Articles | Volume 14, issue 9
https://doi.org/10.5194/nhess-14-2605-2014
https://doi.org/10.5194/nhess-14-2605-2014
Research article
 | 
29 Sep 2014
Research article |  | 29 Sep 2014

Bayesian network learning for natural hazard analyses

K. Vogel, C. Riggelsen, O. Korup, and F. Scherbaum

Related authors

Damage assessment in Braunsbach 2016: data collection and analysis for an improved understanding of damaging processes during flash floods
Jonas Laudan, Viktor Rözer, Tobias Sieg, Kristin Vogel, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 17, 2163–2179, https://doi.org/10.5194/nhess-17-2163-2017,https://doi.org/10.5194/nhess-17-2163-2017, 2017
Short summary

Related subject area

Hydrological Hazards
Precursors and pathways: dynamically informed extreme event forecasting demonstrated on the historic Emilia-Romagna 2023 flood
Joshua Dorrington, Marta Wenta, Federico Grazzini, Linus Magnusson, Frederic Vitart, and Christian M. Grams
Nat. Hazards Earth Syst. Sci., 24, 2995–3012, https://doi.org/10.5194/nhess-24-2995-2024,https://doi.org/10.5194/nhess-24-2995-2024, 2024
Short summary
Demonstrating the use of UNSEEN climate data for hydrological applications: case studies for extreme floods and droughts in England
Alison L. Kay, Nick Dunstone, Gillian Kay, Victoria A. Bell, and Jamie Hannaford
Nat. Hazards Earth Syst. Sci., 24, 2953–2970, https://doi.org/10.5194/nhess-24-2953-2024,https://doi.org/10.5194/nhess-24-2953-2024, 2024
Short summary
Exploring the use of seasonal forecasts to adapt flood insurance premiums
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024,https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Are 2D shallow-water solvers fast enough for early flood warning? A comparative assessment on the 2021 Ahr valley flood event
Shahin Khosh Bin Ghomash, Heiko Apel, and Daniel Caviedes-Voullième
Nat. Hazards Earth Syst. Sci., 24, 2857–2874, https://doi.org/10.5194/nhess-24-2857-2024,https://doi.org/10.5194/nhess-24-2857-2024, 2024
Short summary
Water depth estimate and flood extent enhancement for satellite-based inundation maps
Andrea Betterle and Peter Salamon
Nat. Hazards Earth Syst. Sci., 24, 2817–2836, https://doi.org/10.5194/nhess-24-2817-2024,https://doi.org/10.5194/nhess-24-2817-2024, 2024
Short summary

Cited articles

Aguilera, P. A., Fernández, A., Fernández, R., Rumí, R., and Salmerón, A.: Bayesian networks in environmental modelling, Environ. Modell. Softw., 26, 1376–1388, https://doi.org/10.1016/j.envsoft.2011.06.004, 2011.
Bayraktarli, Y. Y. and Faber, M. H.: Bayesian probabilistic network approach for managing earthquake risks of cities, Georisk, 5, 2–24, https://doi.org/10.1080/17499511003679907, 2011.
Berkes, F.: Understanding uncertainty and reducing vulnerability: lessons from resilience thinking, Nat. Hazards, 41, 283–295, https://doi.org/10.1007/s11069-006-9036-7, 2007.
Blaser, L., Ohrnberger, M., Riggelsen, C., and Scherbaum, F.: Bayesian Belief Network for Tsunami Warning Decision Support, Lect. Notes. Artif. Int., 5590, 757–768, https://doi.org/10.1007/978-3-642-02906-6_65, 2009.
Blaser, L., Ohrnberger, M., Riggelsen, C., Babeyko, A., and Scherbaum, F.: Bayesian networks for tsunami early warning, Geophys. J. Int., 185, 1431–1443, 2011.
Download
Altmetrics
Final-revised paper
Preprint