouwman, A., Ligtvoet, W., and Petersen, A.: A statistical study of weather-related disasters: past, present and future, PBL Netherlands
Environmental Assessment Agency, the Hague/Bilthoven, the Netherlands, 2012.
Ward, P. J., Jongman, B., Weiland, F. S., Bouwman, A., van Beek, R., Bierkens, M. F. P., Ligtvoet, W., and Winsemius, H. C.: Assessing flood risk
at the global scale: model setup, results, and sensitivity, Environ. Res. Lett., 8, 044019, https://doi.org/10.1088/1748-9326/8/4/044019, 2013.
Ward, P. J., Jongman, B., Salamon, P., Simpson, A., Bates, P., De Groeve, T., Muis, S., de Perez, E. C., Rudari, R., Trigg, M. A., and Winsemius, H. C.: Usefulness and limitations of global flood risk models, Nat. Clim. Change, 5, 712–715, https://doi.org/10.1038/nclimate2742, 2015.
Ward, P. J., Couasnon, A., Eilander, D., Haigh, I. D., Hendry, A., Muis, S.,
Veldkamp, T. I. E., Winsemius, H. C., and Wahl, T.: Dependence between high
sea-level and high river discharge increases flood hazard in global deltas
and estuaries, Environ. Res. Lett., 13, 084012, https://doi.org/10.1088/1748-9326/aad400, 2018.
Winsemius, H. C., Aerts, J. C. J. H., van Beek, L. P. H., Bierkens, M. F. P., Bouwman, A., Jongman, B., Kwadijk, J. C. J., Ligtvoet, W., Lucas, P. L.,
van Vuuren, D. P., and Ward, P. J.: Global drivers of future river flood risk, Nat. Clim. Change, 6, 381–385, https://doi.org/10.1038/nclimate2893, 2016.
Yamazaki, D., Oki, T., and Kanae, S.: Deriving a global river network map and
its sub-grid topographic characteristics from a fine-resolution flow
direction map, Hydrol. Earth Syst. Sci., 13, 2241–2251,
https://doi.org/10.5194/hess-13-2241-2009, 2009.
Yamazaki, D., Kanae, S., Kim, H., and Oki, T.: A physically based description
of floodplain inundation dynamics in a global river routing model, Water Resour. Res., 47, W04501, https://doi.org/10.1029/2010WR009726, 2011.
Yamazaki, D., Baugh, C. A., Bates, P. D., Kanae, S., Alsdorf, D. E., and Oki,
T.: Adjustment of a spaceborne DEM for use in floodplain hydrodynamic modeling, J. Hydrol., 436–437, 81–91, https://doi.org/10.1016/j.jhydrol.2012.02.045, 2012.
Yamazaki, D., de Almeida, G. A. M., and Bates, P. D.: Improving computational
efficiency in global river models by implementing the local inertial flow
equation and a vector-based river network map: Speeding Up Global River Model Simulations, Water Resour. Res., 49, 7221–7235, https://doi.org/10.1002/wrcr.20552, 2013.
Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O'Loughlin, F., Neal, J. C., Sampson, C. C., Kanae, S., and Bates, P. D.: A high-accuracy map
of global terrain elevations: Accurate Global Terrain Elevation map, Geophys. Res. Lett., 44, 5844–5853, https://doi.org/10.1002/2017GL072874, 2017.
Zambrano-Bigiarini, M.: hydroGOF: Goodness-of-fit functions for comparison
of simulated and observed hydrological time series, available at: https://github.com/hzambran/hydroGOF (last access: 9 August 2019), 2017.
Zhao, F., Veldkamp, T. I. E., Frieler, K., Schewe, J., Ostberg, S., Willner,
S., Schauberger, B., Gosling, S. N., Schmied, H. M., Portmann, F. T., Leng, G., Huang, M., Liu, X., Tang, Q., Hanasaki, N., Biemans, H., Gerten, D.,
Satoh, Y., Pokhrel, Y., Stacke, T., Ciais, P., Chang, J., Ducharne, A.,
Guimberteau, M., Wada, Y., Kim, H., and Yamazaki, D.: The critical role of
the routing scheme in simulating peak river discharge in global hydrological
models, Environ. Res. Lett., 12, 075003, https://doi.org/10.1088/1748-9326/aa7250, 2017.
Short summary
Flood events are often complex in their origin and dynamics. The choice of computer model to simulate can hence determine which level of complexity can be represented. We here compare different models varying in complexity (hydrology with routing, 1-D routing, 1D/2D hydrodynamics) and assess how model choice influences the accuracy of results. This was achieved by using GLOFRIM, a model coupling framework. Results show that accuracy depends on the model choice and the output variable considered.
Flood events are often complex in their origin and dynamics. The choice of computer model to...
Altmetrics
Final-revised paper
Preprint