Articles | Volume 17, issue 4
https://doi.org/10.5194/nhess-17-563-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/nhess-17-563-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Numerical rainfall simulation with different spatial and temporal evenness by using a WRF multiphysics ensemble
Jiyang Tian
State Key Laboratory of Simulation and Regulation of Water Cycle in
River Basin, China Institute of Water Resources and Hydropower Research,
Beijing, 100038, China
State Key Laboratory of Simulation and Regulation of Water Cycle in
River Basin, China Institute of Water Resources and Hydropower Research,
Beijing, 100038, China
State Key Laboratory of Hydrology-Water Resource and Hydraulic
Engineering, Hohai University, Nanjing, 210098, China
Denghua Yan
State Key Laboratory of Simulation and Regulation of Water Cycle in
River Basin, China Institute of Water Resources and Hydropower Research,
Beijing, 100038, China
Chuanzhe Li
State Key Laboratory of Simulation and Regulation of Water Cycle in
River Basin, China Institute of Water Resources and Hydropower Research,
Beijing, 100038, China
Fuliang Yu
State Key Laboratory of Simulation and Regulation of Water Cycle in
River Basin, China Institute of Water Resources and Hydropower Research,
Beijing, 100038, China
Related authors
Jiyang Tian, Ronghua Liu, Liuqian Ding, Liang Guo, and Bingyu Zhang
Nat. Hazards Earth Syst. Sci., 21, 723–742, https://doi.org/10.5194/nhess-21-723-2021, https://doi.org/10.5194/nhess-21-723-2021, 2021
Short summary
Short summary
A typhoon always comes with heavy rainfall which leads to great loss. The aim of this study is to explore the reasonable use of Doppler radar data assimilation to correct the initial and lateral boundary conditions of the numerical weather prediction (NWP) systems for typhoon rainstorm forecasts at catchment scale. The results show that assimilating radial velocity at a time interval of 1 h can significantly improve the rainfall simulations and outperform the other assimilation modes.
Jiyang Tian, Jia Liu, Yang Wang, Wei Wang, Chuanzhe Li, and Chunqi Hu
Hydrol. Earth Syst. Sci., 24, 3933–3949, https://doi.org/10.5194/hess-24-3933-2020, https://doi.org/10.5194/hess-24-3933-2020, 2020
Short summary
Short summary
The aim of this study is to explore the appropriate coupling scale of the coupled atmospheric–hydrologic modeling system, which is established by the Weather Research and Forecasting (WRF) model and the gridded Hebei model with different sizes. The results show that the flood simulation results may not always be improved with higher-dimension precision and a more complicated system, and the grid size selection has a strong relationship with the rainfall evenness.
Jia Liu, Jiyang Tian, Denghua Yan, Chuanzhe Li, Fuliang Yu, and Feifei Shen
Hydrol. Earth Syst. Sci., 22, 4329–4348, https://doi.org/10.5194/hess-22-4329-2018, https://doi.org/10.5194/hess-22-4329-2018, 2018
Short summary
Short summary
Both radar reflectivity and GTS data are good choices for assimilation in improving high-resolution rainfall of the NWP systems, which always fails in providing satisfactory rainfall products for hydrological use. Simultaneously assimilating GTS and radar data always performs better than assimilating radar data alone. The assimilation efficiency of the GTS data is higher than both radar reflectivity and radial velocity considering the number of data assimilated and its effect.
Keke Zhao, Denghua Yan, Tianling Qin, Chenhao Li, Dingzhi Peng, and Yifan Song
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-291, https://doi.org/10.5194/essd-2025-291, 2025
Preprint under review for ESSD
Short summary
Short summary
This study presents a high-quality daily weather dataset for all of China from 1961 to 2021, including air temperature, atmospheric pressure, relative humidity, and sunshine duration. It was produced using a reconstruction framework that combines thousands of ground observations with landform and elevation data. The dataset provides consistent weather information even in mountainous regions and supports studies on land surface and water processes, climate change, and environmental impacts.
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022, https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Short summary
Spatial quantification of oceanic moisture contribution to the precipitation over the Tibetan Plateau (TP) contributes to the reliable assessments of regional water resources and the interpretation of paleo archives in the region. Based on atmospheric reanalysis datasets and numerical moisture tracking, this work reveals the previously underestimated oceanic moisture contributions brought by the westerlies in winter and the overestimated moisture contributions from the Indian Ocean in summer.
Baisha Weng, Zhaoyu Dong, Yuheng Yang, Denghua Yan, Mengyu Li, and Yuhang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2022-1290, https://doi.org/10.5194/egusphere-2022-1290, 2022
Preprint archived
Short summary
Short summary
The study selected a structural equation model to construct the turnover rate of amino sugars with soil physicochemical properties and extracellular enzymes under the warming and increased precipitation scenarios. The results of this study answer the mechanism of action of warming and precipitation on the effect of soil amino sugars which will play an important scientific and technical support role in the development of plateau agriculture and carbon and nitrogen cycles.
Tongtiegang Zhao, Haoling Chen, Yu Tian, Denghua Yan, Weixin Xu, Huayang Cai, Jiabiao Wang, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 26, 4233–4249, https://doi.org/10.5194/hess-26-4233-2022, https://doi.org/10.5194/hess-26-4233-2022, 2022
Short summary
Short summary
This paper develops a novel set operations of coefficients of determination (SOCD) method to explicitly quantify the overlapping and differing information for GCM forecasts and ENSO teleconnection. Specifically, the intersection operation of the coefficient of determination derives the overlapping information for GCM forecasts and the Niño3.4 index, and then the difference operation determines the differing information in GCM forecasts (Niño3.4 index) from the Niño3.4 index (GCM forecasts).
Ying Li, Chenghao Wang, Hui Peng, Shangbin Xiao, and Denghua Yan
Hydrol. Earth Syst. Sci., 25, 4759–4772, https://doi.org/10.5194/hess-25-4759-2021, https://doi.org/10.5194/hess-25-4759-2021, 2021
Short summary
Short summary
Precipitation change in the Three Gorges Reservoir Region (TGRR) plays a critical role in the operation and regulation of the Three Gorges Dam and the protection of residents and properties. We investigated the long-term contribution of moisture sources to precipitation changes in this region with an atmospheric moisture tracking model. We found that southwestern source regions (especially the southeastern tip of the Tibetan Plateau) are the key regions that control TGRR precipitation changes.
Jiyang Tian, Ronghua Liu, Liuqian Ding, Liang Guo, and Bingyu Zhang
Nat. Hazards Earth Syst. Sci., 21, 723–742, https://doi.org/10.5194/nhess-21-723-2021, https://doi.org/10.5194/nhess-21-723-2021, 2021
Short summary
Short summary
A typhoon always comes with heavy rainfall which leads to great loss. The aim of this study is to explore the reasonable use of Doppler radar data assimilation to correct the initial and lateral boundary conditions of the numerical weather prediction (NWP) systems for typhoon rainstorm forecasts at catchment scale. The results show that assimilating radial velocity at a time interval of 1 h can significantly improve the rainfall simulations and outperform the other assimilation modes.
Jiyang Tian, Jia Liu, Yang Wang, Wei Wang, Chuanzhe Li, and Chunqi Hu
Hydrol. Earth Syst. Sci., 24, 3933–3949, https://doi.org/10.5194/hess-24-3933-2020, https://doi.org/10.5194/hess-24-3933-2020, 2020
Short summary
Short summary
The aim of this study is to explore the appropriate coupling scale of the coupled atmospheric–hydrologic modeling system, which is established by the Weather Research and Forecasting (WRF) model and the gridded Hebei model with different sizes. The results show that the flood simulation results may not always be improved with higher-dimension precision and a more complicated system, and the grid size selection has a strong relationship with the rainfall evenness.
Denghua Yan, Baisha Weng, Tianling Qin, Hao Wang, Xiangnan Li, Yuheng Yang, Kun Wang, Zhenyu Lv, Jianwei Wang, Meng Li, Shan He, Fang Liu, Shanshan Liu, Wuxia Bi, Ting Xu, Xiaoqing Shi, Zihao Man, Congwu Sun, Meiyu Liu, Mengke Wang, Yinghou Huang, Haoyu Long, Yongzhen Niu, Batsuren Dorjsuren, Mohammed Gedefaw, Abel Girma, and Asaminew Abiyu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-224, https://doi.org/10.5194/essd-2019-224, 2020
Publication in ESSD not foreseen
Short summary
Short summary
This paper provides a complete data set of global water withdrawal. There is almost no continuous long series of water withdrawal data globally. Moreover, most of the data released by international organizations is based on national scale and lacks finer regional data. Therefore, appropriate methods are needed to modify the data. This dataset has important practical significance in promoting the harmonious and sustainable development of economy and resources of the world.
Wuxia Bi, Baisha Weng, Denghua Yan, Meng Li, Zhilei Yu, Lin Wang, and Hao Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-185, https://doi.org/10.5194/hess-2019-185, 2019
Preprint withdrawn
Short summary
Short summary
This study focuses on solving the
land useand
water usecompetitions between lake-marsh wetland system and its surrounding socio-economic system, also inside the system. An optimal lake-marsh pattern determination method was proposed on considering the ecological services values and water shortage amount. We explored the optimal lake-marsh pattern in both annual and monthly scales. This study could provide references for the ecological spatial management and ecological water control.
Jia Liu, Jiyang Tian, Denghua Yan, Chuanzhe Li, Fuliang Yu, and Feifei Shen
Hydrol. Earth Syst. Sci., 22, 4329–4348, https://doi.org/10.5194/hess-22-4329-2018, https://doi.org/10.5194/hess-22-4329-2018, 2018
Short summary
Short summary
Both radar reflectivity and GTS data are good choices for assimilation in improving high-resolution rainfall of the NWP systems, which always fails in providing satisfactory rainfall products for hydrological use. Simultaneously assimilating GTS and radar data always performs better than assimilating radar data alone. The assimilation efficiency of the GTS data is higher than both radar reflectivity and radial velocity considering the number of data assimilated and its effect.
Qingtai Qiu, Jia Liu, Chuanzhe Li, Xinzhe Yu, and Yang Wang
Proc. IAHS, 379, 249–253, https://doi.org/10.5194/piahs-379-249-2018, https://doi.org/10.5194/piahs-379-249-2018, 2018
B. S. Weng, D. H. Yan, H. Wang, J. H. Liu, Z. Y. Yang, T. L. Qin, and J. Yin
Nat. Hazards Earth Syst. Sci., 15, 1889–1906, https://doi.org/10.5194/nhess-15-1889-2015, https://doi.org/10.5194/nhess-15-1889-2015, 2015
B. B. Huang, D. H. Yan, H. Wang, B. F. Cheng, and X. H. Cui
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-14463-2013, https://doi.org/10.5194/hessd-10-14463-2013, 2013
Manuscript not accepted for further review
J. Liu and D. Han
Hydrol. Earth Syst. Sci., 17, 3639–3659, https://doi.org/10.5194/hess-17-3639-2013, https://doi.org/10.5194/hess-17-3639-2013, 2013
J. Liu, M. Bray, and D. Han
Hydrol. Earth Syst. Sci., 17, 3095–3110, https://doi.org/10.5194/hess-17-3095-2013, https://doi.org/10.5194/hess-17-3095-2013, 2013
D. H. Yan, D. Wu, R. Huang, L. N. Wang, and G. Y. Yang
Hydrol. Earth Syst. Sci., 17, 2859–2871, https://doi.org/10.5194/hess-17-2859-2013, https://doi.org/10.5194/hess-17-2859-2013, 2013
Related subject area
Hydrological Hazards
Drought propagation in high-latitude catchments: insights from a 60-year analysis using standardized indices
Brief communication: Hydrological and hydraulic investigation of the extreme September 2024 flood on the Lamone River in Emilia-Romagna, Italy
Improving pluvial flood simulations with a multi-source digital elevation model super-resolution method
It could have been much worse: spatial counterfactuals of the July 2021 flood in the Ahr Valley, Germany
Rapid high-resolution impact-based flood early warning is possible with RIM2D: a showcase for the 2023 pluvial flood in Braunschweig
The 2018–2023 drought in Berlin: impacts and analysis of the perspective of water resources management
Recent large-inland-lake outbursts on the Tibetan Plateau: processes, causes, and mechanisms
Modelling urban stormwater drainage overflows for assessing flood hazards: application to the urban area of Dakar (Senegal)
Dynamics and impacts of monsoon-induced geological hazards: a 2022 flood study along the Swat River in Pakistan
Monte Carlo-based sensitivity analysis of the RIM2D hydrodynamic model for the 2021 flood event in western Germany
Climate change impacts on floods in West Africa: New insight from two large-scale hydrological models
Mind the gap: misalignment between drought monitoring and community realities
Forecasting agricultural drought: the Australian Agriculture Drought Indicators
Post-wildfire sediment source and transport modeling, empirical observations, and applied mitigation: an Arizona, USA, case study
Causes of the exceptionally high number of fatalities in the Ahr valley, Germany, during the 2021 flood
Groundwater recharge in Brandenburg is declining – but why?
Large-scale flood risk assessment in data-scarce areas: an application to Central Asia
Multi-scale hydraulic graph neural networks for flood modelling
The role of antecedent conditions in translating precipitation events into extreme floods at the catchment scale and in a large-basin context
Brief communication: Stay local or go global? On the construction of plausible counterfactual scenarios to assess flash flood hazards
Integrating susceptibility maps of multiple hazards and building exposure distribution: a case study of wildfires and floods for the province of Quang Nam, Vietnam
Tangible and intangible ex post assessment of flood-induced damage to cultural heritage
A multivariate statistical framework for mixed storm types in compound flood analysis
Invited perspectives: safeguarding the usability and credibility of flood hazard and risk assessments
Influence of building collapse on pluvial and fluvial flood inundation of metro stations in central Shanghai
Impact of drought hazards on flow regimes in anthropogenically impacted streams: an isotopic perspective on climate stress
The effect of wildfires on flood risk: a multi-hazard flood risk approach for the Ebro River basin, Spain
Modelling hazards impacting the flow regime in the Hranice Karst due to the proposed Skalička Dam
Spatiotemporal variability of flash floods and their human impacts in the Czech Republic during the 2001–2023 period
Risk of compound flooding substantially increases in the future Mekong River delta
Transferability of machine-learning-based modeling frameworks across flood events for hindcasting maximum river water depths in coastal watersheds
Floods in the Pyrenees: a global view through a regional database
Algorithmically detected rain-on-snow flood events in different climate datasets: a case study of the Susquehanna River basin
Disentangling Atmospheric, Hydrological, and Coupling Uncertainties in Compound Flood Modeling within a Coupled Earth System Model
Review article: Drought as a continuum – memory effects in interlinked hydrological, ecological, and social systems
Coupling WRF with HEC-HMS and WRF-Hydro for flood forecasting in typical mountainous catchments of northern China
Temporal persistence of postfire flood hazards under present and future climate conditions in southern Arizona, USA
Evaluating Yangtze River Delta Urban Agglomeration flood risk using hybrid method of AutoML and AHP
Precursors and pathways: dynamically informed extreme event forecasting demonstrated on the historic Emilia-Romagna 2023 flood
Demonstrating the use of UNSEEN climate data for hydrological applications: case studies for extreme floods and droughts in England
Exploring the use of seasonal forecasts to adapt flood insurance premiums
Are 2D shallow-water solvers fast enough for early flood warning? A comparative assessment on the 2021 Ahr valley flood event
Water depth estimate and flood extent enhancement for satellite-based inundation maps
Hail events in Germany, rare or frequent natural hazards?
Probabilistic flood inundation mapping through copula Bayesian multi-modeling of precipitation products
Flood occurrence and impact models for socioeconomic applications over Canada and the United States
Model-based assessment of climate change impact on inland flood risk at the German North Sea coast caused by compounding storm tide and precipitation events
An improved dynamic bidirectional coupled hydrologic–hydrodynamic model for efficient flood inundation prediction
Quantifying hazard resilience by modeling infrastructure recovery as a resource-constrained project scheduling problem
Hydrometeorological controls of and social response to the 22 October 2019 catastrophic flash flood in Catalonia, north-eastern Spain
Claudia Teutschbein, Thomas Grabs, Markus Giese, Andrijana Todorović, and Roland Barthel
Nat. Hazards Earth Syst. Sci., 25, 2541–2564, https://doi.org/10.5194/nhess-25-2541-2025, https://doi.org/10.5194/nhess-25-2541-2025, 2025
Short summary
Short summary
This study is an exploration of how droughts develop and spread in high-latitude regions, focusing on the unique conditions found in areas like Scandinavia. It reveals that droughts affect soil, rivers, and groundwater differently, depending on such factors as land cover, water availability, and soil properties. The findings highlight the importance of tailored water management strategies to protect resources and ecosystems in these regions, especially as climate change continues to affect weather patterns.
Alessia Ferrari, Giulia Passadore, Renato Vacondio, Luca Carniello, Mattia Pivato, Elena Crestani, Francesco Carraro, Francesca Aureli, Sara Carta, Francesca Stumpo, and Paolo Mignosa
Nat. Hazards Earth Syst. Sci., 25, 2473–2479, https://doi.org/10.5194/nhess-25-2473-2025, https://doi.org/10.5194/nhess-25-2473-2025, 2025
Short summary
Short summary
Between 17 and 20 September 2024, the Lamone River basin in northern Italy was hit by extreme precipitation. This study adopts the hydrological model Rhyme and the hydrodynamic model PARFLOOD to simulate the hydrological processes in the watershed and the levee-breach-induced inundation affecting the village of Traversara. The close match between the resulting flooded areas and the observed ones shows the capability of these numerical models to support the preparedness for at-risk populations.
Yue Zhu, Paolo Burlando, Puay Yok Tan, Christian Geiß, and Simone Fatichi
Nat. Hazards Earth Syst. Sci., 25, 2271–2286, https://doi.org/10.5194/nhess-25-2271-2025, https://doi.org/10.5194/nhess-25-2271-2025, 2025
Short summary
Short summary
This study addresses the challenge of accurately predicting floods in regions with limited terrain data. By utilising a deep learning model, we developed a method that improves the resolution of digital elevation data by fusing low-resolution elevation data with high-resolution satellite imagery. This approach not only substantially enhances flood prediction accuracy, but also holds potential for broader applications in simulating natural hazards that require terrain information.
Sergiy Vorogushyn, Li Han, Heiko Apel, Viet Dung Nguyen, Björn Guse, Xiaoxiang Guan, Oldrich Rakovec, Husain Najafi, Luis Samaniego, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 25, 2007–2029, https://doi.org/10.5194/nhess-25-2007-2025, https://doi.org/10.5194/nhess-25-2007-2025, 2025
Short summary
Short summary
The July 2021 flood in central Europe was one of the deadliest floods in Europe in the recent decades and the most expensive flood in Germany. In this paper, we show that the hydrological impact of this event in the Ahr valley could have been even worse if the rainfall footprint trajectory had been only slightly different. The presented methodology of spatial counterfactuals generates plausible unprecedented events and helps to better prepare for future extreme floods.
Shahin Khosh Bin Ghomash, Heiko Apel, Kai Schröter, and Max Steinhausen
Nat. Hazards Earth Syst. Sci., 25, 1737–1749, https://doi.org/10.5194/nhess-25-1737-2025, https://doi.org/10.5194/nhess-25-1737-2025, 2025
Short summary
Short summary
This work introduces RIM2D (Rapid Inundation Model 2D), a hydrodynamic model for precise and rapid flood predictions that is ideal for early warning systems. We demonstrate RIM2D's ability to deliver detailed and localized flood forecasts using the June 2023 flood in Braunschweig, Germany, as a case study. This research highlights the readiness of RIM2D and the required hardware for integration into operational flood warning and impact-based forecasting systems.
Ina Pohle, Sarah Zeilfelder, Johannes Birner, and Benjamin Creutzfeldt
Nat. Hazards Earth Syst. Sci., 25, 1293–1313, https://doi.org/10.5194/nhess-25-1293-2025, https://doi.org/10.5194/nhess-25-1293-2025, 2025
Short summary
Short summary
Climate change, the lignite mining phase-out and structural changes challenge water resources management of the German capital Berlin. Reduced water availability and rising demand are creating latent water quality problems. The 2018–2023 drought uniquely impacted temperature, precipitation, groundwater and surface water. Analysing the impacts of the 2018–2023 drought helps to address water-related challenges and implement effective measures in Berlin and its surrounding areas.
Fenglin Xu, Yong Liu, Guoqing Zhang, Ping Zhao, R. Iestyn Woolway, Yani Zhu, Jianting Ju, Tao Zhou, Xue Wang, and Wenfeng Chen
Nat. Hazards Earth Syst. Sci., 25, 1187–1206, https://doi.org/10.5194/nhess-25-1187-2025, https://doi.org/10.5194/nhess-25-1187-2025, 2025
Short summary
Short summary
Glacial lake outbursts have been widely studied, but large-inland-lake outbursts have received less attention. Recently, with the rapid expansion of inland lakes, signs of potential outbursts have increased. However, their processes, causes, and mechanisms are still not well understood. Here, the outburst processes of two inland lakes were investigated using a combination of field surveys, remote sensing mapping, and hydrodynamic modeling. Their causes and mechanisms were also investigated.
Laurent Pascal Malang Diémé, Christophe Bouvier, Ansoumana Bodian, and Alpha Sidibé
Nat. Hazards Earth Syst. Sci., 25, 1095–1112, https://doi.org/10.5194/nhess-25-1095-2025, https://doi.org/10.5194/nhess-25-1095-2025, 2025
Short summary
Short summary
We propose a decision support tool that detect the occurrence of flooding by drainage overflow, with sufficiently short calculation times. The simulations are based on a drainage topology on 5 m grids, incorporating changes to surface flows induced by urbanization. The method can be used for flood mapping in project mode and in real time. It applies to the present situation as well as to any scenario involving climate change or urban growth.
Nazir Ahmed Bazai, Mehtab Alam, Peng Cui, Wang Hao, Adil Poshad Khan, Muhammad Waseem, Yao Shunyu, Muhammad Ramzan, Li Wanhong, and Tashfain Ahmed
Nat. Hazards Earth Syst. Sci., 25, 1071–1093, https://doi.org/10.5194/nhess-25-1071-2025, https://doi.org/10.5194/nhess-25-1071-2025, 2025
Short summary
Short summary
The 2022 monsoon in Pakistan's Swat River basin brought record rainfall, exceeding averages by 7–8%, triggering catastrophic debris flows and floods. Key factors include extreme rainfall, deforestation, and steep slopes. Fieldwork, remote sensing, and simulations highlight land degradation's role in intensifying floods. Recommendations include reforestation, early warning systems, and land use reforms to protect communities and reduce future risks
Shahin Khosh Bin Ghomash, Patricio Yeste, Heiko Apel, and Viet Dung Nguyen
Nat. Hazards Earth Syst. Sci., 25, 975–990, https://doi.org/10.5194/nhess-25-975-2025, https://doi.org/10.5194/nhess-25-975-2025, 2025
Short summary
Short summary
Hydrodynamic models are vital for predicting floods, like those in Germany's Ahr region in July 2021. We refine the RIM2D model for the Ahr region, analyzing the impact of various factors using Monte Carlo simulations. Accurate parameter assignment is crucial, with channel roughness and resolution playing key roles. Coarser resolutions are suitable for flood extent predictions, aiding early-warning systems. Our work provides guidelines for optimizing hydrodynamic models in the Ahr region.
Serigne Bassirou Diop, Job Ekolu, Yves Tramblay, Bastien Dieppois, Stefania Grimaldi, Ansoumana Bodian, Juliette Blanchet, Ponnambalam Rameshwaran, Peter Salamon, and Benjamin Sultan
EGUsphere, https://doi.org/10.5194/egusphere-2025-130, https://doi.org/10.5194/egusphere-2025-130, 2025
Short summary
Short summary
West Africa is very vulnerable to rivers floods. Current flood hazards are poorly understood due to limited data. This study is filling this knowledge gap using recent databases and two regional hydrological models to analyze changes in flood risk under two climate scenarios. Results show that most areas will see more frequent and severe floods, with some increasing by over 45 %. These findings stress the urgent need for climate-resilient strategies to protect communities and infrastructure.
Sarra Kchouk, Louise Cavalcante, Lieke A. Melsen, David W. Walker, Germano Ribeiro Neto, Rubens Gondim, Wouter J. Smolenaars, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 25, 893–912, https://doi.org/10.5194/nhess-25-893-2025, https://doi.org/10.5194/nhess-25-893-2025, 2025
Short summary
Short summary
Droughts impact water and people, yet monitoring often overlooks impacts on people. In northeastern Brazil, we compare official data to local experiences, finding data mismatches and blind spots. Mismatches occur due to the data's broad scope missing finer details. Blind spots arise from ignoring diverse community responses and vulnerabilities to droughts. We suggest enhanced monitoring by technical extension officers for both severe and mild droughts.
Andrew Schepen, Andrew Bolt, Dorine Bruget, John Carter, Donald Gaydon, Mihir Gupta, Zvi Hochman, Neal Hughes, Chris Sharman, Peter Tan, and Peter Taylor
EGUsphere, https://doi.org/10.5194/egusphere-2024-4129, https://doi.org/10.5194/egusphere-2024-4129, 2025
Short summary
Short summary
The success of agricultural enterprises is affected by climate variability and other important factors like soil conditions and market prices. We have developed an agricultural drought forecasting system to help drought analysts and policymakers more accurately identify communities that are enduring financial stress. By coupling climate forecasts and agricultural models, we can skillfully predict crop yields and farm profits for the coming seasons, which will support proactive responses.
Edward R. Schenk, Alex Wood, Allen Haden, Gabriel Baca, Jake Fleishman, and Joe Loverich
Nat. Hazards Earth Syst. Sci., 25, 727–745, https://doi.org/10.5194/nhess-25-727-2025, https://doi.org/10.5194/nhess-25-727-2025, 2025
Short summary
Short summary
Post-wildfire flooding and debris are dangerous and damaging. This study used three different sediment models to predict post-wildfire sediment sources and transport amounts downstream of the 2019 Museum Fire in northern Arizona, USA. The predictions were compared with real-world measurements of sediment that was cleaned out of the city of Flagstaff after four large floods in 2021. Results provide avenues for continued model refinement and an example of potential mitigation strategies.
Belinda Rhein and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 581–589, https://doi.org/10.5194/nhess-25-581-2025, https://doi.org/10.5194/nhess-25-581-2025, 2025
Short summary
Short summary
In July 2021, flooding killed 190 people in Germany, 134 of them in the Ahr valley, making it the deadliest flood in recent German history. The flash flood was extreme in terms of water levels, flow velocities and flood extent, and early warning and evacuation were inadequate. Many died on the ground floor or in the street, with older and impaired individuals especially vulnerable. Clear warnings should urge people to seek safety rather than save belongings, and timely evacuations are essential.
Till Francke and Maik Heistermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-222, https://doi.org/10.5194/egusphere-2025-222, 2025
Short summary
Short summary
Brandenburg is among the driest federal states in Germany. The low ground water recharge (GWR) is fundamental to both water supply and the support of natural ecosystems. In this study, we show that the decline of observed discharge and groundwater tables since 1980 can be explained by climate change in combination with an increasing leaf area index. Still, simulated GWR rates remain highly uncertain due to the uncertainty of precipitation trends.
Paola Ceresa, Gianbattista Bussi, Simona Denaro, Gabriele Coccia, Paolo Bazzurro, Mario Martina, Ettore Fagà, Carlos Avelar, Mario Ordaz, Benjamin Huerta, Osvaldo Garay, Zhanar Raimbekova, Kanatbek Abdrakhmatov, Sitora Mirzokhonova, Vakhitkhan Ismailov, and Vladimir Belikov
Nat. Hazards Earth Syst. Sci., 25, 403–428, https://doi.org/10.5194/nhess-25-403-2025, https://doi.org/10.5194/nhess-25-403-2025, 2025
Short summary
Short summary
A fully probabilistic flood risk assessment was carried out for five Central Asian countries to support regional and national risk financing and insurance applications. The paper presents the first high-resolution regional-scale transboundary flood risk assessment study in the area aiming to provide tools for decision-making.
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Nat. Hazards Earth Syst. Sci., 25, 335–351, https://doi.org/10.5194/nhess-25-335-2025, https://doi.org/10.5194/nhess-25-335-2025, 2025
Short summary
Short summary
Deep learning methods are increasingly used as surrogates for spatio-temporal flood models but struggle with generalization and speed. Here, we propose a multi-resolution approach using graph neural networks that predicts dike breach floods across different meshes, topographies, and boundary conditions with high accuracy and up to 1000× speed-ups. The model also generalizes to larger more complex case studies with just one additional simulation for fine-tuning.
Maria Staudinger, Martina Kauzlaric, Alexandre Mas, Guillaume Evin, Benoit Hingray, and Daniel Viviroli
Nat. Hazards Earth Syst. Sci., 25, 247–265, https://doi.org/10.5194/nhess-25-247-2025, https://doi.org/10.5194/nhess-25-247-2025, 2025
Short summary
Short summary
Various combinations of antecedent conditions and precipitation result in floods of varying degrees. Antecedent conditions played a crucial role in generating even large ones. The key predictors and spatial patterns of antecedent conditions leading to flooding at the basin's outlet were distinct. Precipitation and soil moisture from almost all sub-catchments were important for more frequent floods. For rarer events, only the predictors of specific sub-catchments were important.
Paul Voit and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 24, 4609–4615, https://doi.org/10.5194/nhess-24-4609-2024, https://doi.org/10.5194/nhess-24-4609-2024, 2024
Short summary
Short summary
Floods have caused significant damage in the past. To prepare for such events, we rely on historical data but face issues due to rare rainfall events, lack of data and climate change. Counterfactuals, or
what ifscenarios, simulate historical rainfall in different locations to estimate flood levels. Our new study refines this by deriving more-plausible local scenarios, using the June 2024 Bavaria flood as a case study. This method could improve preparedness for future floods.
Chinh Luu, Giuseppe Forino, Lynda Yorke, Hang Ha, Quynh Duy Bui, Hanh Hong Tran, Dinh Quoc Nguyen, Hieu Cong Duong, and Matthieu Kervyn
Nat. Hazards Earth Syst. Sci., 24, 4385–4408, https://doi.org/10.5194/nhess-24-4385-2024, https://doi.org/10.5194/nhess-24-4385-2024, 2024
Short summary
Short summary
This study presents a novel and integrated approach to assessing the climate hazards of floods and wildfires. We explore multi-hazard assessment and risk through a machine learning modeling approach. The process includes collecting a database of topography, climate, geology, environment, and building data; developing models for multi-hazard assessment and coding in the Google Earth Engine; and producing credible multi-hazard susceptibility and building exposure maps.
Claudia De Lucia, Michele Amaddii, and Chiara Arrighi
Nat. Hazards Earth Syst. Sci., 24, 4317–4339, https://doi.org/10.5194/nhess-24-4317-2024, https://doi.org/10.5194/nhess-24-4317-2024, 2024
Short summary
Short summary
This work describes the flood damage to cultural heritage (CH) that occurred in September 2022 in central Italy. Datasets related to flood impacts on cultural heritage are rare, and this work aims at highlighting both tangible and intangible aspects and their correlation with physical characteristics of flood (i.e. water depth and flow velocity). The results show that current knowledge and datasets are inadequate for risk assessment of CH.
Pravin Maduwantha, Thomas Wahl, Sara Santamaria-Aguilar, Robert Jane, James F. Booth, Hanbeen Kim, and Gabriele Villarini
Nat. Hazards Earth Syst. Sci., 24, 4091–4107, https://doi.org/10.5194/nhess-24-4091-2024, https://doi.org/10.5194/nhess-24-4091-2024, 2024
Short summary
Short summary
When assessing the likelihood of compound flooding, most studies ignore that it can arise from different storm types with distinct statistical characteristics. Here, we present a new statistical framework that accounts for these differences and shows how neglecting these can impact the likelihood of compound flood potential.
Bruno Merz, Günter Blöschl, Robert Jüpner, Heidi Kreibich, Kai Schröter, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci., 24, 4015–4030, https://doi.org/10.5194/nhess-24-4015-2024, https://doi.org/10.5194/nhess-24-4015-2024, 2024
Short summary
Short summary
Flood risk assessments help us decide how to reduce the risk of flooding. Since these assessments are based on probabilities, it is hard to check their accuracy by comparing them to past data. We suggest a new way to validate these assessments, making sure they are practical for real-life decisions. This approach looks at both the technical details and the real-world situations where decisions are made. We demonstrate its practicality by applying it to flood emergency planning.
Zhi Li, Hanqi Li, Zhibo Zhang, Chaomeng Dai, and Simin Jiang
Nat. Hazards Earth Syst. Sci., 24, 3977–3990, https://doi.org/10.5194/nhess-24-3977-2024, https://doi.org/10.5194/nhess-24-3977-2024, 2024
Short summary
Short summary
This study used advanced computer simulations to investigate how earthquake-induced building collapse affects flooding of the metro stations in Shanghai. Results show that the influences of building collapse on rainfall-driven and river-driven floods are different because these two types of floods have different origination and propagation mechanisms.
Maria Magdalena Warter, Dörthe Tetzlaff, Christian Marx, and Chris Soulsby
Nat. Hazards Earth Syst. Sci., 24, 3907–3924, https://doi.org/10.5194/nhess-24-3907-2024, https://doi.org/10.5194/nhess-24-3907-2024, 2024
Short summary
Short summary
Streams are increasingly impacted by droughts and floods. Still, the amount of water needed for sustainable flows remains unclear and contested. A comparison of two streams in the Berlin–Brandenburg region of northeast Germany, using stable water isotopes, shows strong groundwater dependence with seasonal rainfall contributing to high/low flows. Understanding streamflow variability can help us assess the impacts of climate change on future water resource management.
Samuel Jonson Sutanto, Matthijs Janssen, Mariana Madruga de Brito, and Maria del Pozo Garcia
Nat. Hazards Earth Syst. Sci., 24, 3703–3721, https://doi.org/10.5194/nhess-24-3703-2024, https://doi.org/10.5194/nhess-24-3703-2024, 2024
Short summary
Short summary
A conventional flood risk assessment only evaluates flood hazard in isolation without considering wildfires. This study, therefore, evaluates the effect of wildfires on flood risk, considering both current and future conditions for the Ebro River basin in Spain. Results show that extreme climate change increases the risk of flooding, especially when considering the effect of wildfires, highlighting the importance of adopting a multi-hazard risk management approach.
Miroslav Spano and Jaromir Riha
Nat. Hazards Earth Syst. Sci., 24, 3683–3701, https://doi.org/10.5194/nhess-24-3683-2024, https://doi.org/10.5194/nhess-24-3683-2024, 2024
Short summary
Short summary
The study examines the effects of hydrogeological hazard due to construction of the Skalička Dam near the Hranice Karst on groundwater discharges and water levels in the local karst formations downstream. A simplified pipe model was used to analyze the impact of two dam layouts: lateral and through-flow reservoirs. Results show that the through-flow scheme more significantly influences water levels and the discharge of mineral water, while the lateral layout has only negligible impact.
Rudolf Brázdil, Dominika Faturová, Monika Šulc Michalková, Jan Řehoř, Martin Caletka, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 3663–3682, https://doi.org/10.5194/nhess-24-3663-2024, https://doi.org/10.5194/nhess-24-3663-2024, 2024
Short summary
Short summary
Flash floods belong to natural hazards that can be enhanced in frequency, intensity, and impact during recent climate change. This paper presents a complex analysis of spatiotemporal variability and human impacts (including material damage and fatalities) of flash floods in the Czech Republic for the 2001–2023 period. The analysis generally shows no statistically significant trends in the characteristics analyzed.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, and Joël J.-M. Hirschi
Nat. Hazards Earth Syst. Sci., 24, 3627–3649, https://doi.org/10.5194/nhess-24-3627-2024, https://doi.org/10.5194/nhess-24-3627-2024, 2024
Short summary
Short summary
We look at how compound flooding from the combination of river flooding and storm tides (storm surge and astronomical tide) may be changing over time due to climate change, with a case study of the Mekong River delta. We found that future compound flooding has the potential to flood the region more extensively and be longer lasting than compound floods today. This is useful to know because it means managers of deltas such as the Mekong can assess options for improving existing flood defences.
Maryam Pakdehi, Ebrahim Ahmadisharaf, Behzad Nazari, and Eunsaem Cho
Nat. Hazards Earth Syst. Sci., 24, 3537–3559, https://doi.org/10.5194/nhess-24-3537-2024, https://doi.org/10.5194/nhess-24-3537-2024, 2024
Short summary
Short summary
Machine learning (ML) algorithms have increasingly received attention for modeling flood events. However, there are concerns about the transferability of these models (their capability in predicting out-of-sample and unseen events). Here, we show that ML models can be transferable for hindcasting maximum river flood depths across extreme events (four hurricanes) in a large coastal watershed (HUC6) when informed by the spatial distribution of pertinent features and underlying physical processes.
María Carmen Llasat, Montserrat Llasat-Botija, Erika Pardo, Raül Marcos-Matamoros, and Marc Lemus-Canovas
Nat. Hazards Earth Syst. Sci., 24, 3423–3443, https://doi.org/10.5194/nhess-24-3423-2024, https://doi.org/10.5194/nhess-24-3423-2024, 2024
Short summary
Short summary
This paper shows the first public and systematic dataset of flood episodes referring to the entire Pyrenees massif, at municipal scale, named PIRAGUA_flood. Of the 181 flood events (1981–2015) that produced 154 fatalities, 36 were transnational, with the eastern part of the massif most affected. Dominant weather types show a southern component flow, with a talweg on the Iberian Peninsula and a depression in the vicinity. A positive and significant trend was found in Nouvelle-Aquitaine.
Colin M. Zarzycki, Benjamin D. Ascher, Alan M. Rhoades, and Rachel R. McCrary
Nat. Hazards Earth Syst. Sci., 24, 3315–3335, https://doi.org/10.5194/nhess-24-3315-2024, https://doi.org/10.5194/nhess-24-3315-2024, 2024
Short summary
Short summary
We developed an automated workflow to detect rain-on-snow events, which cause flooding in the northeastern United States, in climate data. Analyzing the Susquehanna River basin, this technique identified known events affecting river flow. Comparing four gridded datasets revealed variations in event frequency and severity, driven by different snowmelt and runoff estimates. This highlights the need for accurate climate data in flood management and risk prediction for these compound extremes.
Dongyu Feng, Zeli Tan, Darren Engwirda, Jonathan D. Wolfe, Donghui Xu, Chang Liao, Gautam Bisht, James J. Benedict, Tian Zhou, Mithun Deb, Hong-Yi Li, and L. Ruby Leung
EGUsphere, https://doi.org/10.5194/egusphere-2024-2785, https://doi.org/10.5194/egusphere-2024-2785, 2024
Short summary
Short summary
Our study explores how riverine and coastal flooding during hurricanes is influenced by the interaction of atmosphere, land, river and ocean conditions. Using an advanced Earth system model, we simulate Hurricane Irene to evaluate how meteorological and hydrological uncertainties affect flood modeling. Our findings reveal the importance of a multi-component modeling system, how hydrological conditions play critical roles in flood modeling, and greater flood risks if multiple factors are present.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Sheik Umar Jam-Jalloh, Jia Liu, Yicheng Wang, and Yuchen Liu
Nat. Hazards Earth Syst. Sci., 24, 3155–3172, https://doi.org/10.5194/nhess-24-3155-2024, https://doi.org/10.5194/nhess-24-3155-2024, 2024
Short summary
Short summary
Our paper explores improving flood forecasting using advanced weather and hydrological models. By coupling the WRF model with WRF-Hydro and HEC-HMS, we achieved more accurate forecasts. WRF–WRF-Hydro excels for short, intense storms, while WRF–HEC-HMS is better for longer, evenly distributed storms. Our research shows how these models provide insights for adaptive atmospheric–hydrologic systems and aims to boost flood preparedness and response with more reliable, timely predictions.
Tao Liu, Luke A. McGuire, Ann M. Youberg, Charles J. Abolt, and Adam L. Atchley
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-151, https://doi.org/10.5194/nhess-2024-151, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
After a fire, soil infiltration decreases, increasing flash flood risks, worsened by intense rainfall from climate change. Using data from a burned watershed in Arizona and a hydrological model, we examined postfire soil changes under medium and high emissions scenarios. Results showed soil infiltration increased sixfold from the first to third postfire year. Both scenarios suggest that rainfall intensification will extend high flood risks after fires by late century.
Yu Gao, Haipeng Lu, Yaru Zhang, Hengxu Jin, Shuai Wu, Yixuan Gao, and Shuliang Zhang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-144, https://doi.org/10.5194/nhess-2024-144, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study focuses on the Yangtze River Delta Urban Agglomeration (YRDUA), where we determined flood risk assessment indices across different dimensions, including hazard, exposure, vulnerability, and resilience. We constructed a flood risk assessment model using AutoML and AHP to examine the spatial and temporal changes in flood risk in the region over the past 30 years (1990 to 2020), aiming to provide a scientific basis for flood prevention and resilience strategies in the YRDUA.
Joshua Dorrington, Marta Wenta, Federico Grazzini, Linus Magnusson, Frederic Vitart, and Christian M. Grams
Nat. Hazards Earth Syst. Sci., 24, 2995–3012, https://doi.org/10.5194/nhess-24-2995-2024, https://doi.org/10.5194/nhess-24-2995-2024, 2024
Short summary
Short summary
Extreme rainfall is the leading weather-related source of damages in Europe, but it is still difficult to predict on long timescales. A recent example of this was the devastating floods in the Italian region of Emiglia Romagna in May 2023. We present perspectives based on large-scale dynamical information that allows us to better understand and predict such events.
Alison L. Kay, Nick Dunstone, Gillian Kay, Victoria A. Bell, and Jamie Hannaford
Nat. Hazards Earth Syst. Sci., 24, 2953–2970, https://doi.org/10.5194/nhess-24-2953-2024, https://doi.org/10.5194/nhess-24-2953-2024, 2024
Short summary
Short summary
Hydrological hazards affect people and ecosystems, but extremes are not fully understood due to limited observations. A large climate ensemble and simple hydrological model are used to assess unprecedented but plausible floods and droughts. The chain gives extreme flows outside the observed range: summer 2022 ~ 28 % lower and autumn 2023 ~ 42 % higher. Spatial dependence and temporal persistence are analysed. Planning for such events could help water supply resilience and flood risk management.
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024, https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Short summary
Our study explored how seasonal flood forecasts could enhance insurance premium accuracy. Insurers traditionally rely on historical data, yet climate fluctuations influence flood risk. We employed a method that predicts seasonal floods to adjust premiums accordingly. Our findings showed significant year-to-year variations in flood risk and premiums, underscoring the importance of adaptability. Despite limitations, this research aids insurers in preparing for evolving risks.
Shahin Khosh Bin Ghomash, Heiko Apel, and Daniel Caviedes-Voullième
Nat. Hazards Earth Syst. Sci., 24, 2857–2874, https://doi.org/10.5194/nhess-24-2857-2024, https://doi.org/10.5194/nhess-24-2857-2024, 2024
Short summary
Short summary
Early warning is essential to minimise the impact of flash floods. We explore the use of highly detailed flood models to simulate the 2021 flood event in the lower Ahr valley (Germany). Using very high-resolution models resolving individual streets and buildings, we produce detailed, quantitative, and actionable information for early flood warning systems. Using state-of-the-art computational technology, these models can guarantee very fast forecasts which allow for sufficient time to respond.
Andrea Betterle and Peter Salamon
Nat. Hazards Earth Syst. Sci., 24, 2817–2836, https://doi.org/10.5194/nhess-24-2817-2024, https://doi.org/10.5194/nhess-24-2817-2024, 2024
Short summary
Short summary
The study proposes a new framework, named FLEXTH, to estimate flood water depth and improve satellite-based flood monitoring using topographical data. FLEXTH is readily available as a computer code, offering a practical and scalable solution for estimating flood depth quickly and systematically over large areas. The methodology can reduce the impacts of floods and enhance emergency response efforts, particularly where resources are limited.
Tabea Wilke, Katharina Lengfeld, and Markus Schultze
EGUsphere, https://doi.org/10.5194/egusphere-2024-2507, https://doi.org/10.5194/egusphere-2024-2507, 2024
Short summary
Short summary
Hail in Germany is a natural hazard that is not in everyone's focus, even though it can cause great damage. In this study we focus on hail frequency, sizes and spatial distribution in Germany based on crowd sourcing and weather radar data. We compare different algorithms based on weather radar data with crowd sourced data and show the annual and diurnal cycle of hail in Germany.
Francisco Javier Gomez, Keighobad Jafarzadegan, Hamed Moftakhari, and Hamid Moradkhani
Nat. Hazards Earth Syst. Sci., 24, 2647–2665, https://doi.org/10.5194/nhess-24-2647-2024, https://doi.org/10.5194/nhess-24-2647-2024, 2024
Short summary
Short summary
This study utilizes the global copula Bayesian model averaging technique for accurate and reliable flood modeling, especially in coastal regions. By integrating multiple precipitation datasets within this framework, we can effectively address sources of error in each dataset, leading to the generation of probabilistic flood maps. The creation of these probabilistic maps is essential for disaster preparedness and mitigation in densely populated areas susceptible to extreme weather events.
Manuel Grenier, Mathieu Boudreault, David A. Carozza, Jérémie Boudreault, and Sébastien Raymond
Nat. Hazards Earth Syst. Sci., 24, 2577–2595, https://doi.org/10.5194/nhess-24-2577-2024, https://doi.org/10.5194/nhess-24-2577-2024, 2024
Short summary
Short summary
Modelling floods at the street level for large countries like Canada and the United States is difficult and very costly. However, many applications do not necessarily require that level of detail. As a result, we present a flood modelling framework built with artificial intelligence for socioeconomic studies like trend and scenarios analyses. We find for example that an increase of 10 % in average precipitation yields an increase in displaced population of 18 % in Canada and 14 % in the US.
Helge Bormann, Jenny Kebschull, Lidia Gaslikova, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 2559–2576, https://doi.org/10.5194/nhess-24-2559-2024, https://doi.org/10.5194/nhess-24-2559-2024, 2024
Short summary
Short summary
Inland flooding is threatening coastal lowlands. If rainfall and storm surges coincide, the risk of inland flooding increases. We examine how such compound events are influenced by climate change. Data analysis and model-based scenario analysis show that climate change induces an increasing frequency and intensity of compounding precipitation and storm tide events along the North Sea coast. Overload of inland drainage systems will also increase if no timely adaptation measures are taken.
Yanxia Shen, Zhenduo Zhu, Qi Zhou, and Chunbo Jiang
Nat. Hazards Earth Syst. Sci., 24, 2315–2330, https://doi.org/10.5194/nhess-24-2315-2024, https://doi.org/10.5194/nhess-24-2315-2024, 2024
Short summary
Short summary
We present an improved Multigrid Dynamical Bidirectional Coupled hydrologic–hydrodynamic Model (IM-DBCM) with two major improvements: (1) automated non-uniform mesh generation based on the D-infinity algorithm was implemented to identify flood-prone areas where high-resolution inundation conditions are needed, and (2) ghost cells and bilinear interpolation were implemented to improve numerical accuracy in interpolating variables between the coarse and fine grids. The improved model was reliable.
Taylor Glen Johnson, Jorge Leandro, and Divine Kwaku Ahadzie
Nat. Hazards Earth Syst. Sci., 24, 2285–2302, https://doi.org/10.5194/nhess-24-2285-2024, https://doi.org/10.5194/nhess-24-2285-2024, 2024
Short summary
Short summary
Reliance on infrastructure creates vulnerabilities to disruptions caused by natural hazards. To assess the impacts of natural hazards on the performance of infrastructure, we present a framework for quantifying resilience and develop a model of recovery based upon an application of project scheduling under resource constraints. The resilience framework and recovery model were applied in a case study to assess the resilience of building infrastructure to flooding hazards in Accra, Ghana.
Arnau Amengual, Romu Romero, María Carmen Llasat, Alejandro Hermoso, and Montserrat Llasat-Botija
Nat. Hazards Earth Syst. Sci., 24, 2215–2242, https://doi.org/10.5194/nhess-24-2215-2024, https://doi.org/10.5194/nhess-24-2215-2024, 2024
Short summary
Short summary
On 22 October 2019, the Francolí River basin experienced a heavy precipitation event, resulting in a catastrophic flash flood. Few studies comprehensively address both the physical and human dimensions and their interrelations during extreme flash flooding. This research takes a step forward towards filling this gap in knowledge by examining the alignment among all these factors.
Cited articles
Aligo, E. A., Gallus, W. A., and Segal, M.: On the impact of WRF model vertical grid resolution on Midwest summer rainfall forecasts, Weather Forecast., 24, 575–594, https://doi.org/10.1175/2008WAF2007101.1, 2009.
Argüeso, D., Hidalgomuñoz, J. M., Gámizfortis, S. R., Estebanparra, M. J., Dudhia, J., and Castrodiez, Y.: Evaluation of WRF parameterizations for climate studies over Southern Spain using a multistep regionalization, J. Climate, 24, 5633–5651, https://doi.org/10.1175/JCLI-D-11-00073.1, 2011.
Bruno, F., Cocchi, D., Greco, F., and Scardovi, E.: Spatial reconstruction of rainfall fields from rain gauge and radar data, Stoch. Environ. Res. Risk Assess., 28, 1235–1245, https://doi.org/10.1007/s00477-013-0812-0, 2014.
Bureau of Water Resources Survey of Hebei: Observed rainfall data from rain gauges, available at: http://www.hbsw.net/, 2006–2015.
Cane, D., Ghigo, S., Rabuffetti, D., and Milelli, M.: Real-time flood forecasting coupling different postprocessing techniques of precipitation forecast ensembles with a distributed hydrological model. The case study of may 2008 flood in western Piemonte, Italy, Nat. Hazards Earth Syst. Sci., 13, 211–220, https://doi.org/10.5194/nhess-13-211-2013, 2013.
Cardoso, R. M., Soares, P. M., Miranda, P. M. A., and Belo-Pereira, M.: WRF high resolution simulation of Iberian mean and extreme precipitation climate, Int. J. Climatol., 33, 2591–2608, https://doi.org/10.1002/joc.3616, 2013.
Chambon, P., Zhang, S. Q., Hou, A. Y., Zupanski, M., and Cheung, S.: Assessing the impact of pre-GPM microwave precipitation observations in the Goddard WRF ensemble data assimilation system, Q. J. Roy. Meteor. Soc., 140, 1219–1235, https://doi.org/10.1002/qj.2215, 2014.
Chen, F., Liu, C., Dudhia, J., and Chen, M.: A sensitivity study of high-resolution regional climate simulations to three land surface models over the western United States, J. Geophys. Res., 119, 7271–7291, https://doi.org/10.1002/2014JD021827, 2014.
Collischonn, W., Haas, R., Andreolli, I., and Tucci, C. E. M.: Forecasting River Uruguay flow using rainfall forecasts from a regional weather-prediction model, J. Hydrol., 305, 87–98, https://doi.org/10.1016/j.jhydrol.2004.08.028, 2005.
Di, Z., Duan, Q., Wei, G., Chen, W., Gan, Y. J., Quan, J., Li, j., Miao, C., Ye, A., and Tong, C.: Assessing WRF Model Parameter Sensitivity: A Case Study with 5-day Summer Precipitation Forecasting in the Greater Beijing Area, Geophys. Res. Lett., 42, 579–587, https://doi.org/10.1002/2014GL061623, 2015.
Evans, J. P., Ekström, M., and Ji, F.: Evaluating the performance of a WRF physics ensemble over South-East Australia, Clim. Dynam., 39, 1241–1258, https://doi.org/10.1007/s00382-011-1244-5, 2011.
Fan, F. M., Collischonn, W., Quiroz, K. J., Sorribas, M. V., Buarque, D. C., and Siqueira, V. A.: Flood forecasting on the Tocantins River using ensemble rainfall forecasts and real-time satellite rainfall estimates, J. Flood Risk Manag., 9, 278–288, 2015.
Flaounas, E., Bastin, S., and Janicot, S.: Regional climate modelling of the 2006 West African monsoon: sensitivity to convection and planetary boundary layer parameterization using WRF, Clim. Dynam., 36, 1083–1105, https://doi.org/10.1007/s00382-010-0785-3, 2011.
Givati, A., Lynn, B., Liu, Y., and Rimmer, A.: Using the WRF Model in an Operational Streamflow Forecast System for the Jordan River, J. Appl. Meteorol. Clim., 51, 285–299, https://doi.org/10.1175/JAMC-D-11-082.1, 2012.
Grell, G. A. and Freitas, S. R.: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, 2014.
Guo, X., Fu, D., Guo, X., and Zhang, C.: A case study of aerosol impacts on summer convective clouds and precipitation over northern China, Atmos. Res., 142, 142–157, https://doi.org/10.1016/j.atmosres.2013.10.006, 2014.
Ha, J. H. and Lee, D. K.: Effect of Length Scale Tuning of Background Error in WRF- 3DVAR System on Assimilation of High-Resolution Surface Data for Heavy Rainfall Simulation, Adv. Atmos. Sci., 29, 1142–1158, https://doi.org/10.1007/s00376-012-1183-z, 2012.
Ha, J. H., Lim, G. H., and Choi, S. J.: Assimilation of GPS Radio Occultation Refractivity Data with WRF 3DVAR and Its Impact on the Prediction of a Heavy Rainfall Event, J. Appl. Meteorol. Clim., 53, 1381–1398, https://doi.org/10.1175/JAMC-D-13-0224.1, 2014.
Hong, S. Y. and Lim, J. O. J.: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6), J. Korean Meteorol. Soc., 42, 129–151, 2006.
Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Weather Rev., 134, 2318–2341, https://doi.org/10.1175/MWR3199.1, 2006.
Hu, X. M., Nielsengammon, J. W., and Zhang F.: Evaluation of three planetary boundary layer schemes in the WRF model, J. Appl. Meteorol. Clim., 49, 1831–1844, https://doi.org/10.1175/2010JAMC2432.1, 2010.
Janjic, I. Z.: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes, Mon. Weather Rev., 122, 927–945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2, 1994.
Jankov, I., Gallus, W. A., Swgal, M., and Koch, S. E.: The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall, Weather Forecast., 20, 1048–1060, https://doi.org/10.1175/WAF888.1, 2005.
Jankov, I., Grasso, L. D., Senguota, M., Neiman, P. J., Zupanski, D., Zupanski, M., Lindsey, D., Hillger, D. W., Birkenheuer, D. L., Brummer, R., and Yuan, H.: An evaluation of five ARW-WRF microphysics schemes using synthetic GOES imagery for an atmospheric river event affecting the California coast, J. Hydrometeorol., 12, 618–633, https://doi.org/10.1175/2010JHM1282.1, 2011.
Jarvis, D., Stoeckl, N., and Chaiechi, T.: Applying econometric techniques to hydrological problems in a large basin: Quantifying the rainfall–discharge relationship in the Burdekin, Queensland, Australia, J. Hydrol., 496, 107–121, https://doi.org/10.1016/j.jhydrol.2013.04.043, 2013.
Kain, J. S.: The Kain Fritsch convective parameterization: an update, J. Appl. Meteorol., 43, 170–181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004.
Klein, C., Heinzeller, D., Bliefernicht, J., and Kunstmann, H.: Variability of West African monsoon patterns generated by a WRF multi-physics ensemble, Clim. Dynam., 45, 1–23, https://doi.org/10.1007/s00382-015-2505-5, 2015.
Kryza, M., Werner, M., Walaszek, K., and Dore, A. J.: Application and evaluation of the WRF model for high-resolution forecasting of rainfall – a case study of SW Poland, Meteorol. Z., 22, 595–601, https://doi.org/10.1127/0941-2948/2013/0444, 2013.
Lee, J., Shin, H. H., Hong, S., and Hong, J.: Impacts of subgrid-scale orography parameterization on simulated surface layer wind and monsoonal precipitation in the high-resolution WRF Model, J. Geophys. Res., 120, 644–653, https://doi.org/10.1002/2014JD022747, 2015.
Lin, Y. L., Falery, R. D., and Orville, H. D.: Bulk parameterization of the snow field in a cloud model, J. Appl. Meteorol., 22, 1065–1092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2, 1983.
Liu, J., Bray, M., and Han, D.: Sensitivity of the Weather Research and Forecasting (WRF) model to downscaling ratios and storm types in rainfall simulation, Hydrol. Process., 26, 3012–3031, https://doi.org/10.1002/hyp.8247, 2012.
Madala, S., Satyanarayana, A. N. V., and Rao, T. N.: Performance evaluation of PBL and cumulus parameterization schemes of WRF ARW model in simulating severe thunderstorm events over Gadanki MST radar facility – Case study, Atmos. Res., 139, 1–17, https://doi.org/10.1016/j.atmosres.2013.12.017, 2014.
Miao, S., Chen, F., Li, Q., and Fan, S.: Impacts of Urban Processes and Urbanization on Summer Precipitation: A Case Study of Heavy Rainfall in Beijing on 1 August 2006, J. Appl. Meteorol. Clim., 50, 806–825, https://doi.org/10.1175/2010JAMC2513.1, 2011.
NCEP: National Centers for Environmental Prediction, NCEP FNL operational model global tropospheric analyses, available at: https://rda.ucar.edu/datasets, 2007–2013.
Nikolopoulos, E. I., Anagnostou, E. N., Hossain, F., Gebremichael, M., and Borga, M.: Understanding the scale relationships of uncertainty propagation of satellite rainfall through a distributed hydrologic model, J. Hydrometeorol., 11, 520–532, https://doi.org/10.1175/2009JHM1169.1, 2010.
Pan, X., Li, X., Yang, K., He, J., Zhang, Y., and Han, X.: Comparison of Downscaled Precipitation Data over a Mountainous Watershed: A Case Study in the Heihe River Basin, J. Hydrometeorol., 15, 1560–1574, https://doi.org/10.1175/JHM-D-13-0202.1, 2014.
Pei, L., Moore, N., Zhong, S., Luo, L., Hyndman, D. W., Heilman, W. E., and Gao, Z.: WRF Model sensitivity to land surface model and cumulus parameterization under short-term climate extremes over the Southern Great Plains of the United States, J. Climate, 27, 7703–7724, https://doi.org/10.1175/JCLI-D-14-00015.1, 2014.
Pennelly, C., Reuter, G., and Flesch, T.: Verification of the WRF model for simulating heavy precipitation in Alberta, Atmos. Res., 135–136, 172–179, https://doi.org/10.1016/j.atmosres.2013.09.004, 2014.
Qie, X., Zhu, R., Yuan, T., Wu, X. K., Li, W., and Liu, D.: Application of total-lightning data assimilation in a mesoscale convective system based on the WRF model, Atmos. Res., 145–146, 255–266, https://doi.org/10.1016/j.atmosres.2014.04.012, 2014.
Remesan, R., Bellerby, T., Holman, I., and Frostick, L.: WRF model sensitivity to choice of parameterization: a study of the “York Flood 1999”, Theor. Appl. Climatol., 122, 229–247, https://doi.org/10.1007/s00704-014-1282-0, 2015.
Routray, A., Osuri, K. K., and Kulkarni, M. A.: A Comparative Study on Performance of Analysis Nudging and 3DVAR in Simulation of a Heavy Rainfall Event Using WRF Modeling System, Isrn Meteorology, 2012, https://doi.org/10.5402/2012/523942, 2012.
Rutledge, S. A. and Hobbs, P.: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands, J. Atmos. Sci., 40, 1185–1206, https://doi.org/10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2, 1983.
Schellekens, J., Weerts, A. H., Moore, R. J., Pierce, C. E., and Hildon, S.: The use of MOGREPS ensemble rainfall forecasts in operational flood forecasting systems across England and Wales, Adv. Geosci., 29, 77–84, https://doi.org/10.5194/adgeo-29-77-2011, 2011.
Shepherd, T. J. and Walsh, K. J.: Sensitivity of hurricane track to cumulus parameterization schemes in the WRF model for three intense tropical cyclones: impact of convective asymmetry, Meteorol. Atmos. Phys., 1–30, https://doi.org/10.1007/s00703-016-0472-y, 2016.
Sivapalan, M. and Blöschl, G.: Transformation of point rainfall to areal rainfall: Intensity-duration-frequency curves, J. Hydrol., 204, 150–167, https://doi.org/10.1016/S0022-1694(97)00117-0, 1998.
Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications, J. Comput. Phys., 227, 3465–3485, https://doi.org/10.1016/j.jcp.2007.01.037, 2008.
Wan, Q. and Xu, J.: A numerical study of the rainstorm characteristics of the June 2005 flash flood with WRF/GSI data assimilation system over south-east China, Hydrol. Process., 25, 1327–1341, https://doi.org/10.1002/hyp.7882, 2011.
Wang, S., Yu, E., and Wang, H.: A simulation study of a heavy rainfall process the Yangtze River valley using the two-way nesting approach, Adv. Atmos. Sci., 29, 731–743, https://doi.org/10.1007/s00376-012-1176-y, 2012.
Xie, Y., Xing, J., Shi, J., Dou, Y., and Lei, Y.: Impacts of radiance data assimilation on the Beijing 7.21 heavy rainfall, Atmos. Res., 169, 318–330, https://doi.org/10.1016/j.atmosres.2015.10.016, 2016.
Yang, B., Zhang, Y., and Qian, Y.: Simulation of urban climate with high-resolution WRF model: A case study in Nanjing, China, Asia-Pac. J. Atmos. Sci., 48, 227–241, https://doi.org/10.1007/s13143-012-0023-5, 2012.
Short summary
Accurately simulating and predicting the precipitation by numerical weather prediction is a difficult task for medium-sized catchments in semi-humid regions. This study shows that using multiphysics ensembles is a good method to reduce the uncertainties of rainfall simulation. This paper provides more guidance for choosing the physical parameterizations for accurate rainfall simulations of different storm types in semi-humid regions.
Accurately simulating and predicting the precipitation by numerical weather prediction is a...
Altmetrics
Final-revised paper
Preprint