Articles | Volume 19, issue 5
https://doi.org/10.5194/nhess-19-1041-2019
https://doi.org/10.5194/nhess-19-1041-2019
Research article
 | 
16 May 2019
Research article |  | 16 May 2019

Stochastic generation of spatially coherent river discharge peaks for continental event-based flood risk assessment

Dirk Diederen, Ye Liu, Ben Gouldby, Ferdinand Diermanse, and Sergiy Vorogushyn

Related authors

The open boundary equation
D. Diederen, H. H. G. Savenije, and M. Toffolon
Ocean Sci. Discuss., https://doi.org/10.5194/osd-12-925-2015,https://doi.org/10.5194/osd-12-925-2015, 2015
Revised manuscript not accepted

Related subject area

Hydrological Hazards
Brief communication: Stay local or go global? On the construction of plausible counterfactual scenarios to assess flash flood hazards
Paul Voit and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 24, 4609–4615, https://doi.org/10.5194/nhess-24-4609-2024,https://doi.org/10.5194/nhess-24-4609-2024, 2024
Short summary
Integrating susceptibility maps of multiple hazards and building exposure distribution: a case study of wildfires and floods for the province of Quang Nam, Vietnam
Chinh Luu, Giuseppe Forino, Lynda Yorke, Hang Ha, Quynh Duy Bui, Hanh Hong Tran, Dinh Quoc Nguyen, Hieu Cong Duong, and Matthieu Kervyn
Nat. Hazards Earth Syst. Sci., 24, 4385–4408, https://doi.org/10.5194/nhess-24-4385-2024,https://doi.org/10.5194/nhess-24-4385-2024, 2024
Short summary
Tangible and intangible ex post assessment of flood-induced damage to cultural heritage
Claudia De Lucia, Michele Amaddii, and Chiara Arrighi
Nat. Hazards Earth Syst. Sci., 24, 4317–4339, https://doi.org/10.5194/nhess-24-4317-2024,https://doi.org/10.5194/nhess-24-4317-2024, 2024
Short summary
A multivariate statistical framework for mixed storm types in compound flood analysis
Pravin Maduwantha, Thomas Wahl, Sara Santamaria-Aguilar, Robert Jane, James F. Booth, Hanbeen Kim, and Gabriele Villarini
Nat. Hazards Earth Syst. Sci., 24, 4091–4107, https://doi.org/10.5194/nhess-24-4091-2024,https://doi.org/10.5194/nhess-24-4091-2024, 2024
Short summary
Invited perspectives: safeguarding the usability and credibility of flood hazard and risk assessments
Bruno Merz, Günter Blöschl, Robert Jüpner, Heidi Kreibich, Kai Schröter, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci., 24, 4015–4030, https://doi.org/10.5194/nhess-24-4015-2024,https://doi.org/10.5194/nhess-24-4015-2024, 2024
Short summary

Cited articles

Alfieri, L., Salamon, P., Bianchi, A., Neal, J., Bates, P., and Feyen, L.: Advances in pan-European flood hazard mapping, Hydrol. Process., 28, 4067–4077, 2014. a
Borgomeo, E., Farmer, C. L., and Hall, J. W.: Numerical rivers: A synthetic streamflow generator for water resources vulnerability assessments, Water Resour. Res., 51, 5382–5405, 2015. a
Boughton, W. and Droop, O.: Continuous simulation for design flood estimation-a review, Environ. Modell. Softw., 18, 309–318, 2003. a
Cameron, D., Beven, K., Tawn, J., Blazkova, S., and Naden, P.: Flood frequency estimation by continuous simulation for a gauged upland catchment (with uncertainty), J. Hydrol., 219, 169–187, https://doi.org/10.1016/S0022-1694(99)00057-8, 1999. a
Coles, S., Bawa, J., Trenner, L., and Dorazio, P.: An introduction to statistical modeling of extreme values, vol. 208, Springer, London, 2001. a
Download
Short summary
Floods affect many communities and cause a large amount of damage worldwide. Since we choose to live in natural flood plains and are unable to prevent all floods, a system of insurance and reinsurance was set up. For these institutes to not fail, estimates are required of the frequency of large-scale flood events. We explore a new method to obtain a large catalogue of synthetic, spatially coherent, large-scale river discharge events, using a recent (gridded) European discharge data set.
Altmetrics
Final-revised paper
Preprint