Articles | Volume 17, issue 12
https://doi.org/10.5194/nhess-17-2163-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/nhess-17-2163-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Damage assessment in Braunsbach 2016: data collection and analysis for an improved understanding of damaging processes during flash floods
University of Potsdam, Institute of Earth and Environmental Science, Karl-Liebknecht-Strasse 24–25, 14476 Potsdam, Germany
Viktor Rözer
GFZ German Research Centre for Geosciences, Department of Hydrology, Telegrafenberg, 14473 Potsdam, Germany
Tobias Sieg
University of Potsdam, Institute of Earth and Environmental Science, Karl-Liebknecht-Strasse 24–25, 14476 Potsdam, Germany
GFZ German Research Centre for Geosciences, Department of Hydrology, Telegrafenberg, 14473 Potsdam, Germany
Kristin Vogel
University of Potsdam, Institute of Earth and Environmental Science, Karl-Liebknecht-Strasse 24–25, 14476 Potsdam, Germany
Annegret H. Thieken
University of Potsdam, Institute of Earth and Environmental Science, Karl-Liebknecht-Strasse 24–25, 14476 Potsdam, Germany
Related authors
Jonas Laudan, Gert Zöller, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 20, 999–1023, https://doi.org/10.5194/nhess-20-999-2020, https://doi.org/10.5194/nhess-20-999-2020, 2020
Short summary
Short summary
The paper focuses on psychological impacts of river floods and flash floods on affected individuals. Since the connection between psychological characteristics and protection motivation is not yet fully understood, potential coherences are investigated with regard to both flood types. As a main result, the frequency of remembering an event seems to be positively connected to a greater willingness to protect oneself, especially if affected by a weaker flood event.
Cassiano Bastos Moroz and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 3299–3314, https://doi.org/10.5194/nhess-24-3299-2024, https://doi.org/10.5194/nhess-24-3299-2024, 2024
Short summary
Short summary
We evaluate the influence of urban processes on the impacts of the 2023 disaster that hit the North Coast of São Paulo, Brazil. The impacts of the disaster were largely associated with rapid urban expansion over the last 3 decades, with a recent occupation of risky areas. Moreover, lower-income neighborhoods were considerably more severely impacted, which evidences their increased exposure to such events. These results highlight the strong association between disaster risk and urban poverty.
Marie-Luise Zenker, Philip Bubeck, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 2837–2856, https://doi.org/10.5194/nhess-24-2837-2024, https://doi.org/10.5194/nhess-24-2837-2024, 2024
Short summary
Short summary
Despite the visible flood damage, mental health is a growing concern. Yet, there is limited data in Germany on mental health impacts after floods. A survey in a heavily affected region revealed that 28 % of respondents showed signs of post-traumatic stress disorder 1 year later. Risk factors include gender, serious injury or illness due to flooding, and feeling left alone to cope with impacts. The study highlights the need for tailored mental health support for flood-affected populations.
Lisa Dillenardt and Annegret H. Thieken
EGUsphere, https://doi.org/10.5194/egusphere-2024-162, https://doi.org/10.5194/egusphere-2024-162, 2024
Short summary
Short summary
Using survey data, we analysed the influence of different flood types on whether households implement adaptive measures. We found that communication and management strategies need to involve municipalities and should be tailored to the locally relevant flood type.
Annegret H. Thieken, Philip Bubeck, Anna Heidenreich, Jennifer von Keyserlingk, Lisa Dillenardt, and Antje Otto
Nat. Hazards Earth Syst. Sci., 23, 973–990, https://doi.org/10.5194/nhess-23-973-2023, https://doi.org/10.5194/nhess-23-973-2023, 2023
Short summary
Short summary
In July 2021 intense rainfall caused devastating floods in western Europe with 184 fatalities in the German federal states of North Rhine-Westphalia (NW) and Rhineland-Palatinate (RP), calling their warning system into question. An online survey revealed that 35 % of respondents from NW and 29 % from RP did not receive any warning. Many of those who were warned did not expect severe flooding, nor did they know how to react. The study provides entry points for improving Germany's warning system.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Michael Dietze, Rainer Bell, Ugur Ozturk, Kristen L. Cook, Christoff Andermann, Alexander R. Beer, Bodo Damm, Ana Lucia, Felix S. Fauer, Katrin M. Nissen, Tobias Sieg, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 22, 1845–1856, https://doi.org/10.5194/nhess-22-1845-2022, https://doi.org/10.5194/nhess-22-1845-2022, 2022
Short summary
Short summary
The flood that hit Europe in July 2021, specifically the Eifel, Germany, was more than a lot of fast-flowing water. The heavy rain that fell during the 3 d before also caused the slope to fail, recruited tree trunks that clogged bridges, and routed debris across the landscape. Especially in the upper parts of the catchments the flood was able to gain momentum. Here, we discuss how different landscape elements interacted and highlight the challenges of holistic future flood anticipation.
Annegret H. Thieken, Guilherme Samprogna Mohor, Heidi Kreibich, and Meike Müller
Nat. Hazards Earth Syst. Sci., 22, 165–185, https://doi.org/10.5194/nhess-22-165-2022, https://doi.org/10.5194/nhess-22-165-2022, 2022
Short summary
Short summary
Various floods hit Germany recently. While there was a river flood with some dike breaches in 2013, flooding in 2016 resulted directly from heavy rainfall, causing overflowing drainage systems in urban areas and destructive flash floods in steep catchments. Based on survey data, we analysed how residents coped with these different floods. We observed significantly different flood impacts, warnings, behaviour and recovery, offering entry points for tailored risk communication and support.
Guilherme S. Mohor, Annegret H. Thieken, and Oliver Korup
Nat. Hazards Earth Syst. Sci., 21, 1599–1614, https://doi.org/10.5194/nhess-21-1599-2021, https://doi.org/10.5194/nhess-21-1599-2021, 2021
Short summary
Short summary
We explored differences in the damaging process across different flood types, regions within Germany, and six flood events through a numerical model in which the groups can learn from each other. Differences were found mostly across flood types, indicating the importance of identifying them, but there is great overlap across regions and flood events, indicating either that socioeconomic or temporal information was not well represented or that they are in fact less different within our cases.
Daniela Molinari, Anna Rita Scorzini, Chiara Arrighi, Francesca Carisi, Fabio Castelli, Alessio Domeneghetti, Alice Gallazzi, Marta Galliani, Frédéric Grelot, Patric Kellermann, Heidi Kreibich, Guilherme S. Mohor, Markus Mosimann, Stephanie Natho, Claire Richert, Kai Schroeter, Annegret H. Thieken, Andreas Paul Zischg, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 20, 2997–3017, https://doi.org/10.5194/nhess-20-2997-2020, https://doi.org/10.5194/nhess-20-2997-2020, 2020
Short summary
Short summary
Flood risk management requires a realistic estimation of flood losses. However, the capacity of available flood damage models to depict real damages is questionable. With a joint effort of eight research groups, the objective of this study was to compare the performances of nine models for the estimation of flood damage to buildings. The comparison provided more objective insights on the transferability of the models and on the reliability of their estimations.
Patric Kellermann, Kai Schröter, Annegret H. Thieken, Sören-Nils Haubrock, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 20, 2503–2519, https://doi.org/10.5194/nhess-20-2503-2020, https://doi.org/10.5194/nhess-20-2503-2020, 2020
Short summary
Short summary
The flood damage database HOWAS 21 contains object-specific flood damage data resulting from fluvial, pluvial and groundwater flooding. The datasets incorporate various variables of flood hazard, exposure, vulnerability and direct tangible damage at properties from several economic sectors. This paper presents HOWAS 21 and highlights exemplary analyses to demonstrate the use of HOWAS 21 flood damage data.
Jonas Laudan, Gert Zöller, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 20, 999–1023, https://doi.org/10.5194/nhess-20-999-2020, https://doi.org/10.5194/nhess-20-999-2020, 2020
Short summary
Short summary
The paper focuses on psychological impacts of river floods and flash floods on affected individuals. Since the connection between psychological characteristics and protection motivation is not yet fully understood, potential coherences are investigated with regard to both flood types. As a main result, the frequency of remembering an event seems to be positively connected to a greater willingness to protect oneself, especially if affected by a weaker flood event.
Heidi Kreibich, Meike Müller, Kai Schröter, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 17, 2075–2092, https://doi.org/10.5194/nhess-17-2075-2017, https://doi.org/10.5194/nhess-17-2075-2017, 2017
Short summary
Short summary
Early warning is essential for protecting people and mitigating damage in case of flood events. To gain more knowledge, surveys were taken after the 2002 and the 2013 floods in Germany. Results show that early warning and preparedness improved substantially. However, there is still room for further improvement, which needs to be triggered mainly by effective risk and emergency communication.
Matthieu Spekkers, Viktor Rözer, Annegret Thieken, Marie-Claire ten Veldhuis, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 17, 1337–1355, https://doi.org/10.5194/nhess-17-1337-2017, https://doi.org/10.5194/nhess-17-1337-2017, 2017
Patric Kellermann, Christine Schönberger, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 16, 2357–2371, https://doi.org/10.5194/nhess-16-2357-2016, https://doi.org/10.5194/nhess-16-2357-2016, 2016
Jaroslav Mysiak, Swenja Surminski, Annegret Thieken, Reinhard Mechler, and Jeroen Aerts
Nat. Hazards Earth Syst. Sci., 16, 2189–2193, https://doi.org/10.5194/nhess-16-2189-2016, https://doi.org/10.5194/nhess-16-2189-2016, 2016
Short summary
Short summary
In March 2015, a new international blueprint for disaster risk reduction (DRR) has been adopted in Sendai, Japan, at the end of the Third UN World Conference on Disaster Risk Reduction (WCDRR, March 14–18, 2015). We review and discuss the agreed commitments and targets, as well as the negotiation leading the Sendai Framework for DRR (SFDRR), and discuss briefly its implication for the later UN-led negotiations on sustainable development goals and climate change.
Annegret H. Thieken, Tina Bessel, Sarah Kienzler, Heidi Kreibich, Meike Müller, Sebastian Pisi, and Kai Schröter
Nat. Hazards Earth Syst. Sci., 16, 1519–1540, https://doi.org/10.5194/nhess-16-1519-2016, https://doi.org/10.5194/nhess-16-1519-2016, 2016
Short summary
Short summary
In June 2013, widespread flooding and consequent damage and losses occurred in central Europe, especially in Germany. The paper explores what data are available to investigate the adverse impacts of the event, what kind of information can be retrieved from these data, and how good data and information fulfil requirements that were recently proposed for disaster reporting on the European and international level, e.g. by the Sendai Framework for Disaster Risk Reduction 2015–2030.
P. Kellermann, A. Schöbel, G. Kundela, and A. H. Thieken
Nat. Hazards Earth Syst. Sci., 15, 2485–2496, https://doi.org/10.5194/nhess-15-2485-2015, https://doi.org/10.5194/nhess-15-2485-2015, 2015
S. Kienzler, I. Pech, H. Kreibich, M. Müller, and A. H. Thieken
Nat. Hazards Earth Syst. Sci., 15, 505–526, https://doi.org/10.5194/nhess-15-505-2015, https://doi.org/10.5194/nhess-15-505-2015, 2015
K. Vogel, C. Riggelsen, O. Korup, and F. Scherbaum
Nat. Hazards Earth Syst. Sci., 14, 2605–2626, https://doi.org/10.5194/nhess-14-2605-2014, https://doi.org/10.5194/nhess-14-2605-2014, 2014
S. Uhlemann, A. H. Thieken, and B. Merz
Nat. Hazards Earth Syst. Sci., 14, 189–208, https://doi.org/10.5194/nhess-14-189-2014, https://doi.org/10.5194/nhess-14-189-2014, 2014
H. Cammerer, A. H. Thieken, and J. Lammel
Nat. Hazards Earth Syst. Sci., 13, 3063–3081, https://doi.org/10.5194/nhess-13-3063-2013, https://doi.org/10.5194/nhess-13-3063-2013, 2013
C. Pfurtscheller and A. H. Thieken
Nat. Hazards Earth Syst. Sci., 13, 2619–2637, https://doi.org/10.5194/nhess-13-2619-2013, https://doi.org/10.5194/nhess-13-2619-2013, 2013
V. Meyer, N. Becker, V. Markantonis, R. Schwarze, J. C. J. M. van den Bergh, L. M. Bouwer, P. Bubeck, P. Ciavola, E. Genovese, C. Green, S. Hallegatte, H. Kreibich, Q. Lequeux, I. Logar, E. Papyrakis, C. Pfurtscheller, J. Poussin, V. Przyluski, A. H. Thieken, and C. Viavattene
Nat. Hazards Earth Syst. Sci., 13, 1351–1373, https://doi.org/10.5194/nhess-13-1351-2013, https://doi.org/10.5194/nhess-13-1351-2013, 2013
Related subject area
Hydrological Hazards
Review article: Drought as a continuum – memory effects in interlinked hydrological, ecological, and social systems
Coupling WRF with HEC-HMS and WRF-Hydro for flood forecasting in typical mountainous catchments of northern China
Precursors and pathways: dynamically informed extreme event forecasting demonstrated on the historic Emilia-Romagna 2023 flood
Demonstrating the use of UNSEEN climate data for hydrological applications: case studies for extreme floods and droughts in England
Exploring the use of seasonal forecasts to adapt flood insurance premiums
Are 2D shallow-water solvers fast enough for early flood warning? A comparative assessment on the 2021 Ahr valley flood event
Water depth estimate and flood extent enhancement for satellite-based inundation maps
Probabilistic flood inundation mapping through copula Bayesian multi-modeling of precipitation products
Flood occurrence and impact models for socioeconomic applications over Canada and the United States
Model-based assessment of climate change impact on inland flood risk at the German North Sea coast caused by compounding storm tide and precipitation events
An improved dynamic bidirectional coupled hydrologic–hydrodynamic model for efficient flood inundation prediction
Quantifying hazard resilience by modeling infrastructure recovery as a resource-constrained project scheduling problem
Hydrometeorological controls of and social response to the 22 October 2019 catastrophic flash flood in Catalonia, north-eastern Spain
A downward-counterfactual analysis of flash floods in Germany
Hyper-resolution flood hazard mapping at the national scale
Compound droughts under climate change in Switzerland
Brief communication: SWM – stochastic weather model for precipitation-related hazard assessments using ERA5-Land data
Spatiotemporal variability of flash floods and their human impacts in the Czech Republic during the 2001–2023 period
Text mining uncovers the unique dynamics of socio-economic impacts of the 2018–2022 multi-year drought in Germany
The value of multi-source data for improved flood damage modelling with explicit input data uncertainty treatment: INSYDE 2.0
A multivariate statistical framework for mixed populations in compound flood analysis
Risk of compound flooding substantially increases in the future Mekong River delta
Limited effect of the confluence angle and tributary gradient on Alpine confluence morphodynamics under intense sediment loads
Does a convection-permitting regional climate model bring new perspectives on the projection of Mediterranean floods?
Added value of seasonal hindcasts to create UK hydrological drought storylines
Flash flood detection via copula-based intensity–duration–frequency curves: evidence from Jamaica
Algorithmically Detected Rain-on-Snow Flood Events in Different Climate Datasets: A Case Study of the Susquehanna River Basin
Seasonal forecasting of local-scale soil moisture droughts with Global BROOK90: a case study of the European drought of 2018
How to mitigate flood events similar to the 1979 catastrophic floods in the lower Tagus
Assessing LISFLOOD-FP with the next-generation digital elevation model FABDEM using household survey and remote sensing data in the Central Highlands of Vietnam
CRHyME (Climatic Rainfall Hydrogeological Modelling Experiment): a new model for geo-hydrological hazard assessment at the basin scale
The cascading effect of wildfires on flood risk: a study case in Ebro River basin Spain
Current and future rainfall-driven flood risk from hurricanes in Puerto Rico under 1.5 and 2 °C climate change
Modelling hazards impacting the flow regime in the Hranice Karst due to the proposed Skalička Dam
Using integrated hydrological–hydraulic modelling and global data sources to analyse the February 2023 floods in the Umbeluzi Catchment (Mozambique)
Impact-based flood forecasting in the Greater Horn of Africa
Floods in the Pyrenees: A global view through a regional database
Brief communication: A first hydrological investigation of extreme August 2023 floods in Slovenia, Europe
Multivariate regression trees as an “explainable machine learning” approach to explore relationships between hydroclimatic characteristics and agricultural and hydrological drought severity: case of study Cesar River basin
Review article: Towards improved drought prediction in the Mediterranean region – modeling approaches and future directions
Mind the Gap: Misalignment Between Drought Monitoring and Community Realities
Assessing typhoon-induced compound flood drivers: a case study in Ho Chi Minh City, Vietnam
Assessing the ability of a new seamless short-range ensemble rainfall product to anticipate flash floods in the French Mediterranean area
Sentinel-1-based analysis of the severe flood over Pakistan 2022
Sensitivity analysis of erosion on the landward slope of an earthen flood defense located in southern France submitted to wave overtopping
Transferability of machine learning-based modeling frameworks across flood events for hindcasting maximum river flood depths in coastal watersheds
Better prepared but less resilient: the paradoxical impact of frequent flood experience on adaptive behavior and resilience
Assessing the spatial spread–skill of ensemble flood maps with remote-sensing observations
An integrated modeling approach to evaluate the impacts of nature-based solutions of flood mitigation across a small watershed in the southeast United States
Indicator-to-impact links to help improve agricultural drought preparedness in Thailand
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Sheik Umar Jam-Jalloh, Jia Liu, Yicheng Wang, and Yuchen Liu
Nat. Hazards Earth Syst. Sci., 24, 3155–3172, https://doi.org/10.5194/nhess-24-3155-2024, https://doi.org/10.5194/nhess-24-3155-2024, 2024
Short summary
Short summary
Our paper explores improving flood forecasting using advanced weather and hydrological models. By coupling the WRF model with WRF-Hydro and HEC-HMS, we achieved more accurate forecasts. WRF–WRF-Hydro excels for short, intense storms, while WRF–HEC-HMS is better for longer, evenly distributed storms. Our research shows how these models provide insights for adaptive atmospheric–hydrologic systems and aims to boost flood preparedness and response with more reliable, timely predictions.
Joshua Dorrington, Marta Wenta, Federico Grazzini, Linus Magnusson, Frederic Vitart, and Christian M. Grams
Nat. Hazards Earth Syst. Sci., 24, 2995–3012, https://doi.org/10.5194/nhess-24-2995-2024, https://doi.org/10.5194/nhess-24-2995-2024, 2024
Short summary
Short summary
Extreme rainfall is the leading weather-related source of damages in Europe, but it is still difficult to predict on long timescales. A recent example of this was the devastating floods in the Italian region of Emiglia Romagna in May 2023. We present perspectives based on large-scale dynamical information that allows us to better understand and predict such events.
Alison L. Kay, Nick Dunstone, Gillian Kay, Victoria A. Bell, and Jamie Hannaford
Nat. Hazards Earth Syst. Sci., 24, 2953–2970, https://doi.org/10.5194/nhess-24-2953-2024, https://doi.org/10.5194/nhess-24-2953-2024, 2024
Short summary
Short summary
Hydrological hazards affect people and ecosystems, but extremes are not fully understood due to limited observations. A large climate ensemble and simple hydrological model are used to assess unprecedented but plausible floods and droughts. The chain gives extreme flows outside the observed range: summer 2022 ~ 28 % lower and autumn 2023 ~ 42 % higher. Spatial dependence and temporal persistence are analysed. Planning for such events could help water supply resilience and flood risk management.
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024, https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Short summary
Our study explored how seasonal flood forecasts could enhance insurance premium accuracy. Insurers traditionally rely on historical data, yet climate fluctuations influence flood risk. We employed a method that predicts seasonal floods to adjust premiums accordingly. Our findings showed significant year-to-year variations in flood risk and premiums, underscoring the importance of adaptability. Despite limitations, this research aids insurers in preparing for evolving risks.
Shahin Khosh Bin Ghomash, Heiko Apel, and Daniel Caviedes-Voullième
Nat. Hazards Earth Syst. Sci., 24, 2857–2874, https://doi.org/10.5194/nhess-24-2857-2024, https://doi.org/10.5194/nhess-24-2857-2024, 2024
Short summary
Short summary
Early warning is essential to minimise the impact of flash floods. We explore the use of highly detailed flood models to simulate the 2021 flood event in the lower Ahr valley (Germany). Using very high-resolution models resolving individual streets and buildings, we produce detailed, quantitative, and actionable information for early flood warning systems. Using state-of-the-art computational technology, these models can guarantee very fast forecasts which allow for sufficient time to respond.
Andrea Betterle and Peter Salamon
Nat. Hazards Earth Syst. Sci., 24, 2817–2836, https://doi.org/10.5194/nhess-24-2817-2024, https://doi.org/10.5194/nhess-24-2817-2024, 2024
Short summary
Short summary
The study proposes a new framework, named FLEXTH, to estimate flood water depth and improve satellite-based flood monitoring using topographical data. FLEXTH is readily available as a computer code, offering a practical and scalable solution for estimating flood depth quickly and systematically over large areas. The methodology can reduce the impacts of floods and enhance emergency response efforts, particularly where resources are limited.
Francisco Javier Gomez, Keighobad Jafarzadegan, Hamed Moftakhari, and Hamid Moradkhani
Nat. Hazards Earth Syst. Sci., 24, 2647–2665, https://doi.org/10.5194/nhess-24-2647-2024, https://doi.org/10.5194/nhess-24-2647-2024, 2024
Short summary
Short summary
This study utilizes the global copula Bayesian model averaging technique for accurate and reliable flood modeling, especially in coastal regions. By integrating multiple precipitation datasets within this framework, we can effectively address sources of error in each dataset, leading to the generation of probabilistic flood maps. The creation of these probabilistic maps is essential for disaster preparedness and mitigation in densely populated areas susceptible to extreme weather events.
Manuel Grenier, Mathieu Boudreault, David A. Carozza, Jérémie Boudreault, and Sébastien Raymond
Nat. Hazards Earth Syst. Sci., 24, 2577–2595, https://doi.org/10.5194/nhess-24-2577-2024, https://doi.org/10.5194/nhess-24-2577-2024, 2024
Short summary
Short summary
Modelling floods at the street level for large countries like Canada and the United States is difficult and very costly. However, many applications do not necessarily require that level of detail. As a result, we present a flood modelling framework built with artificial intelligence for socioeconomic studies like trend and scenarios analyses. We find for example that an increase of 10 % in average precipitation yields an increase in displaced population of 18 % in Canada and 14 % in the US.
Helge Bormann, Jenny Kebschull, Lidia Gaslikova, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 2559–2576, https://doi.org/10.5194/nhess-24-2559-2024, https://doi.org/10.5194/nhess-24-2559-2024, 2024
Short summary
Short summary
Inland flooding is threatening coastal lowlands. If rainfall and storm surges coincide, the risk of inland flooding increases. We examine how such compound events are influenced by climate change. Data analysis and model-based scenario analysis show that climate change induces an increasing frequency and intensity of compounding precipitation and storm tide events along the North Sea coast. Overload of inland drainage systems will also increase if no timely adaptation measures are taken.
Yanxia Shen, Zhenduo Zhu, Qi Zhou, and Chunbo Jiang
Nat. Hazards Earth Syst. Sci., 24, 2315–2330, https://doi.org/10.5194/nhess-24-2315-2024, https://doi.org/10.5194/nhess-24-2315-2024, 2024
Short summary
Short summary
We present an improved Multigrid Dynamical Bidirectional Coupled hydrologic–hydrodynamic Model (IM-DBCM) with two major improvements: (1) automated non-uniform mesh generation based on the D-infinity algorithm was implemented to identify flood-prone areas where high-resolution inundation conditions are needed, and (2) ghost cells and bilinear interpolation were implemented to improve numerical accuracy in interpolating variables between the coarse and fine grids. The improved model was reliable.
Taylor Glen Johnson, Jorge Leandro, and Divine Kwaku Ahadzie
Nat. Hazards Earth Syst. Sci., 24, 2285–2302, https://doi.org/10.5194/nhess-24-2285-2024, https://doi.org/10.5194/nhess-24-2285-2024, 2024
Short summary
Short summary
Reliance on infrastructure creates vulnerabilities to disruptions caused by natural hazards. To assess the impacts of natural hazards on the performance of infrastructure, we present a framework for quantifying resilience and develop a model of recovery based upon an application of project scheduling under resource constraints. The resilience framework and recovery model were applied in a case study to assess the resilience of building infrastructure to flooding hazards in Accra, Ghana.
Arnau Amengual, Romu Romero, María Carmen Llasat, Alejandro Hermoso, and Montserrat Llasat-Botija
Nat. Hazards Earth Syst. Sci., 24, 2215–2242, https://doi.org/10.5194/nhess-24-2215-2024, https://doi.org/10.5194/nhess-24-2215-2024, 2024
Short summary
Short summary
On 22 October 2019, the Francolí River basin experienced a heavy precipitation event, resulting in a catastrophic flash flood. Few studies comprehensively address both the physical and human dimensions and their interrelations during extreme flash flooding. This research takes a step forward towards filling this gap in knowledge by examining the alignment among all these factors.
Paul Voit and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 24, 2147–2164, https://doi.org/10.5194/nhess-24-2147-2024, https://doi.org/10.5194/nhess-24-2147-2024, 2024
Short summary
Short summary
To identify flash flood potential in Germany, we shifted the most extreme rainfall events from the last 22 years systematically across Germany and simulated the consequent runoff reaction. Our results show that almost all areas in Germany have not seen the worst-case scenario of flood peaks within the last 22 years. With a slight spatial change of historical rainfall events, flood peaks of a factor of 2 or more would be achieved for most areas. The results can aid disaster risk management.
Günter Blöschl, Andreas Buttinger-Kreuzhuber, Daniel Cornel, Julia Eisl, Michael Hofer, Markus Hollaus, Zsolt Horváth, Jürgen Komma, Artem Konev, Juraj Parajka, Norbert Pfeifer, Andreas Reithofer, José Salinas, Peter Valent, Roman Výleta, Jürgen Waser, Michael H. Wimmer, and Heinz Stiefelmeyer
Nat. Hazards Earth Syst. Sci., 24, 2071–2091, https://doi.org/10.5194/nhess-24-2071-2024, https://doi.org/10.5194/nhess-24-2071-2024, 2024
Short summary
Short summary
A methodology of regional flood hazard mapping is proposed, based on data in Austria, which combines automatic methods with manual interventions to maximise efficiency and to obtain estimation accuracy similar to that of local studies. Flood discharge records from 781 stations are used to estimate flood hazard patterns of a given return period at a resolution of 2 m over a total stream length of 38 000 km. The hazard maps are used for civil protection, risk awareness and insurance purposes.
Christoph Nathanael von Matt, Regula Muelchi, Lukas Gudmundsson, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 1975–2001, https://doi.org/10.5194/nhess-24-1975-2024, https://doi.org/10.5194/nhess-24-1975-2024, 2024
Short summary
Short summary
The simultaneous occurrence of meteorological (precipitation), agricultural (soil moisture), and hydrological (streamflow) drought can lead to augmented impacts. By analysing drought indices derived from the newest climate scenarios for Switzerland (CH2018, Hydro-CH2018), we show that with climate change the concurrence of all drought types will increase in all studied regions of Switzerland. Our results stress the benefits of and need for both mitigation and adaptation measures at early stages.
Melody Gwyneth Whitehead and Mark Stephen Bebbington
Nat. Hazards Earth Syst. Sci., 24, 1929–1935, https://doi.org/10.5194/nhess-24-1929-2024, https://doi.org/10.5194/nhess-24-1929-2024, 2024
Short summary
Short summary
Precipitation-driven hazards including floods, landslides, and lahars can be catastrophic and difficult to forecast due to high uncertainty around future weather patterns. This work presents a stochastic weather model that produces statistically similar (realistic) rainfall over long time periods at minimal computational cost. These data provide much-needed inputs for hazard simulations to support long-term, time and spatially varying risk assessments.
Rudolf Brázdil, Dominika Faturová, Monika Šulc Michalková, Jan Řehoř, Martin Caletka, and Pavel Zahradníček
EGUsphere, https://doi.org/10.5194/egusphere-2024-1467, https://doi.org/10.5194/egusphere-2024-1467, 2024
Short summary
Short summary
Flash floods belong to natural hazards that can be enhanced in frequency, intensity and impacts during the recent climate change. The paper present a complex analysis of spatiotemporal variability and human impacts (including material damage and fatalities) of flash floods in the Czech Republic for the 2001–2023 period. The analysis shows generally not any statistically significant trends in the characteristics analysed.
Jan Sodoge, Christian Kuhlicke, Miguel D. Mahecha, and Mariana Madruga de Brito
Nat. Hazards Earth Syst. Sci., 24, 1757–1777, https://doi.org/10.5194/nhess-24-1757-2024, https://doi.org/10.5194/nhess-24-1757-2024, 2024
Short summary
Short summary
We delved into the socio-economic impacts of the 2018–2022 drought in Germany. We derived a dataset covering the impacts of droughts in Germany between 2000 and 2022 on sectors such as agriculture and forestry based on newspaper articles. Notably, our study illustrated that the longer drought had a wider reach and more varied effects. We show that dealing with longer droughts requires different plans compared to shorter ones, and it is crucial to be ready for the challenges they bring.
Mario Di Bacco, Daniela Molinari, and Anna Rita Scorzini
Nat. Hazards Earth Syst. Sci., 24, 1681–1696, https://doi.org/10.5194/nhess-24-1681-2024, https://doi.org/10.5194/nhess-24-1681-2024, 2024
Short summary
Short summary
INSYDE 2.0 is a tool for modelling flood damage to residential buildings. By incorporating ultra-detailed survey and desk-based data, it improves the reliability and informativeness of damage assessments while addressing input data uncertainties.
Pravin Maduwantha, Thomas Wahl, Sara Santamaria-Aguilar, Robert Andrew Jane, James F. Booth, Hanbeen Kim, and Gabriele Villarini
EGUsphere, https://doi.org/10.5194/egusphere-2024-1122, https://doi.org/10.5194/egusphere-2024-1122, 2024
Short summary
Short summary
Most of the studies on compound flooding assume events that generate extreme rainfall and coastal water level responses originate from a single population, in reality, they originate from multiple populations each with unique statistical characteristics. This paper presents a flexible statistical framework for assessing the compound flood potential from multiple flood drivers that explicitly accounts for different event types.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Tran Ba, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, and Joël J.-M. Hirschi
EGUsphere, https://doi.org/10.5194/egusphere-2024-949, https://doi.org/10.5194/egusphere-2024-949, 2024
Short summary
Short summary
We look at how compound flooding from the combination of river flooding and storm tide (storm surge plus astronomical tide) may be changing over time due to climate change, with a case study of the Mekong River delta. We found that future compound flooding has potential to flood the region more extensively and be longer lasting than compound floods today. This is useful to know because it means that managers of deltas such as the Mekong can assess options for improving existing flood defences.
Théo St. Pierre Ostrander, Thomé Kraus, Bruno Mazzorana, Johannes Holzner, Andrea Andreoli, Francesco Comiti, and Bernhard Gems
Nat. Hazards Earth Syst. Sci., 24, 1607–1634, https://doi.org/10.5194/nhess-24-1607-2024, https://doi.org/10.5194/nhess-24-1607-2024, 2024
Short summary
Short summary
Mountain river confluences are hazardous during localized flooding events. A physical model was used to determine the dominant controls over mountain confluences. Contrary to lowland confluences, in mountain regions, the channel discharges and (to a lesser degree) the tributary sediment concentration control morphological patterns. Applying conclusions drawn from lowland confluences could misrepresent depositional and erosional patterns and the related flood hazard at mountain river confluences.
Nils Poncet, Philippe Lucas-Picher, Yves Tramblay, Guillaume Thirel, Humberto Vergara, Jonathan Gourley, and Antoinette Alias
Nat. Hazards Earth Syst. Sci., 24, 1163–1183, https://doi.org/10.5194/nhess-24-1163-2024, https://doi.org/10.5194/nhess-24-1163-2024, 2024
Short summary
Short summary
High-resolution convection-permitting climate models (CPMs) are now available to better simulate rainstorm events leading to flash floods. In this study, two hydrological models are compared to simulate floods in a Mediterranean basin, showing a better ability of the CPM to reproduce flood peaks compared to coarser-resolution climate models. Future projections are also different, with a projected increase for the most severe floods and a potential decrease for the most frequent events.
Wilson C. H. Chan, Nigel W. Arnell, Geoff Darch, Katie Facer-Childs, Theodore G. Shepherd, and Maliko Tanguy
Nat. Hazards Earth Syst. Sci., 24, 1065–1078, https://doi.org/10.5194/nhess-24-1065-2024, https://doi.org/10.5194/nhess-24-1065-2024, 2024
Short summary
Short summary
The most recent drought in the UK was declared in summer 2022. We pooled a large sample of plausible winters from seasonal hindcasts and grouped them into four clusters based on their atmospheric circulation configurations. Drought storylines representative of what the drought could have looked like if winter 2022/23 resembled each winter circulation storyline were created to explore counterfactuals of how bad the 2022 drought could have been over winter 2022/23 and beyond.
Dino Collalti, Nekeisha Spencer, and Eric Strobl
Nat. Hazards Earth Syst. Sci., 24, 873–890, https://doi.org/10.5194/nhess-24-873-2024, https://doi.org/10.5194/nhess-24-873-2024, 2024
Short summary
Short summary
The risk of extreme rainfall events causing floods is likely increasing with climate change. Flash floods, which follow immediately after extreme rainfall, are particularly difficult to forecast and assess. We develop a decision rule for flash flood classification with data on all incidents between 2001 and 2018 in Jamaica with the statistical copula method. This decision rule tells us for any rainfall event of a certain duration how intense it has to be to likely trigger a flash flood.
Colin M. Zarzycki, Benjamin D. Ascher, Alan M. Rhoades, and Rachel R. McCrary
EGUsphere, https://doi.org/10.5194/egusphere-2023-3094, https://doi.org/10.5194/egusphere-2023-3094, 2024
Short summary
Short summary
We developed an automated workflow to detect rain-on-snow events, which cause flooding in the northeastern U.S., in climate data. Analyzing the Susquehanna River Basin, this technique identified known events affecting river flow. Comparing four gridded datasets revealed variations in event frequency and severity, driven by different snowmelt and runoff estimates. This highlights the need for accurate climate data in flood management and risk prediction for these compound extremes.
Ivan Vorobevskii, Thi Thanh Luong, and Rico Kronenberg
Nat. Hazards Earth Syst. Sci., 24, 681–697, https://doi.org/10.5194/nhess-24-681-2024, https://doi.org/10.5194/nhess-24-681-2024, 2024
Short summary
Short summary
This study presents a new version of a framework which allows us to model water balance components at any site on a local scale. Compared with the first version, the second incorporates new datasets used to set up and force the model. In particular, we highlight the ability of the framework to provide seasonal forecasts. This gives potential stakeholders (farmers, foresters, policymakers, etc.) the possibility to forecast, for example, soil moisture drought and thus apply the necessary measures.
Diego Fernández-Nóvoa, Alexandre M. Ramos, José González-Cao, Orlando García-Feal, Cristina Catita, Moncho Gómez-Gesteira, and Ricardo M. Trigo
Nat. Hazards Earth Syst. Sci., 24, 609–630, https://doi.org/10.5194/nhess-24-609-2024, https://doi.org/10.5194/nhess-24-609-2024, 2024
Short summary
Short summary
The present study focuses on an in-depth analysis of floods in the lower section of the Tagus River from a hydrodynamic perspective by means of the Iber+ numerical model and on the development of dam operating strategies to mitigate flood episodes using the exceptional floods of February 1979 as a benchmark. The results corroborate the model's capability to evaluate floods in the study area and confirm the effectiveness of the proposed strategies to reduce flood impact in the lower Tagus valley.
Laurence Hawker, Jeffrey Neal, James Savage, Thomas Kirkpatrick, Rachel Lord, Yanos Zylberberg, Andre Groeger, Truong Dang Thuy, Sean Fox, Felix Agyemang, and Pham Khanh Nam
Nat. Hazards Earth Syst. Sci., 24, 539–566, https://doi.org/10.5194/nhess-24-539-2024, https://doi.org/10.5194/nhess-24-539-2024, 2024
Short summary
Short summary
We present a global flood model built using a new terrain data set and evaluated in the Central Highlands of Vietnam.
Andrea Abbate, Leonardo Mancusi, Francesco Apadula, Antonella Frigerio, Monica Papini, and Laura Longoni
Nat. Hazards Earth Syst. Sci., 24, 501–537, https://doi.org/10.5194/nhess-24-501-2024, https://doi.org/10.5194/nhess-24-501-2024, 2024
Short summary
Short summary
CRHyME (Climatic Rainfall Hydrogeological Modelling Experiment) is a new physically based and spatially distributed rainfall-runoff model. The main novelties consist of reproducing rainfall-induced geo-hydrological hazards such as shallow landslide, debris flow and watershed erosion through a multi-hazard approach. CRHyME was written in Python, works at a high spatial and temporal resolution, and is a tool suitable for quantifying extreme rainfall consequences at the basin scale.
Samuel Jonson Sutanto, Matthijs Janssen, Mariana Madruga de Brito, and Maria del Pozo Garcia
EGUsphere, https://doi.org/10.5194/egusphere-2024-153, https://doi.org/10.5194/egusphere-2024-153, 2024
Short summary
Short summary
A conventional flood risk assessment only evaluates flood hazard in isolation without considering wildfires. This study, therefore, evaluates the cascading impact of wildfires on flood risk, considering both current and future conditions for the Ebro River basin in Spain. Results show that extreme climate change increases the risk of flooding, especially when considering the cascading impacts of wildfires, highlighting the importance of adopting a multi-hazard risk management approach.
Leanne Archer, Jeffrey Neal, Paul Bates, Emily Vosper, Dereka Carroll, Jeison Sosa, and Daniel Mitchell
Nat. Hazards Earth Syst. Sci., 24, 375–396, https://doi.org/10.5194/nhess-24-375-2024, https://doi.org/10.5194/nhess-24-375-2024, 2024
Short summary
Short summary
We model hurricane-rainfall-driven flooding to assess how the number of people exposed to flooding changes in Puerto Rico under the 1.5 and 2 °C Paris Agreement goals. Our analysis suggests 8 %–10 % of the population is currently exposed to flooding on average every 5 years, increasing by 2 %–15 % and 1 %–20 % at 1.5 and 2 °C. This has implications for adaptation to more extreme flooding in Puerto Rico and demonstrates that 1.5 °C climate change carries a significant increase in risk.
Miroslav Spano and Jaromir Riha
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-21, https://doi.org/10.5194/nhess-2024-21, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Our study examines how building the Skalička Dam near the Hranice Karst affects local groundwater. We used advanced modeling to analyze two dam layouts: lateral and through-flow reservoirs. Results show the through-flow variant significantly alters water levels and mineral water discharge, while the lateral layout has less impact.
Luis Cea, Manuel Álvarez, and Jerónimo Puertas
Nat. Hazards Earth Syst. Sci., 24, 225–243, https://doi.org/10.5194/nhess-24-225-2024, https://doi.org/10.5194/nhess-24-225-2024, 2024
Short summary
Short summary
Mozambique is highly exposed to the impact of floods. To reduce flood damage, it is necessary to develop mitigation measures. Hydrological software is a very useful tool for that purpose, since it allows for a precise quantification of flood hazard in different scenarios. We present a methodology to quantify flood hazard in data-scarce regions, using freely available data and software, and we show its potential by analysing the flood event that took place in the Umbeluzi Basin in February 2023.
Lorenzo Alfieri, Andrea Libertino, Lorenzo Campo, Francesco Dottori, Simone Gabellani, Tatiana Ghizzoni, Alessandro Masoero, Lauro Rossi, Roberto Rudari, Nicola Testa, Eva Trasforini, Ahmed Amdihun, Jully Ouma, Luca Rossi, Yves Tramblay, Huan Wu, and Marco Massabò
Nat. Hazards Earth Syst. Sci., 24, 199–224, https://doi.org/10.5194/nhess-24-199-2024, https://doi.org/10.5194/nhess-24-199-2024, 2024
Short summary
Short summary
This work describes Flood-PROOFS East Africa, an impact-based flood forecasting system for the Greater Horn of Africa. It is based on hydrological simulations, inundation mapping, and estimation of population and assets exposed to upcoming river floods. The system supports duty officers in African institutions in the daily monitoring of hydro-meteorological disasters. A first evaluation shows the system performance for the catastrophic floods in the Nile River basin in summer 2020.
María Carmen Llasat, Montserrat Llasat-Botija, Erika Pardo, Raül Marcos-Matamoros, and Marc Lemus-Canovas
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-206, https://doi.org/10.5194/nhess-2023-206, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Climate change is leading in the Pyrenees Massif to a change in socioeconomic increasing their sensitivity to natural risks such as floods. However, until now, no systematic study like this one had been carried out that would allow evaluating the frequency, distribution and main meteorological features of these events on a massif scale. In 35 years there have been 181 flood events that have produced 154 fatalities.
Nejc Bezak, Panos Panagos, Leonidas Liakos, and Matjaž Mikoš
Nat. Hazards Earth Syst. Sci., 23, 3885–3893, https://doi.org/10.5194/nhess-23-3885-2023, https://doi.org/10.5194/nhess-23-3885-2023, 2023
Short summary
Short summary
Extreme flooding occurred in Slovenia in August 2023. This brief communication examines the main causes, mechanisms and effects of this event. The flood disaster of August 2023 can be described as relatively extreme and was probably the most extreme flood event in Slovenia in recent decades. The economic damage was large and could amount to well over 5 % of Slovenia's annual gross domestic product; the event also claimed three lives.
Ana Paez-Trujilo, Jeffer Cañon, Beatriz Hernandez, Gerald Corzo, and Dimitri Solomatine
Nat. Hazards Earth Syst. Sci., 23, 3863–3883, https://doi.org/10.5194/nhess-23-3863-2023, https://doi.org/10.5194/nhess-23-3863-2023, 2023
Short summary
Short summary
This study uses a machine learning technique, the multivariate regression tree approach, to assess the hydroclimatic characteristics that govern agricultural and hydrological drought severity. The results show that the employed technique successfully identified the primary drivers of droughts and their critical thresholds. In addition, it provides relevant information to identify the areas most vulnerable to droughts and design strategies and interventions for drought management.
Bouchra Zellou, Nabil El Moçayd, and El Houcine Bergou
Nat. Hazards Earth Syst. Sci., 23, 3543–3583, https://doi.org/10.5194/nhess-23-3543-2023, https://doi.org/10.5194/nhess-23-3543-2023, 2023
Short summary
Short summary
In this study, we underscore the critical importance of strengthening drought prediction capabilities in the Mediterranean region. We present an in-depth evaluation of current drought forecasting approaches, encompassing statistical, dynamical, and hybrid statistical–dynamical models, and highlight unexplored research opportunities. Additionally, we suggest viable directions to enhance drought prediction and early warning systems within the area.
Sarra Kchouk, Louise Cavalcante, Lieke A. Melsen, David W. Walker, Germano Ribeiro Neto, Rubens Gondim, Wouter J. Smolenaars, and Pieter R. van Oel
EGUsphere, https://doi.org/10.5194/egusphere-2023-2726, https://doi.org/10.5194/egusphere-2023-2726, 2023
Short summary
Short summary
Droughts impact water and people, yet monitoring often overlooks impacts on people. In Northeast Brazil, we assess official data against local experiences, finding data mismatches and blindspots. Mismatches occur due to the data's broad scope missing finer details. Blindspots arise from ignoring diverse community responses and vulnerabilities to droughts. We suggest enhanced monitoring by technical extension officers for both severe and mild droughts.
Francisco Rodrigues do Amaral, Nicolas Gratiot, Thierry Pellarin, and Tran Anh Tu
Nat. Hazards Earth Syst. Sci., 23, 3379–3405, https://doi.org/10.5194/nhess-23-3379-2023, https://doi.org/10.5194/nhess-23-3379-2023, 2023
Short summary
Short summary
We propose an in-depth analysis of typhoon-induced compound flood drivers in the megacity of Ho Chi Minh, Vietnam. We use in situ and satellite measurements throughout the event to form a holistic overview of its impact. No evidence of storm surge was found, and peak precipitation presents a 16 h time lag to peak river discharge, which evacuates only 1.5 % of available water. The astronomical tide controls the river level even during the extreme event, and it is the main urban flood driver.
Juliette Godet, Olivier Payrastre, Pierre Javelle, and François Bouttier
Nat. Hazards Earth Syst. Sci., 23, 3355–3377, https://doi.org/10.5194/nhess-23-3355-2023, https://doi.org/10.5194/nhess-23-3355-2023, 2023
Short summary
Short summary
This article results from a master's research project which was part of a natural hazards programme developed by the French Ministry of Ecological Transition. The objective of this work was to investigate a possible way to improve the operational flash flood warning service by adding rainfall forecasts upstream of the forecasting chain. The results showed that the tested forecast product, which is new and experimental, has a real added value compared to other classical forecast products.
Florian Roth, Bernhard Bauer-Marschallinger, Mark Edwin Tupas, Christoph Reimer, Peter Salamon, and Wolfgang Wagner
Nat. Hazards Earth Syst. Sci., 23, 3305–3317, https://doi.org/10.5194/nhess-23-3305-2023, https://doi.org/10.5194/nhess-23-3305-2023, 2023
Short summary
Short summary
In August and September 2022, millions of people were impacted by a severe flood event in Pakistan. Since many roads and other infrastructure were destroyed, satellite data were the only way of providing large-scale information on the flood's impact. Based on the flood mapping algorithm developed at Technische Universität Wien (TU Wien), we mapped an area of 30 492 km2 that was flooded at least once during the study's time period. This affected area matches about the total area of Belgium.
Clément Houdard, Adrien Poupardin, Philippe Sergent, Abdelkrim Bennabi, and Jena Jeong
Nat. Hazards Earth Syst. Sci., 23, 3111–3124, https://doi.org/10.5194/nhess-23-3111-2023, https://doi.org/10.5194/nhess-23-3111-2023, 2023
Short summary
Short summary
We developed a system able to to predict, knowing the appropriate characteristics of the flood defense structure and sea state, the return periods of potentially dangerous events as well as a ranking of parameters by order of uncertainty.
The model is a combination of statistical and empirical methods that have been applied to a Mediterranean earthen dike. This shows that the most important characteristics of the dyke are its geometrical features, such as its height and slope angles.
Maryam Pakdehi, Ebrahim Ahmadisharaf, Behzad Nazari, and Eunsaem Cho
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-152, https://doi.org/10.5194/nhess-2023-152, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
Machine learning (ML) models have growingly received attention for predicting flood events. However, there has been concerns about the transferability of these models (their capability in predicting out-of-sample events). Here, we showed that ML models can be transferable for hindcasting maximum river flood depths across major events (Hurricanes Ida, Isaias, Sandy, and Irene) in coastal watersheds when informed by the spatial distribution of pertinent features and underlying physical processes.
Lisa Köhler, Torsten Masson, Sabrina Köhler, and Christian Kuhlicke
Nat. Hazards Earth Syst. Sci., 23, 2787–2806, https://doi.org/10.5194/nhess-23-2787-2023, https://doi.org/10.5194/nhess-23-2787-2023, 2023
Short summary
Short summary
We analyzed the impact of flood experience on adaptive behavior and self-reported resilience. The outcomes draw a paradoxical picture: the most experienced people are the most adapted but the least resilient. We find evidence for non-linear relationships between the number of floods experienced and resilience. We contribute to existing knowledge by focusing specifically on the number of floods experienced and extending the rare scientific literature on the influence of experience on resilience.
Helen Hooker, Sarah L. Dance, David C. Mason, John Bevington, and Kay Shelton
Nat. Hazards Earth Syst. Sci., 23, 2769–2785, https://doi.org/10.5194/nhess-23-2769-2023, https://doi.org/10.5194/nhess-23-2769-2023, 2023
Short summary
Short summary
Ensemble forecasts of flood inundation produce maps indicating the probability of flooding. A new approach is presented to evaluate the spatial performance of an ensemble flood map forecast by comparison against remotely observed flooding extents. This is important for understanding forecast uncertainties and improving flood forecasting systems.
Betina I. Guido, Ioana Popescu, Vidya Samadi, and Biswa Bhattacharya
Nat. Hazards Earth Syst. Sci., 23, 2663–2681, https://doi.org/10.5194/nhess-23-2663-2023, https://doi.org/10.5194/nhess-23-2663-2023, 2023
Short summary
Short summary
We used an integrated model to evaluate the impacts of nature-based solutions (NBSs) on flood mitigation across the Little Pee Dee and Lumber River watershed, the Carolinas, US. This area is strongly affected by climatic disasters, which are expected to increase due to climate change and urbanization, so exploring an NBS approach is crucial for adapting to future alterations. Our research found that NBSs can have visible effects on the reduction in hurricane-driven flooding.
Maliko Tanguy, Michael Eastman, Eugene Magee, Lucy J. Barker, Thomas Chitson, Chaiwat Ekkawatpanit, Daniel Goodwin, Jamie Hannaford, Ian Holman, Liwa Pardthaisong, Simon Parry, Dolores Rey Vicario, and Supattra Visessri
Nat. Hazards Earth Syst. Sci., 23, 2419–2441, https://doi.org/10.5194/nhess-23-2419-2023, https://doi.org/10.5194/nhess-23-2419-2023, 2023
Short summary
Short summary
Droughts in Thailand are becoming more severe due to climate change. Understanding the link between drought impacts on the ground and drought indicators used in drought monitoring systems can help increase a country's preparedness and resilience to drought. With a focus on agricultural droughts, we derive crop- and region-specific indicator-to-impact links that can form the basis of targeted mitigation actions and an improved drought monitoring and early warning system in Thailand.
Cited articles
Beniston, M., Stephenson, D. B., Christensen, O. B., Ferro, C. A. T., Frei, C., Goyette, S., Halsnaes, K., Holt, T., Jylhä, K., Koffi, B., Palutikof, J., Schöll, R., Semmler, T., and Woth, K.: Future extreme events in European climate: an exploration of regional climate model projections, Clim. Change, 81, Suppl. 1, 71–95, https://doi.org/10.1007/s10584-006-9226-z, 2007.
Borga, M., Stoffel, M., Marchi, L., Marra, F., and Jakob, M.: Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris flows, J. Hydrol., 518, 194–205, 2014.
Bracken, L. J., Oughton, E. A., Donaldson, A., Cook, B., Forrester, J., Spray, C., Cinderby, S., Passmore, D., and Bisset, N.: Flood risk management, an approach to managing cross-border hazards, Nat. Hazards, 82, Suppl. 2, 217–240, https://doi.org/10.1007/s11069-016-2284-2, 2016.
Breiman, L.: Random forests, Machine learning, 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Bronstert, A., Agarwal, A., Boessenkool, B., Fischer, M., Heistermann, M., Köhn, L., Moran, T., and Wendi, D.: Die Sturzflut von Braunsbach am 29. Mai 2016: Entstehung, Ablauf und Schäden eines “Jahrhundertereignisses”. Teil 1: Meteorologische und Hydrologische Analysen, Hydrologie und Wasserbewirtschaftung, 61, 150–162, https://doi.org/10.5675/HyWa_2017,3_1, 2017 (in German).
Bubeck, P., Botzen, W. J. W., Kreibich, H., and Aerts, J. C. J. H.: Detailed insights into the influence of flood-coping appraisals on mitigation behaviour, Global Environ. Change, 23, 1327–1338, https://doi.org/10.1016/j.gloenvcha.2013.05.009, 2013.
Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB): Directive 2007/60/EC of the European Parliament and of the Council – of 23 October 2007 – on the assessment and management of flood risks, Official Journal of the European Union, L, 27–34, 2007.
Cardona, O. D., van Aalst, M. K., Birkmann, J., Fordham, M., McGregor, G., Perez, R., Pulwarty, R. S., Schipper, E. L. F., and Sinh, B. T.: Determinants of risk: exposure and vulnerability, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, and New York, NY, USA, 65–108, 2012.
Eckle, M., De Albuquerque, J. P., Herfort, B., and Zipf, A.: Leveraging OpenStreetMap to support flood risk management in municipalities: A prototype decision support system, ISCRAM 2016 Conference Paper, Rio de Janeiro, Brazil, May 2016.
European Environment Agency: Climate change, impacts and vulnerability in Europe 2016 – An indicator-based report, 1, Luxembourg, https://doi.org/10.2800/534806, 2017.
Fuchs, S., Ornetsmüller, C., and Totschnig, R.: Spatial scan statistics in vulnerability assessment: an application to mountain hazards, Nat. Hazards, 64, 2129–2151, https://doi.org/10.1007/s11069-011-0081-5, 2012.
Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A., Blaškovičová, L., Blöschl, G., Borga, M., Dumitrescu, A., Daliakopuolos, I., Garcia, J., Irmescu, A., Kohnova, S., Koutroulis, A., Marchi, L., Matreata, S., Medina, V., Preciso, E., Sempere-Torres, D., Stancalie, G., Szolgay, J., Tsanis, I., Velasco, D., and Viglione, A.: A compilation of data on European flash floods, J. Hydrol., 367, 70–78, 2009.
GDV – Gesamtverband der Deutschen Versicherungswirtschaft: Naturgefahrenreport 2016, Berlin, 2016 (in German).
Hlavčová, K., Kohnová1, S., Borga, M., Horvát, O., Šťastný, P., Pekárová, P., Majerčáková, O., and Danáčová, Z.: Post-event analysis and flash flood hydrology in Slovakia, J. Hydrol. Hydromech., 64, 304–315, https://doi.org/10.1515/johh-2016-0041, 2016.
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of landslide types, an update, Landslides, 11, 167–194, https://doi.org/10.1007/s10346-013-0436-y, 2013.
Jacobi, S. and Heistermann, M.: Benchmarking attenuation correction procedures for six years of single-polarized C-band weather radar observations in South-West Germany, Geomatics, Nat. Hazards Risk, 7, 1785–1799, https://doi.org/10.1080/19475705.2016.1155080, 2016.
Kienzler, S., Falter, D., Jentsch, S., and Thieken, A. H.: Reduktion von Hochwasserschäden im Zusammenspiel von staatlicher und privater Vorsorge – eine Fallstudie an der Mulde, KW Korrespondenz Wasserwirtschaft, 8, 680–687, https://doi.org/10.3243/kwe2015.11.002, 2015 (in German).
Klonner, C., Marx, S., Usón, T., De Albuquerque, J. P., and Höfle, B.: Volunteered Geographic Information in Natural Hazard Analysis: A Systematic Literature Review of Current Approaches with a Focus on Preparedness and Mitigation, ISPRS Int. J. Geo-Inf., 5, 103, https://doi.org/10.3390/ijgi5070103, 2016.
KoBoToolbox: available at: http://www.kobotoolbox.org/, last access: 15 November 2016.
Kreibich, H., Piroth, K., Seifert, I., Maiwald, H., Kunert, U., Schwarz, J., Merz, B., and Thieken, A. H.: Is flow velocity a significant parameter in flood damage modelling?, Nat. Hazards Earth Syst. Sci., 9, 1679–1692, https://doi.org/10.5194/nhess-9-1679-2009, 2009.
Kreibich, H., Botto, A., Merz, B., and Schröter, K.: Probabilistic, Multivariable Flood Loss Modeling on the Mesoscale with BT-FLEMO, Risk Analysis, 37, 774–787, https://doi.org/10.1111/risa.12650, 2016.
Kundzewicz, Z. W., Krysanova, V., Dankers, R., Hirabayashi, Y., Kanae, S., Hattermann, F. F., Huang, S., Milly, P. C. D., Stoffel, M., Driessen, P. P. J., Matczak, P., Quevauviller, P., and Schellnhuber, H.-J.: Differences in flood hazard projections in Europe – their causes and consequences for decision making, Hydrol. Sci. J., 62, 1–14, https://doi.org/10.1080/02626667.2016.1241398, 2017.
Landkreis Schwäbisch Hall: Unwetter-Schadensliste, available at: http://www.lrasha.de/index.php?id=302?&id=302?&no_cache=1&publish[id]=457120&publish[start]=, last access: 16 August 2016.
Maiwald, H. and Schwarz, J.: Damage And Loss Prognosis Tools Correlating Flood Action And Building's Resistance-type Parameters, Int. J. Safety Security Eng., 5, 222–250, https://doi.org/10.2495/SAFE-V5-N3-222-250, 2015.
Maiwald, H. and Schwarz, J.: Die Sturzflut von Braunsbach – Ingenieuranalyse der Gebäudeschäden, Bautechnik, 93, 925–932, https://doi.org/10.1002/bate.201600087, 2016 (in German).
Maksimović, Č., Prodanović, D., Boonya-Aroonnet, S., Leitão, J. P., Djordjević, S., and Allitt, R.: Overland flow and pathway analysis for modelling of urban pluvial flooding, J. Hydraul. Res., 47, 512–523, https://doi.org/10.1080/00221686.2009.9522027, 2009.
Merz, B., Kreibich, H., Schwarze, R., and Thieken, A.: Review article “Assessment of economic flood damage”, Nat. Hazards Earth Syst. Sci., 10, 1697–1724, https://doi.org/10.5194/nhess-10-1697-2010, 2010.
Milanesi, L., Pilotti, M., and Ranzi, R.: A conceptual model of people's vulnerability to floods, Water Resour. Res., 51, 182–197, https://doi.org/10.1002/2014WR016172, 2015.
Molinari, D., Menoni, S., Aronica, G. T., Ballio, F., Berni, N., Pandolfo, C., Stelluti, M., and Minucci, G.: Ex post damage assessment: an Italian experience, Nat. Hazards Earth Syst. Sci., 14, 901–916, https://doi.org/10.5194/nhess-14-901-2014, 2014.
Munich Re: Topics Geo 2016 – Natural catastrophes 2016 – Analyses, assessments, positions, München, 2017.
Murawski, A., Zimmer, J., and Merz, B.: High spatial and temporal organization of changes in precipitation over Germany for 1951–2006, International J. Climatol., 36, 2582–2597, https://doi.org/10.1002/joc.4514, 2015.
Osberghaus, D. and Philippi, A.: Private Hochwasservorsorge und Elementarschadenversicherung – Moral Hazard, der Effekt von Informationskampagnen, und eine Versicherungsillusion, ZVersWiss, 105, 289–306, https://doi.org/10.1007/s12297-016-0341-2, 2016 (in German).
Papathoma-Köhle, M.: Vulnerability curves vs. vulnerability indicators: application of an indicator-based methodology for debris-flow hazards, Nat. Hazards Earth Syst. Sci., 16, 1771–1790, https://doi.org/10.5194/nhess-16-1771-2016, 2016.
Pierson, T. C. and Costa, J. E.: A rheologic classification of subaerial sediment-water flows, Geol. Soc. America, https://doi.org/10.1130/REG7-p1, 1987.
Ripley, B. D.: Pattern recognition and Neural Networks, Cambridge University Press, Cambridge, 1996.
Schelhorn, S. J., Herfort, B., Leiner, R., Zipf, A., and De Albuquerque, J. P.: Identifying Elements at Risk from OpenStreetMap: The Case of Flooding, ISCRAM Conference Paper – University Park, Pennsylvania, USA, May 2014.
Schwarz, J. and Maiwald, H.: Prognose der Bauwerksschädigung unter Hochwassereinwirkung, Bautechnik, 84, 450–464, 2007 (in German).
Song, L., Langfelder, P., and Horvath, S.: Random generalized linear model: a highly accurate and interpretable ensemble predictor, BMC Bioinformatics, 14, 1471–2150, 2013.
Thieken, A. H., Müller, M., Kreibich, H., and Merz, B.: Flood damage and influencing factors: New insights from the August 2002 flood in Germany, Water Resour. Res., 41, 1–16, https://doi.org/10.1029/2005WR004177, 2005.
Thieken, A. H., Cammerer, H., Dobler, C., Lammel, J., and Schöberl, F.: Estimating changes in flood risks and benefits of non-structural adaptation strategies – a case study from Tyrol, Austria, Mitig Adapt Strateg Glob Change, 21, 343–376, https://doi.org/10.1007/s11027-014-9602-3, 2016a.
Thieken, A. H., Kienzler, S., Kreibich, H., Kuhlicke, C., Kunz, M., Mühr, B., Müller, M., Otto, A., Petrow, T., Pisi, S., and Schröter, K.: Review of the flood risk management system in Germany after the major flood in 2013, Ecol. Soc., 21, 51, https://doi.org/10.5751/ES-08547-210251, 2016b.
Totschnig, R., Sedlacek, W., and Fuchs, S.: A quantitative vulnerability function for fluvial sediment Transport, Nat. Hazards, 58, 681–703, https://doi.org/10.1007/s11069-010-9623-5, 2011.
Varnes, D. J.: Landslide hazard zonation: A review of principles and practices, UNESCO Nat. Hazard Ser., 3, 63, Paris, 1984.
Vaz, E. and Arsanjani, J. J.: Crowdsourced mapping of land use in urban dense environments: An assessment of Toronto, The Canadian Geographer/Le Géographe canadien, 59, 1–10, https://doi.org/10.1111/cag.12170, 2015.
Venables, W. N. and Ripley, B. D.: Modern Applied Statistics with S, Fourth Edition, Springer, New York, https://doi.org/10.1007/978-0-387-21706-2, 2002.
Vogel, K., Laudan, J., Sieg, T., Rözer, V., and Thieken, A.: Data collection for a damage assessment after the flash flood in Braunsbach (Germany) in May 2016, GFZ Data Services, https://doi.org/10.5880/fidgeo.2017.015, 2017a.
Vogel, K., Öztürk, U., Riemer, A., Laudan, J., Sieg, T., Wendi, D., Agarwal, A., Rözer, V., Korup, O., and Thieken, A.: Die Sturzflut von Braunsbach am 29. Mai 2016 – Entstehung, Ablauf und Schäden eines “Jahrhundertereignisses”, Teil 2: Geomorphologische Prozesse und Schadensanalyse, Hydrologie & Wasserbewirtschaftung, 61, 163–175, https://doi.org/10.5675/HyWa_2017,3_2, 2017b (in German).
Volosciuk, C., Maraun, D., Semenov, V. A., Tilinia, N., Gulev, S. K., and Latif, M.: Rising Mediterranean Sea Surface Temperatures Amplify Extreme Summer Precipitation in Central Europe, Scientific Reports, 6, 32450, https://doi.org/10.1038/srep32450, 2016.
Yang, A., Fan, H., Jing, N., Sun, Y., and Zipf, A.: Temporal Analysis on Contribution Inequality in OpenStreetMap: A Comparative Study for Four Countries, ISPRS Int. J. Geo-Inf., 5, 5, https://doi.org/10.3390/ijgi5010005, 2016.
Short summary
The flash flood in Braunsbach, Germany, in May 2016 was a severe and rather unfamiliar event which caused high monetary losses and heavy damage to buildings. Between 7 and 8 June we investigated all affected houses and conducted damage assessment to gain insights into the damage driving factors of those events. We conclude that the damage driving factors are complex and also differ partly from those of riverine floods, pointing out the need for further research.
The flash flood in Braunsbach, Germany, in May 2016 was a severe and rather unfamiliar event...
Special issue
Altmetrics
Final-revised paper
Preprint