Articles | Volume 14, issue 9
Research article
29 Sep 2014
Research article |  | 29 Sep 2014

Bayesian network learning for natural hazard analyses

K. Vogel, C. Riggelsen, O. Korup, and F. Scherbaum

Abstract. Modern natural hazards research requires dealing with several uncertainties that arise from limited process knowledge, measurement errors, censored and incomplete observations, and the intrinsic randomness of the governing processes. Nevertheless, deterministic analyses are still widely used in quantitative hazard assessments despite the pitfall of misestimating the hazard and any ensuing risks.

In this paper we show that Bayesian networks offer a flexible framework for capturing and expressing a broad range of uncertainties encountered in natural hazard assessments. Although Bayesian networks are well studied in theory, their application to real-world data is far from straightforward, and requires specific tailoring and adaptation of existing algorithms. We offer suggestions as how to tackle frequently arising problems in this context and mainly concentrate on the handling of continuous variables, incomplete data sets, and the interaction of both. By way of three case studies from earthquake, flood, and landslide research, we demonstrate the method of data-driven Bayesian network learning, and showcase the flexibility, applicability, and benefits of this approach.

Our results offer fresh and partly counterintuitive insights into well-studied multivariate problems of earthquake-induced ground motion prediction, accurate flood damage quantification, and spatially explicit landslide prediction at the regional scale. In particular, we highlight how Bayesian networks help to express information flow and independence assumptions between candidate predictors. Such knowledge is pivotal in providing scientists and decision makers with well-informed strategies for selecting adequate predictor variables for quantitative natural hazard assessments.

Final-revised paper