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Abstract. The Weather Research and Forecasting (WRF)
model is used in this study to simulate six storm events in
two semi-humid catchments of northern China. The six storm
events are classified into four types based on the rainfall
evenness in the spatial and temporal dimensions. Two mi-
crophysics, two planetary boundary layers (PBL) and three
cumulus parameterizations are combined to develop an en-
semble containing 16 members for rainfall generation. The
WRF model performs the best for type 1 events with rela-
tively even distributions of rainfall in both space and time.
The average relative error (ARE) for the cumulative rain-
fall amount is 15.82 %. For the spatial rainfall simulation, the
lowest root mean square error (RMSE) is found with event II
(0.4007), which has the most even spatial distribution, and
for the temporal simulation the lowest RMSE is found with
event I (1.0218), which has the most even temporal distribu-
tion. The most difficult to reproduce are found to be the very
convective storms with uneven spatiotemporal distributions
(type 4 event), and the average relative error for the cumula-
tive rainfall amounts is up to 66.37 %. The RMSE results of
event III, with the most uneven spatial and temporal distribu-
tion, are 0.9688 for the spatial simulation and 2.5327 for the
temporal simulation, which are much higher than the other
storms. The general performance of the current WRF phys-
ical parameterizations is discussed. The Betts–Miller–Janjic
(BMJ) scheme is found to be unsuitable for rainfall simula-
tion in the study sites. For type 1, 2 and 4 storms, member 4
performs the best. For type 3 storms, members 5 and 7 are the
better choice. More guidance is provided for choosing among

the physical parameterizations for accurate rainfall simula-
tions of different storm types in the study area.

1 Introduction

Precipitation is a crucial element in the hydrological cycle
at regional or global scales. With the characteristics of high
intensity, short duration, uneven distribution and sudden oc-
currence, the precipitation easily causes floods, with a high
peak in semi-humid regions, which is tricky for forecast-
ing accurately (Nikolopoulo et al., 2010). The quantitative
precipitation forecast (QPF) is an effective method to avoid
flood disasters and help flood risk management (Kryza et al.,
2013). With the development of computer technology and at-
mospheric physics, numerical weather prediction (NWP) has
become an efficient method for QPF (Yang et al., 2012).

As the latest-generation mesoscale NWP system, the
Weather Research and Forecasting (WRF) model can apply
to the regions across scales from tens of meters to thousands
of kilometers. Not only the rainfall quantity but also the spa-
tial and temporal patterns of rainfall can be captured by the
WRF model with high resolution. Though it has been con-
firmed by many studies that the WRF model performs better
than the fifth-generation Penn State/NCAR (National Center
for Atmospheric Research) Mesoscale Model (MM5), rain-
fall is still one of the most difficult variables to simulate
and predict (Collischonn et al., 2005; Bruno et al., 2014;
Lee et al., 2015). Because of the complicated processes of
storm formation and development, the WRF model provides
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various physical parameterizations to be applied in differ-
ent cases. Each physical parameterization emphasizes on dif-
ferent physical processes and has its unique structure and
complexity, which may have great influence on the rainfall
simulations. That is why numerous sensitivity studies of the
WRF parameterizations are carried out in different regions
of the world (Klein et al., 2015). Three categories of the pa-
rameterizations have been mostly discussed and identified
as the main influencing factors for rainfall simulation, i.e.,
microphysics, planetary boundary layer (PBL) and cumulus
parameterizations. Different physical parameterizations are
found to be efficient for different rainfall events in different
regions (Jankov et al., 2011; Madala et al., 2014; Pennelly et
al., 2014).

It is an increasingly difficult task to determine the optimal
combination of physical parameterizations due to the devel-
opment of the WRF model with more and more choices of
parameterizations. Although many studies show that the best
physical parameterization combination can be determined by
many simulations for a certain rainfall event, it is difficult to
tell the characteristics of the future rainfall events for real-
time rainfall prediction. In order to consider the uncertainties
associated with the selection of physical parameterizations,
it has become a common method to use the ensemble in nu-
merical rainfall prediction (Evans et al., 2011). Flaounas et
al. (2011) studied an ensemble with six members over West
Africa, which was produced by two PBL and three cumu-
lus parameterizations. An ensemble containing 18 members
was investigated in the south-central United States, which
was created by three microphysics, three PBL and two cu-
mulus parameterizations (Jankov et al., 2005). And an en-
semble with 36 members was tested for a series of rainfall
events at the south-east coast of Australia, which contained
two PBL, two cumulus, three microphysics and three radia-
tion parameterizations (Flaounas et al., 2011). These studies
show that no single physical parameterization combination
performs the best for all rainfall events.

In this study, 16 physical parameterization combinations
are designed from two microphysics, Purdue–Lin (Lin) and
WRF Single-Moment 6 (WSM6), two PBLs, Yonsei Univer-
sity (YSU) and Mellor–Yamada–Janjic (MYJ), and three cu-
mulus parameterizations, Kain–Fritsch (KF), Grell–Devenyi
(GD) and Betts–Miller–Janjic (BMJ). Lin is a sophisticated
parameterization which contains five classes of hydromete-
ors, and it is suitable for high-resolution simulations (Lin et
al., 1983). WSM6 reveals an improvement in the high cloud
amount and surface precipitation, which adds graupel micro-
physics based on the works of Lin et al. (1983) and Rut-
ledge and Hobbs (1983). MYJ PBL is appropriate for all sta-
ble or slightly unstable flows (Janjic, 1994). YSU PBL im-
proves the performance of intense convection based on the
Medium Range Forecast (MRF) PBL (Hong et al., 2006).
KF is a classic cumulus parameterization and has been used
successfully for years in many scientific institutions (Kain,
2004). GD is an ensemble cumulus parameterization and can

be used in high resolution models (Grell and Freitas, 2014).
BMJ can adjust instabilities in the environment by generating
deep convection and has been used extensively throughout
the globe (Janjic, 2000).

Two medium sized catchments, the Fuping and Zijing-
guan, are chosen as the study sites, which are respectively
located in the south and the north reaches of the Daqinghe
catchment in North China. With the characteristics of high
intensity, short duration, uneven distribution and sudden oc-
currence, the storm events in the study sites are represen-
tative for the semi-humid region with temperate continental
monsoon climates. The aim of this study is to determine the
potential performance of the WRF model for different types
of storm events in semi-humid regions. Six storm events are
chosen from the study sites and classified into four differ-
ent types based on the rainfall evenness in the spatial and
the temporal dimensions. The 16 designed combinations of
physical parameterizations are treated as the ensemble for
rainfall simulation, and the results regarding both the cumu-
lative rainfall amounts and the spatiotemporal patterns are
verified.

2 WRF model configuration and designed physical
ensemble

Version 3.6 of the WRF model is used in this study.
WRF is a fully compressible, nonhydrostatic, meteorological
model, and it features physics, numerics, advanced dynamics
and data assimilation. The model manual (Skamarock and
Klemp, 2008) shows more detailed information of the WRF
model. Two-way nesting is allowed for the communication
between multiple domains at different grid resolutions, and
three nested domains are centered over the Fuping and Zi-
jingguan catchments respectively. In general, high-resolution
rainfall products downscaled by the WRF model are more
appropriate to be used as the input of the hydrological mod-
els (Cardoso et al., 2013; Chambon et al., 2014). Therefore,
horizontal grid spacing of the WRF innermost domain is set
to be 1 km, and the downscaling radio is set to be 1 : 3 (Gi-
vati et al., 2012; Yang et al., 2012). The center of the domain
is at lat 39◦04′15′′ N and long 113◦59′26′′ E, and the nested
domain sizes are 252× 234, 144× 126 and 96× 84 km2 for
the Fuping catchments. The center of the domain is lat 39◦

25′59′′ N and long 114◦ 46′01′′ E, and the nested domain
sizes are 216× 198, 108× 90 and 72× 42 km2 for the Zi-
jingguan catchment. The nested domains and the orography
of the two catchment are shown in Fig. 1. There are 40 verti-
cal levels for three domains, and the top level is set at 50 hPa
(Aligo et al., 2009; Qie et al., 2014). The WRF model is ini-
tialized from the six-hourly global analysis data provided by
the 1◦× 1◦ grids of the NCEP (National Centers for Envi-
ronmental Prediction) Final (FNL) operational model. The
integration step of WRF follows the “6× dx” rule where dx
is the grid spacing, and the integration step is 6 s for the in-
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Figure 1. The nested domains and the orography of the Fuping catchment and Zijingguan catchment.

nermost domain (Skamarock and Klemp, 2008). The time
step of the WRF model output is set to 1 h. The spin-up pe-
riod is necessary for the WRF model to develop the smaller
scale convective features, and the widely used lengths are 6 h
(Givati et al., 2012), 12 h (Hu et al., 2010) and 24 h (Wang
et al., 2012). Different spin-up lengths were tried for the six
storm events in this study, whereas the results did not show
obvious differences regarding the simulated rainfall. In order
to improve the calculation efficiency for further hydrological
use (i.e., flood warning), a 6 h period is chosen to spin up
the model. That is to say, the start of the model integration is
6 h earlier than the storm start time, and the end time of the
model integration is consistent with the storm end time.

The setting of the WRF model is very important be-
fore it is used to simulate the meteorological factors, espe-
cially the physical parameterizations. As shown by Table 1,
a WRF physical ensemble is constructed by combining dif-
ferent choices of the physical parameterizations to simulate
the storm events in the study areas. The selection of the pa-
rameterizations is based on their good performance in semi-
humid regions of China (Givati et al., 2012; Qie et al., 2014;
Di et al., 2015). In order to learn the physical parameteri-
zations more comprehensively, the different complexity and
mechanisms are also considered. WSM6 is the most complex
in the series of WSM schemes, which is revised based on Lin
(Hong and Lim, 2006). YSU is a non-local closure scheme,
while MYJ is a local closure scheme (Evans et al., 2011). The
KF is a simple cloud model which can be triggered when air
parcel temperature at its lifting condensation level is larger
than the environmental air (Pennelly et al., 2014). The GD

can run effectively within each high resolution grid (Grell
and Freitas, 2014). The BMJ scheme is more suitable for
convective weather because it can adjust the model profile of
temperature and moisture (Janjic, 2000). Some studies have
indicated that the cumulus parameterizations may be invalid
with fine horizontal resolutions, while the threshold of the
resolution is unknown (Argüeso et al., 2011; Evans et al.,
2011; Pei et al., 2014). Many studies use cumulus param-
eterizations with about 1 km resolution for weather simula-
tion. For example, Shepherd et al. (2016) explored the effect
of simulation for tropical cyclones by four cumulus parame-
terizations, including KF, BMJ, G-3 and TD, with the nested
domains 1.33, 4 and 12 km. Remesan et al. (2015) studied the
WRF model sensitivity to the choice of parameterizations:
4 nested domains (1, 3, 9 and 27 km) are used, and the cumu-
lus parameterizations of GD, BMJ, KF1 and KF2 are investi-
gated. In order to make the study more rigorous, members 13,
14, 15 and 16 are also tested and compared with the members
containing cumulus parameterizations. Many studies indicate
that the simulation of precipitation is insensitive to the land
surface model (LSM) and short- and long-wave radiation pa-
rameterizations, so Noah for LSM, the RRTM and Dudhia
schemes for long wave and shortwave radiation are used in
this study, which are most frequently applied to precipitation
simulation (Guo et al., 2014; Chen et al., 2014).
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Table 1. The constitution of the WRF physical ensemble.

Ensemble Microphysics PBL Cumulus
ID parameterization

1 Lin YSU KF
2 WSM6 YSU KF
3 Lin MYJ KF
4 WSM6 MYJ KF
5 Lin YSU GD
6 WSM6 YSU GD
7 Lin MYJ GD
8 WSM6 MYJ GD
9 Lin YSU BMJ
10 WSM6 YSU BMJ
11 Lin MYJ BMJ
12 WSM6 MYJ BMJ
13 Lin YSU /
14 WSM6 YSU /
15 Lin MYJ /
16 WSM6 MYJ /

3 Storm events and evaluation statistics

3.1 Study area and storm events

The Fuping and Zijingguan catchments are the study areas,
which respectively belong to the south and north reaches
of the Daqinghe catchment, located in northern China with
semi-humid climatic conditions. The drainage area of Fup-
ing (from lat 39◦22′ to 38◦47′ N and from long 113◦40′ to
114◦18′ E) is 2210 km2, and the area of Zijingguan (from lat
39◦13′ to 39◦40′ N and from long 114◦28′ to 115◦11′ E) is
1760 km2 (shown by Fig. 2). The average annual rainfall is
about 600 mm at the study sites, and the majority of rain fo-
cuses in the flood season. As shown by Fig. 2, there are eight
rain gauges in the Fuping catchment and 11 rain gauges in
the Zijingguan catchment. The observed hourly rainfall data
from rain gauges are treated as the ground truth. Six 24 h
storm events are selected from the 10 recent years (2006 to
2015) with the respective rainfall characteristics of the study
sites. The encounter between the western pacific subtropical
high and the cold vortex of westerlies and the strong upward
motion caused by Taihang Mountains are the main factors of
rain formation in the study area, while the six storm events
have quite different spatial and temporal evenness. Table 2
shows the duration and accumulative rainfall amounts of the
six storm events.

The six storm events are categorized into four types based
on the rainfall evenness of the spatiotemporal distribution
(Liu et al., 2012). The variation coefficient Cv is used to eval-
uate the uneven level:

Cv =

√√√√ 1
N

N∑
i=1

(
xi

x
− 1)2. (1)

Figure 2. The location of the Daqinghe catchment in northern
China (light shading) and the locations of the two study sites in
the Daqinghe catchment.

For the spatial distribution, xi is the 24 h rainfall accumu-
lation at rain gauge i, and x is the average of xi ; N is the
number of rain gauges. For the temporal distribution, xi is
the hourly areal rainfall at time i, and x is the average of xi ;
N is the number of hours.

The higher Cv is, the more uneven the rainfall is. In or-
der to learn the spatial and temporal evenness of the rain-
fall in the two catchments, both spatial and temporal Cv of
the storm events from 1985 to 2015 are calculated. In real-
ity, rainfall in northern China is much more uneven than the
south, and it is impossible to find absolute even rainfall in
both space and time. Therefore, we chose a threshold of 5 %,
which is also considered in other statistical analyses in the
same area, as the critical value to separate even and uneven
rainfall events. With the threshold, we found the two criti-
cal values of 0.4 for the spatial Cv and 0.6 for the temporal
Cv. That is to say, the storm events with a spatial Cv below
0.4 or with a temporal Cv below 1.0 account for 5 % of the
total storm events from 1985 to 2015 in the study area. Ta-
ble 3 shows the spatial and temporal Cv of observations for
the six storm events. Storm type 1 is characterized by even
spatiotemporal distribution of rainfall. For storm type 2, rain-
fall is even for spatial distribution, but the temporal distribu-
tion is uneven. Storm type 3 and type 4 are characterized
by an uneven distribution of rainfall in both space and time,
while the rainfall of type 4 is highly concentrated in space
and time. Due to the temperate continental monsoon climate
in the study sites, there is no storm event with even rainfall
and continuous in time but unevenly distributed in space.
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Table 2. Durations and rainfall accumulations of the six selected 24 h storm events.

Event ID Catchment Storm start time (UTC+ 8) Storm end time Accumulated 24 h
rainfall (mm)

I Fuping 29/07/2007 20:00 30/07/2007 20:00 63.38
II Fuping 30/07/2012 10:00 31/07/2012 10:00 50.48
III Fuping 11/08/2013 07:00 12/08/2013 07:00 30.82
IV Zijingguan 10/08/2008 00:00 2008/08/10 24:00 45.53
V Zijingguan 21/07/2012 04:00 22/07/2012 04:00 155.43
VI Zijingguan 06/06/2013 22:00 07/06/2013 22:00 52.06

Table 3. Spatial and temporal Cv of the observed rainfall for the six storm events.

Indices Type 1 Type 2 Type 3 Type 4

Event I Event II Event VI Event IV Event V Event III

Spatial Cv 0.3975 0.1927 0.3258 0.4588 0.6098 0.7400
Temporal Cv 0.6011 1.0823 1.8865 1.3779 1.8865 2.3925

3.2 Verification indices for rainfall simulations

For evaluating the accuracy of rainfall simulation, both the
accumulated areal rainfall and the spatiotemporal distribu-
tion of the rainfall are important. The accumulated areal rain-
fall is evaluated by the relative error (RE):

RE=
(P −Q)

Q
× 100%, (2)

where P is the simulated value, which is the average value
of all the grids inside the study area, and Q is the observed
value, which is calculated by the Thiessen polygon method
based on the observations of the rain gauges (Sivapalan and
Blöschl, 1998; Jarvis et al., 2013).

The spatial and temporal distributions of the rainfall are
evaluated by a two-dimensional verification scheme. Both in
spatial and temporal dimensions, some categorical and con-
tinuous indices are selected and calculated (Liu et al., 2012).
The categorical verification indices are chosen as the prob-
ability of detection (POD), the frequency bias index (FBI),
the false alarm ratio (FAR) and the critical success index
(CSI). The calculation of the categorical indices depends
on whether it rains or not, as shown in Table 4. It should
be mentioned that the insignificant precipitation (less than
0.1 mm h−1) is regarded as no rain. For verification in the
spatial dimension, the comparison is made between the ob-
servations of the rain gauges and the simulations of the WRF
model at each time step i, and then the average values are
calculated by the categorical indices at all the time steps for
the final results. As shown by the Eqs. (3)–(6), N is the to-
tal number of time steps of the WRF model output, which is
24 in this study. For the temporal dimension, the time series
data of simulation and observation are used to calculate the
four indices at each rain gauge i, then the average values are
calculated by the indices at all the rain gauges for the final

results. This time N is the number of the rain gauges of the
Fuping and Zijingguan catchments respectively in Eqs. (3)–
(6).

POD=
1
N

N∑
i=1

NAi

NAi +NCi

, (3)

FBI=
1
N

N∑
i=1

NAi +NBi

NAi +NCi

, (4)

FAR=
1
N

N∑
i=1

NBi

NAi +NBi

, (5)

CSI=
1
N

N∑
i=1

NAi

NAi +NBi +NCi

. (6)

For the four categorical indices, POD indicates the per-
centage of correct simulation for the observed rainfall. FBI
shows whether the WRF model has a tendency to overes-
timate (FBI > 1) or underestimate (FBI < 1) rainfall occur-
rences, while FBI cannot show closeness of the simulation
and the observation. FAR represents the ratio of false alarms,
and CSI indicates the percentage of correct simulation be-
tween the simulated and observed rainfall. The perfect scores
of POD, FBI, FAR and CSI are 1, 1, 0 and 1, respectively.

Besides the categorical indices, three continuous indices
including the root mean square error (RMSE), the mean bias
error (MBE) and the standard deviation (SD) are adopted for
a more quantitative evaluation of the simulated rainfall dis-
tributions in space and time. The calculations of the three
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Table 4. Rain–no rain contingency table for the WRF simulation
against observation.

WRF/observations Rain No rain

Rain NA (hit) NB (false alarm)
No rain NC (failure) ND (correct negative)

continuous indices are expressed by Eqs. (7)–(9).

RMSE=

√
1
M

M∑
j=1

(
Pj −Qj

)2
1
M

M∑
j=1

Qj

× 100%, (7)

MBE=

1
M

M∑
j=1

(
Pj −Oj

)
1
M

M∑
j=1

Qj

× 100%, (8)

SD=

√
1

M−1

M∑
j=1

(
Pj −Oj −MBE

)2
1
M

M∑
j=1

Qj

× 100%. (9)

For the spatial dimension, Pj and Qj are the simulation and
observation of 24 h rainfall accumulations at each rain gauge
j . M is the number of the rain gauges, which is 8 for the Fup-
ing catchment and 11 for the Zijingguan catchment. For the
temporal dimension, Pj and Qj are the average areal rainfall
simulation and observation at each time step j . This time M

is 24, which represents the number of the time steps. The fi-
nal values of the three indices represent the mean magnitude
of error, the average cumulative error and the variation of the
simulation error of MBE, respectively. The perfect score of
all the three indices is 0. In order to compare the simulations
for different storm events, the final values of the three con-
tinuous indices in both two dimensions are represented as
percentages of the corresponding average observations.

4 Results

4.1 Simulations of the 24 h rainfall accumulations

The simulation results of the cumulative rainfall amounts
from the 16 members of the physical ensemble are shown
in Table 5 and ranked according to REs. Members 5, 4 and
2 rank in the top three for event I (storm type 1), with rela-
tively lower REs. For type 2 events, members 4 and 12 show
more stable performances, ranking in the top five for both

events II and VI. For type 3 events, members 5 and 7 are
better choices, with top 5 rankings for events IV and V. The
top four members for event III (type 4) are members 4, 2, 16
and 3. It can be seen that the performances of the 16 mem-
bers are quite distinct for different types of storm events. In
addition, the difference among the 16 members varies signif-
icantly for a certain storm event. For example, the difference
of REs for member 8 (18.44 %) and member 9 (−37.69 %)
reaches up to 56.13 % for event I. While for event V, the
largest difference of RE among all the 16 members is only
9.10 %. There are great uncertainties for the simulation of
the different storm events using the WRF model with differ-
ent combinations of the physical parameterizations. It’s hard
to tell which parameterization combination is the best, but
only to find the one with the best general performance. In
this study, member 4 could be the best choice considering its
stable top rankings for storm types 1, 2 and 4, while mem-
bers 9, 10, 11 and 12 have a worse performance for storm
types 1 and 4. For type 3 events, members 5 and 7 are better
choices. However, in real-time rainfall prediction, there is a
necessity to use a physical ensemble since it is always tricky
to tell the exact characteristics of the future storm before it
happens, and the use of a determined combination of param-
eterizations which performs generally well cannot always
lead to the best results. According to Table 5, the four mem-
bers without cumulus parameterization have a quite different
performance for different events. For example, member 15
performs the best for event IV; nevertheless, it performs the
worst for event V. Comparing the members containing cu-
mulus parameterization, members 13, 14, 15 and 16 have no
significant advantages or significant disadvantages for rain-
fall simulation. Taking event I as an example, the best one
(member 16) of the 4 members without cumulus parameter-
ization ranks 4th out of the 16 members, whereas the worst
one (member 13) ranks 12th. However, few members without
cumulus parameterization rank in the top four, which means
that it is necessary to use cumulus parameterization for the
simulation of rainfall accumulation.

In order to measure the magnitude of error for different
storm types, all the REs use absolute values in the follow-
ing analysis to calculate the average relative error (ARE) of
the 16 members of the physical ensemble. The AREs of the
16 members for the four storm types are shown in Table 6.
It’s interesting to note that the ranking of the model perfor-
mance is type 1 > type 2 > type 3 > type 4, from the best to
the worst. It means that the WRF model performs best for the
storm events with even spatiotemporal distribution, while the
type of storm events with highly uneven spatiotemporal dis-
tribution is hard for WRF to handle. The cumulative curves
of the simulated and observed rainfall for the six storm events
are shown in Fig. 3. Except for event I, the cumulative curves
of the members are all below the observed ones for the other
storm events. The shapes of 16 simulated cumulative curves
are consistent with the observed ones for events I, II and
VI (type 1 and type 2 events), indicating that the simulated
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Table 5. Rankings of the 16 members of the physical ensemble according to RE (%) of the simulated rainfall accumulations for the storm
events.

Ranking Type 1 Type 2 Type 3 Type 4

I II VI IV V III

1 Member 5
(−0.17)

Member 8
(−24.05)

Member 3
(−16.32)

Member 15
(−21.89)

Member 10
(−57.89)

Member 4
(−42.41)

2 Member 4
(3.85)

Member 12
(−25.12)

Member 4
(−17.03)

Member 5
(−25.77)

Member 2
(−58.91)

Member 2
(−45.35)

3 Member 2
(7.23)

Member 4
(−29.12)

Member 1
(−33.05)

Member 7
(−27.03)

Member 7
(−59.22)

Member 16
(−46.55)

4 Member 16
(−7.47)

Member 10
(−30.09)

Member 2
(−38.87)

Member 16
(−27.13)

Member 1
(−59.31)

Member 3
(−46.93)

5 Member 6
(10.17)

Member 6
(−30.72)

Member 12
(−45.79)

Member 6
(−32.19)

Member 5
(−59.54)

Member 15
(−47.59)

6 Member 1
(10.55)

Member 14
(−32.10)

Member 11
(−46.60)

Member 13
(−32.43)

Member 12
(−59.57)

Member 1
(−48.59)

7 Member 15
(−10.99)

Member 7
(−32.23)

Member 7
(−51.66)

Member 9
(−33.17)

Member 4
(−60.15)

Member 7
(−69.79)

8 Member 14
(−10.83)

Member 2
(−33.27)

Member 5
(−52.76)

Member 8
(−33.90)

Member 11
(−60.20)

Member 8
(−70.95)

9 Member 7
(13.96)

Member 15
(−33.36)

Member 8
(−53.12)

Member 11
(−36.23)

Member 9
(−60.24)

Member 13
(−73.88)

10 Member 3
(17.54)

Member 16
(−34.03)

Member 6
(−54.57)

Member 1
(−37.53)

Member 6
(−60.81)

Member 14
(−77.06)

11 Member 8
(18.44)

Member 11
(−34.59)

Member 15
(−56.48)

Member 10
(−39.93)

Member 3
(−61.17)

Member 5
(−77.19)

12 Member 13
(−20.12)

Member 3
(−39.71)

Member 10
(−57.85)

Member 14
(−40.24)

Member 14
(−62.37)

Member 6
(−78.70)

13 Member 10
(−22.63)

Member 13
(−39.72)

Member 16
(−58.78)

Member 3
(−42.64)

Member 8
(−62.43)

Member 10
(−81.42)

14 Member 11
(−27.30)

Member 9
(−40.24)

Member 9
(−59.85)

Member 12
(−42.99)

Member 13
(−65.12)

Member 9
(−83.77)

15 Member 12
(−34.24)

Member 5
(−40.41)

Member 13
(−63.66)

Member 4
(−51.58)

Member 16
(−65.73)

Member 11
(−85.16)

16 Member 9
(−37.69)

Member 1
(−42.15)

Member 14
(−65.04)

Member 2
(−53.36)

Member 15
(−66.99)

Member 12
(−86.59)

rainfall occurrences always keep step with the observations.
While for events IV, V and III (type 3 and type 4 events),
the simulated starting and ending times of the rainfall du-
rations are quite different from the observations. It can be
determined that type 1 and type 2 events have even rainfall
distributions in space, while the spatial rainfall is unevenly
distributed in space for type 3 and type 4 events. It seems that
storms with rainfall evenly distributed in space tend to have
better simulation results in the temporal patterns of rainfall
accumulations.

4.2 Simulations of the spatial rainfall distributions

In order to compare the simulation results of the different
storm types in detail, seven verification indices are first calcu-
lated to evaluate the simulated rainfall distributions in space.
Figures 4 and 5 respectively show the values of the categor-

Table 6. AREs of the 16 members of the physical ensemble for the
four types of storm events (%).

Type 1 Type 2 Type 3 Type 4

I II VI IV V III

15.82 33.80 43.96 48.22 64.18 66.37

ical indices and continuous indices for the six storm events
with the 16 members of the physical ensemble.

It can be seen in Fig. 4 that PODs of storm types 1 and 2
(events I, II and VI) are all above 0.70 for the 16 members,
which means that the events with even distributions regarding
the rainfall occurrences in space can be accurately simulated.
For the other two storm types, event IV, with relatively lower
Cv, performs better than events V and III. However, PODs of
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Figure 3. Cumulative curves of the observed and simulated areal rainfall for the six storm events.

the 16 members for type 4 event (event III) are all close to
zero, indicating that the WRF model can hardly capture the
storm occurrence in space. Events I and IV have nearly per-
fect scores of FBI, which are close to 1.0. For events II, III
and VI, WRF tends to overestimate the rainfall occurrences,

while for event V, the model tends to have underestimations.
Storm type 1 has the lowest FARs, and the values are all
under 0.20 in the 16 members, which means that the WRF
model has little false alarm possibility in space. Alternatively,
storm type 4 (event III) fails to be regenerated by the model
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Figure 4. Spatial values of the four categorical indices for different storm events with the 16 members of the physical ensemble.

in space because of the high FARs (near 1.0). Storm type 3
outperforms storm type 2, with relatively lower FARs. CSI
can be considered as a comprehensive description of accu-
racy. Storm type 1, with the highest CSIs, performs the best
of all the 16 members, while CSIs of storm type 4 are all
close to zero, showing that the simulation results are unreli-
able. CSIs of the other two storm types have few differences
as a whole, but the index values are a little bit higher for
events with more evenly distributed rainfall in space.

Figure 5 shows that the values of RMSE have great change
in different members for a certain event. RMSE is always re-
garded as the key quantitative index to estimate errors. Storm
event II, with the lowest Cv, always has the lowest RMSE
for the 16 members, which means that the WRF model per-

forms the best for storm event II in simulating the spatial
rainfall distributions. Except for members 1 and 4, event III
has the highest RMSE, and the values of eight members ex-
ceed 100 %. For the other four events, there is little differ-
ence between RMSEs in the 16 members. The MBE index
contains the directions of errors, but in Fig. 5 absolute values
of MBE are used. Storm type 1 has the lowest MBEs of the
16 members, and the MBEs of storm types 3 and 4 are higher
than storm type 2. The values of SD also show variations
for a certain storm type in different members. As a whole,
SD and RMSE have similar patterns for different types of
storm events. From Figs. 4 and 5, it can be easily determined
that few values of the indices for members 13, 14, 15 and
16 are out of the range of the values for the other 12 mem-
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Figure 5. Spatial values of the three continuous indices for different storm events with the 16 members of the physical ensemble.

bers, which indicates that there are always some members
performing better than the 4 members without cumulus pa-
rameterization. It is helpful to use appropriate cumulus pa-
rameterization for the simulation of the spatial rainfall distri-
bution.

The average values of the 16 members for all the seven
indices are calculated to quantitatively analyze the perfor-
mance of the WRF model in spatial dimension for the four
storm types. As shown in Table 7, the value of POD for storm
type 1 is higher than storm types 3 and 4. In addition, the
value of CSI for storm type 1 is the highest, and the value of
FAR is the lowest in the four storm types. The lower values
of RMSE and MBE for storm type 1 also indicate that the
WRF model performs well for storm type 1. The simulations
of type 3 events are worse than type 2 events, showing lower
POD and higher RMSE values, though the FARs of the type 2
events are a little higher than type 3 events. The lowest POD
and CSI and the highest FAR and RMSE can be found with
storm type 4, which indicates that the WRF model can hardly
capture this kind of storm accurately in space. Since the in-
dex of RMSE shows the actual magnitude of errors without
canceling out the positive and negative errors, a correlation
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Figure 6. The relationship between RMSE and Cv in the spatial
dimension.

analysis is further carried out between RMSE and the spatial
evenness indicator Cv. It’s interesting to find that RMSE and
Cv have a good linear relationship and the correlation coef-
ficient of the linear regression (R2) can reach up to 0.8899
(shown by Fig. 6). This means that the WRF simulation error
increases with the increase of the spatial rainfall unevenness
in the study sites.
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Table 7. Average index values of the 16 members of the physical ensemble for the simulations of the spatial rainfall distributions.

Types of storm events Categorical indices Continuous indices (%)

POD FBI FAR CSI RMSE MBE SD

Type 1 Event I 0.8440 0.9815 0.1313 0.7565 61.74 21.21 53.54
Type 2 Event II 0.8934 1.5877 0.4238 0.5357 40.07 35.67 15.74

Event VI 0.9014 2.8866 0.6187 0.3516 66.36 42.74 49.78
Type 3 Event IV 0.6460 0.9974 0.3285 0.4873 60.46 45.49 41.10

Event V 0.4671 0.6906 0.3215 0.3821 78.65 61.51 51.36
Type 4 Event III 0.0503 1.6301 0.9731 0.0194 96.88 66.14 63.53
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Figure 7. Temporal values of the four categorical indices for different storm events with the 16 members of the physical ensemble.
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Figure 8. Temporal values of the three continuous indices for different storm events with the 16 members of the physical ensemble.

4.3 Simulations of the temporal rainfall patterns

The seven indices are also calculated in the temporal dimen-
sion to evaluate the simulated rainfall patterns in time. The
values are respectively shown in Figs. 7 and 8. In Fig. 7,
PODs of storm types 1 and 2 are all above 0.70 and much
higher than storm types 3 and 4 in the 16 members. It in-
dicates that storm types 1 and 2 can be accurately simulated
with regards to the rainfall occurrence in the temporal dimen-
sion, while the WRF model fails with storm type 4, with all
PODs of the 16 members close to 0. For FBI, the scores of
events I and IV are nearly perfect, but the other four events
show tendencies of overestimating the rainfall occurrences
in time, especially event VI. The lowest FAR values are also
found with storm type 1, with all the values less than 0.20 in
the 16 members. Storm type 4 has the highest FARs, which
are close to 1.0 in some members. Based on the FAR index,
the ranking of the WRF performance in simulating tempo-
ral rainfall occurrences is type 1 > type 3 > type 2 > type 4,
from the best to the worst. In the 16 members, CSIs of storm
type 1 are always the highest, while CSIs of storm type 4 are

always the lowest. It should be mentioned that the CSI is 0
in members 7, 11, 14 and 15 in storm event III, indicating a
bad simulation of the temporal rainfall occurrences for this
type 4 event.

In Fig. 8, type 1 event has the lowest RMSEs of the
16 members, but the values are nearly 100 %. Type 4
event has the highest RMSEs, which are all above 250 %.
The other two types of storm events also have high RMSE
values between 100 and 180 %. We can say that the WRF
model cannot perform well in simulating the temporal rain-
fall patterns for all the storm types. Storm type 1 has the low-
est MBEs, and the MBE values of storm types 3 and 4 are
relatively higher than storm type 2 in most members. All SDs
are above 100 % in the 16 members for the six events, with
the lowest values found with event II. From Figs. 7 and 8, the
same as the conclusions in the spatial dimension, most values
of the indices for members 13, 14, 15 and 16 are in the range
of the values for the other 12 members, which indicates that
there are always some members performing better than the
4 members without cumulus parameterization. It is also nec-
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essary to use cumulus parameterization for the simulation of
the temporal rainfall distribution.

The average ensemble values for the seven indices are also
calculated for evaluating the performance of the WRF model
in simulating the temporal rainfall patterns. The results are
shown in Table 8. The values of POD and CSI for storm
type 1 are the highest, and the values of FAR and RMSE
are the lowest in the four storm types, which indicate that the
WRF model performs best for storm type 1. The model per-
forms the worst for storm type 4, with the lowest POD and
CSI and the highest FAR and RMSE. In general, the simula-
tion results of the temporal rainfall patterns are unsatisfactory
for all the four storm types. The linear relationship between
RMSE and the temporal Cv is also significant and the corre-
lation coefficient of linear regression (R2) is 0.7524 (shown
by Fig. 9). It indicates that the simulation error also increases
with the increase of the rainfall unevenness in the temporal
dimension.

5 Discussion

In this study, the performances of 16 WRF physical mem-
bers are estimated firstly by AREs for cumulative rainfall
amounts and then by a two-dimensional verification scheme
for spatiotemporal rainfall distributions. According to the
spatiotemporal evenness, six storm events are classified into
four storm types. Storm type 1 has a two-dimensional even-
ness of rainfall which is even in the spatiotemporal distri-
bution. The WRF model performs best for simulating this
storm type, not only for the cumulative rainfall amounts but
also for the spatiotemporal distributions. Storm type 2 is only
even in space, and the simulation results from the WRF en-
semble are better than storm types 3 and 4. But compared
with type 1, the cumulative rainfall amounts of type 2 events
are seriously underestimated. Storm types 3 and 4 are both
uneven in spatiotemporal distribution, and the unevenness
is especially remarkable for type 4 events. The simulations
of the WRF model are unsatisfactory for the spatiotempo-
ral patterns of the two storm types. The simulation results
of type 4 events are the worst among the four storm types.
Some of the members even miss the whole storm duration in
space and time. It is interesting to find that the WRF model
tends to underestimate the rainfall amounts except for storm
type 1. With more events being investigated in the study sites,
the general simulation errors of the WRF model can be de-
termined by statistical analysis, which can help build a cor-
rection model to further improve the rainfall products of the
WRF model.

For rainfall forecast operation, it is hard to identify the
storm type before the storm occurs. Therefore it is impor-
tant to determine the physical parameterizations which gen-
erally perform well. According to the REs of the 16 mem-
bers for the six storm events shown in Table 5, the AREs
of the six storm events for one certain member are cal-
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Figure 9. The relationship between RMSE and Cv in the temporal
dimension.

culated. It is interesting to find that members containing
BMJ have relatively higher AREs, which are 52.49 % (mem-
ber 9), 48.30 % (member 10), 48.35 % (member 11) and
49.05 % (member 12) respectively. The relative lower AREs
(34.02–39.50 %) can be found in members which contain KF.
The members containing GD perform better than members
with BMJ while worse than members with KF. The range
of the AREs is 42.32–44.53 %. The members without cumu-
lus parameterization also perform better than members with
BMJ while worse than members with KF, and the range of
the AREs is 39.55–49.16 %. That is to say, the cumulus pa-
rameterizations have a significant effect on the performance
of the WRF model and BMJ performs the worst in the three
cumulus parameterizations. Janjic (2000) indicated that BMJ
performed poorly in accurately reproducing the range and the
intensity of the low-level jet. The strong ability of BMJ in
simulating the upward transportation of vapor always results
in underestimation of the rainfall amount. That is the main
reason why BMJ is not a good choice in the study area. Ad-
ditionally, it is necessary to use cumulus parameterization for
the simulation of the rainfall accumulation and spatiotempo-
ral rainfall distribution in the study area. However, the thresh-
old of the horizontal resolution needs to be further discussed
to determine whether to use the cumulus parameterization.

The uncertainties of the rainfall processes affect the choice
of the physical parameterizations in a certain area. It is nec-
essary to select the most appropriate physical parameteriza-
tions to design the physical ensemble for rainfall simulation
and prediction. In this study, the 16 members of the physical
ensemble are constituted from two microphysics, two PBL
and three cumulus parameterizations, which are proven to be
appropriate and widely used in the neighboring areas of the
study sites (Hong et al., 2006; Miao et al., 2011; Pan et al.,
2014). With the development of the WRF model, more so-
phisticated and realistic physical parameterizations could be
developed and should be tested in the study area.

The verification of the WRF model has always been rec-
ognized as a worthy issue to be explored. In this study, a
verification method which can estimate the rainfall simula-
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Table 8. Average index values of the 16 members of the physical ensemble for the simulations of the temporal rainfall patterns.

Types of storm events Categorical indices Continuous indices (%)

POD FBI FAR CSI RMSE MBE SD

Type 1 Event I 0.8341 1.0389 0.1621 0.7264 102.18 −20.37 805.67
Type 2 Event II 0.8531 2.9596 0.4654 0.5153 116.27 −37.74 236.57

Event VI 0.8044 3.5119 0.7310 0.2527 161.29 −45.55 787.85
Type 3 Event IV 0.5683 0.8429 0.2931 0.3894 167.89 −43.11 650.35

Event V 0.4083 1.6646 0.2880 0.2947 140.00 −65.60 812.78
Type 4 Event III 0.0427 2.1653 0.9040 0.0148 253.27 −66.08 948.23

tions in both the spatial and the temporal dimension is used.
It is assumed that the observations from rain gauges are ac-
curate and representative for the two study sites. However, it
brings uncertainties to use point-based observations to eval-
uate grid-based simulations. More grid-based observational
data should be involved to improve the reliability of evalua-
tion, especially those from weather radar and remote sensing.

Ultimately, the main goal of rainfall forecasts is to ob-
tain efficient flood forecasts. The peak flood, flood peak ap-
pearance time and flood process are all significantly influ-
enced by the rainfall accumulations and the spatiotemporal
distribution of the rainfall (Schellekens et al., 2011; Cane
et al., 2013; Fan et al., 2015). Event V, which occurred on
21 July 2012, has caused the greatest flood during the past
10 years in Jing-Jin-Ji (Beijing–Tianjin–Hebei) area and re-
ceived widespread attention in China. The 24 h rainfall accu-
mulation was 155.43 mm in the Zijingguan catchment, and
the peak flow reached 2580 m3 s−1 at the catchment outlet. In
such cases, accurate rainfall simulations and predictions can
greatly help flood warnings. However, to analyze the useful-
ness of the WRF simulations to flood warning, the rainfall–
runoff transformation processes should be further consid-
ered. This will involve many uncertainties, such as the choice
of the rainfall–runoff model, the data used for model cali-
bration and the involvement of a real-time updating scheme,
which also has a considerable impact on the accuracy of the
flood forecasting results. The exploration of different param-
eterizations for flood warning purposes is an important issue
and worth discussing in further study.

6 Conclusion

In this study, the FNL data from NCAR provide the initial
and boundary conditions for the WRF model, which is used
for rainfall simulation of six representative storm events with
a duration of 24 h in the Fuping and Zijingguan catchments,
located in the south and the north reaches of the Daqinghe
basin in semi-humid areas of North China. Two micro-
physics, two PBL and three cumulus parameterizations are
selected to develop the 16 members of the physical ensem-
ble of the WRF model. Both the cumulative amount and the

spatiotemporal patterns of the simulated rainfall are analyzed
and verified. The relative error is used to evaluate the 24 h ac-
cumulated areal rainfall. The spatial rainfall distributions and
temporal rainfall patterns are verified by a two-dimensional
verification scheme including four categorical and three con-
tinuous indices. The six storm events are classified into four
types based on the spatiotemporal evenness of the rainfall.
In general, the ranking of the average model performance for
different storm types is type 1 > type 2 > type 3 > type 4, from
the best to the worst, depending on both the cumulative rain-
fall amounts and the spatiotemporal rainfall patterns. A nega-
tive correlation is found between the simulation error and the
rainfall evenness in both spatial and temporal dimensions.
Storm events with more evenly distributed rainfall tend to
have better simulation results in space and time. In addition,
for the small catchment scale, accumulated areal rainfall is
more important than the spatiotemporal rainfall distributions.
According to the REs of rainfall accumulations, member 4
is the better choice for storm types 1, 2 and 4, while mem-
bers 9, 10, 11 and 12 have the worse performance for storm
types 1 and 4. For type 3 events, members 5 and 7 are the bet-
ter choices. It provides a reference for choosing the optimal
ensemble in the study area for different storm types.

This study provides a reference for ensemble simulation
of different rainfall types in semi-humid areas of China in
the WRF model. However, the simulated rainfall has rela-
tively large errors, and the simulation results of the temporal
rainfall patterns are always unreliable, especially the results
of events III and V, which cannot be used directly in hydro-
logical studies. Data assimilation has been proven to be an
effective method in improving the rainfall simulation results
of the WRF model by many studies (Ha and Lee, 2012; Liu
et al., 2012; Routray et al., 2012). Data assimilation can in-
gest various sources of observations (surface observed data,
radar data, satellite data and sounding data) into the WRF
model products and then use the respective error statistics to
update and correct the WRF model products (Wan and Xu,
2011; Ha et al., 2014; Xie et al., 2016). More studies should
be carried out in the study sites with the assistance of data as-
similation so that the rainfall products from the WRF model
can be further improved.
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