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Abstract. Modern natural hazards research requires deall Introduction
ing with several uncertainties that arise from limited process

knowledge, measurement errors, censored and incomplet’gl wral h q h thauakes. t is floods. land
observations, and the intrinsic randomness of the govern- atural hazards such as earinquakes, tsunamis, 11oods, 1and-
ides, or volcanic eruptions have a wide range of differing

ing processes. Nevertheless, deterministic analyses are stﬁf

widely used in quantitative hazard assessments despite th%auses,htrr:ggerj, and cqnﬁeq%%nces. Yet the.ar_: Of. predlc.t i
pitfall of misestimating the hazard and any ensuing risks. Ing such hazards essentially addresses very similar issues in

In this paper we show that Bayesian networks offer a flexi-t€rMs of model design: the underlying physical processes are

ble framework for capturing and expressing a broad range o ften complex, while the number of influencing factors is

uncertainties encountered in natural hazard assessments. AR 9€: The single and joint effec_ts qf the driving forces_ are
though Bayesian networks are well studied in theory, theirnot always fully understood, which introduces a potentially

application to real-world data is far from straightforward, large degree of uncertainty into any quantitative analysis. Ad-

and requires specific tailoring and adaptation of existing al_dltlonally, observations that form the basis for any inference

gorithms. We offer suggestions as how to tackle frequentlyare often sparse, inaccurate and incomplete, adding yet an-

arising problems in this context and mainly concentrate onOther layer of uncertainty. For examplh_tl;erz et al.(2013
the handling of continuous variables, incomplete data setgPoint out the various sources of uncertainty (scarce data, poor

and the interaction of both. By way of three case Studiesﬂnderstanding of the damaging process, etc.) in the context

from earthquake, flood, and landslide research, we demoan f'POd dak:nage as"sessmlent.s, V\;Iﬁ@’keS(ZOOD calls at-
strate the method of data-driven Bayesian network Iearningtem'on to the overall complexity of human—environment sys-

and showcase the flexibility, applicability, and benefits of thistems’ as vyell as _the |mportar_1_ce of unc_;ler_standmg underlying
approach. uncertainties to improve resilience. SimilarBpmmer and

Our results offer fresh and partly counterintuitive in- Scherbaun(2009 discuss the importance of capturing un-

sights into well-studied multivariate problems of earthquake-cert"’“ntles in seismic hazard analyses to balance between in-

induced ground motion prediction, accurate flood damageveStmentS in provisions of seismic resistance and possible

guantification, and spatially explicit landslide prediction at colr\llsequinclzes n (tjhe cas_e_of_|nsuff|C|enthre5|stance_.” idel
the regional scale. In particular, we highlight how Bayesian ;:\_/ert N esls,h etedrmlnlsnc approacs esh are st hWI ely |
networks help to express information flow and independencé’se In natural hazards assessments. such approaches rarely

assumptions between candidate predictors. Such knowled owd(_a mformbatlon é)nhthe unc?rtam_ty. rellated o paraTg_-
is pivotal in providing scientists and decision makers with er estimates beyond the use of statistical measures of dis-

well-informed strategies for selecting adequate preolictorpersion such as standard deviations or standard errors about

variables for quantitative natural hazard assessments. emP'”Ca' means. However, uncertalr_wty IS a carrier of 'T‘for'
mation to the same extent as a point estimate, and ignor-

ing it or dismissing it as simply an error may entail grave
consequences. Ignoring uncertainties in quantitative hazard
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Earthquake

appraisals may have disastrous effects, since it often leads to
over- or underestimates of certain event magnitudes. Yet de-
terministic approaches persist as the state of the art in many
applications. For example, tsunami early warning systems
evaluate pre-calculated synthetic databases and pick out the
scenario that appears closest to a given situation in order to
estimate its hazard(aser et al.2011). Recently developed
models for flood damage assessments use classification ap- i
proaches, where the event under consideration is assignedFgure 1. The figure ShO.WS the BN for the burglary exam-
its corresponding class, and the caused damage is estimat g .The graph .Strucn_"e flustrates the dep?ndence relations of

. . _the involved variables: the alarm can be triggered by a burg-
by taking the mean damage of all observed events belonging,

At ry or earthquake. An earthquake might be reported in the
to the same clas&(mer et al, 2010. In seismic hazard anal-  aio newscast. The joint distribution of all variables can be

ysis the usage of regression-based ground motion models igecomposed into the product of its conditionals accordingly:
common practice, restricting the model to the chosen func-p(B, E, A, R)= P(B) P(E) P(A|B, E) P(R|E).

tional form, which is defined based on physical constrains

(Kuehn et al.2009.

In this paper we consider Bayesian networks (BNs), whichout any prior assumptions on their distributional family. In
we argue are an intuitive, consistent, and rigorous way ofSect. 4 we use data that were collected after the 2002 and
guantifying uncertaintiesStraub(2005 underlines the large  2005/2006 floods in the Elbe and Danube catchments, Ger-
potential of BNs for natural hazard assessments, heraldmany, to learn a BN for flood damage assessments. This ex-
ing not only the ability of BNs to model various inter- ample is emblematic of situations where data are incomplete,
dependences but also their intuitive format: the representaand requires a treatment of missing observations, which can
tion of (in)dependences between the involved variables in &e challenging in combination with continuous variables.
graphical network enables improved understandings and diOur final example in Sect deals with a regional landslide
rect insights into the relationships and workings of a nat-susceptibility model for Japan, where we investigate how the
ural hazard system. The conditional relationships betweersame set of potential predictors of slope stability may pro-
dependent variables are described by probabilities, fromduce nearly equally well performing, though structurally dif-
which not only the joint distribution of all variables but any ferent, BNs that reveal important and often overlooked vari-
conditional probability distribution of interest can be derived. able interactions in landslide studies. This application further
BNs thus endorse quantitative analyses of specific hazarillustrates the model uncertainty related to BN learning.
scenarios or process-response chains.

In recent years, BNs have been used in avalanche risk as-
sessment (e.gGrét-Regamey and StrauB006, tsunami 2 Bayesian networks (BNs)
early warning (e.g.Blaser et al. 2009 2011), earthquake
risk management (e.gBayraktarli and Fabe2011), proba-  The probabilistic framework of BNs relies on the theorem
bilistic seismic hazard analysis (e.§yehn etal.2011),and  formulated by Reverend Thomas Bayes (1702-1761), and
earthquake-induced landslide susceptibility (6Spng et al. expresses how to update probabilities in light of new evi-
2012. Aguilera et al.(2011) give an overview of applica- dence McGrayne 2011). By combining probability theory
tions of BNs in the environmental sciences between 1990 andvith graph theory, BNs depict probabilistic dependence re-
2010, and conclude that the potential of BNs remains underiations in a graph: the nodes of the graph represent the con-
exploited in this field. This is partly because, even thoughsidered random variables, while (missing) edges between the
BNs are well studied in theory, their application to real-world nodes illustrate the conditional (in)dependences between the
data is not straightforward. Handling of continuous variablesvariables. Textbooks often refer to the burglary alarm sce-
and incomplete observations remains the key problem. Thisario for a simple illustration of BNsRear| 1998. In this
paper aims to overcome these challenges. Our objective isxample, the alarm of your home may not only be triggered
to briefly review the technique of learning BNs from data, by burglary but also by earthquakes. Moreover, earthquakes
and to suggest possible solutions to implementation probhave a chance to be reported in the news. Fidgugieows the
lems that derive from the uncertainties mentioned above. Welependence relations of these variables as captured by a BN.
use three examples of natural hazard assessments to discusew, imagine you get a call from your neighbor notifying
the demands of analyzing real-world data, and highlight theyou that the alarm went off. Supposing the alarm was trig-
benefits of applying BNs in this regard. gered by burglary, you drive home. On your way home you

In our first example (SecB), we develop a seismic ground hear the radio reporting a nearby earthquake. Even though
motion model based on a synthetic data set, which serveburglaries and earthquakes may be assumed to occur inde-
to showcase some typical BN properties. In this context wependently, the radio announcement changes your belief in the
demonstrate a method to deal with continuous variables withburglary, as the earthquake “explains away” the alarm. BNs
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Table 1. Conditional probabilities in the burglary example, giv-
ing the conditional probabilities foearthquake(e), burglary (b),
alarm (a), andearthquake reporte@-). The parameters that define
the conditional distributions correspond for discrete variables to the
conditional (point) probabilities. Note that the conditional probabil-
ity values formo earthquakée), no burglary(b), etc. can be derived
from the fact that the conditionals sum up to 1.

fe=p(e) =0.001 fGgep=plale,b) =0.98
Op=p(b) =0.01 9ale5:p(a|ev b)) =095
Ore=p(rle) =0.95 Oggp=plale,b) =0.95
Ore=p(rle) =0.001 98@5:17(‘”?’ b) =0.03
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Figure 2. lllustration of a parent set in a BNKpg;) is the parent

set of X;.

offer a mathematically consistent framework to conduct and
specify reasonings of such kind. A detailed introduction to
BNs is provided inKoller and Friedmar{2009 andJensen
and Nielser{2001), while Fenton and Nei{2012 offers easy

Further,
RELSA | each conditional probability of interest can be

P(A.B) _
P(B)

applying Bayes theoremP(A|B)=

and intuitive access. In this paper we restrict ourselves to sevderived. In this way a BN is characterized by many attractive

eral key aspects of the BN formalism.

properties that we may profit from in a natural hazard setting,

including the following properties:

2.1 Properties and benefits

Applying BNs to natural hazard assessments, we define the
specific variables of the hazard domain to be the nodes in a
BN. In the following we denote this set of random variables
asX ={X1, ..., Xi}. The dependence relations between the
variables are encoded in the graph structure, generating a di-
rected acyclic graph (DAG). The directions of the edges de-
fine the flow of information, but do not necessarily indicate
causality. As we shall see in subsection “Learned ground mo-
tion model” of Sect. 3.2, it may prove beneficial to direct
edges counterintuitively in order to fulfill regularization con-
straints. The set of nodes from which edges are directed to a
specific nodeX;, is called the parent seXpg;), of X; (see
Fig. 2). Table2 summarizes the notations used in this paper.

Apart from the graph structure, a BN is defined by con-
ditional probabilities that specify the dependence relations
encoded in the graph structure. The conditional probability
distribution for each variableX;, is given conditioned on its
parent setp (X;|Xpa;)). For simplification we restrict our-
selves here to discrete variables for whicis the set of con-
ditional (point) probabilities for each combination of states
for X; and Xp&(i)l 0= {exi\xpam = p(x; |xpa,'))}. The condi-
tional probabilities for the burglary BN example are given in
Table 1. For continuous variables, the design of the param-
eters depends on the family of distributions of the particular
densitiesp(-|-).

Given the BN structure (DAG) and parameteft$, (t fol-
lows from the axioms of probability theory that the joint dis-
tribution of all variables can be factorized into a product of
conditional distributions:

k
P(X|DAG70)=HP(Xi|XPa(i))~ 1)
i=1

www.nat-hazards-earth-syst-sci.net/14/2605/2014/

— Property 1 — graphical representatiothe interactions

of the variables of the entire “system” are encoded in the
DAG. The BN structure thus provides information about
the underlying processes and the way various variables
communicate and share “information” as it is propa-
gated through the network.

— Property 2 — use prior knowledgé¢he intuitive inter-

pretation of a BN makes it possible to define the

BN based on prior knowledge; alternatively it may be

learned from data, or even a combination of the two

(cast as Bayesian statistical problem) by posing a prior
BN and updating it based on observations (see below
for details).

— Property 3 — identify relevant variableby learning the

BN from data we may identify the variables that are

(according to the data) relevant; “islands” or isolated

single unconnected nodes indicate potentially irrelevant
variables.

Property 4 — capture uncertaintyincertainty can eas-
ily be propagated between any nodes in the BN; we ef-
fectively compute or estimate probability distributions
rather than single-point estimates.

Property 5 — allow for inferenceinstead of explicitly
modeling the conditional distribution of a predefined
target variable, the BN captures the joint distribution of
all variables. Via inference, we can express any given
or all conditional distribution(s) of interest, and reason
in any direction (including forensic and inverse reason-
ing): for example, for a given observed damage we may
infer the likely intensity of the causing event. A detailed
example for reasoning is given in Se4t3.

Nat. Hazards Earth Syst. Sci., 14, 261826 2014
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Table 2. Summary of notations used in this paper.

Notation Meaning

X; a specific variable

X a realization ofX;

X={Xq, ..., X} setofthe considered variables

Xpai) parent set of(;

Xpgyi) a realization of the parent set

X_y all variables butr

DAG directed acyclic graph (graph structure)

P(Xi1Xpgi)) conditional probability of a variable conditioned on its parent set
Ox;xpai) parameter that defines the probability fergivenxpy;)

0= {exi xpai) set of model parameters that defines the conditional distributions
(S random variable for the set of model parameters

BN: (DAG, 0) Bayesian network, defined by the pair of structure and parameters
d discrete/discretized data set that is used for BN learning

d° (partly) continuous data set that is used for BN learning

A discretization that bins the original dat& into d

XMB (i) set of variables that form the Markov blanketXf (Sect.4.2)

Ch() variable indices of the children &f; (Sect.4.2)

Note that inference in BNs is closed under restric- In this paper we opt for a Bayesian approach to learn BNs
tion, marginalization, and combination, allowing for (note that BNs are not necessarily to be interpreted from
fast (close to immediate) and exact inference. a Bayesian statistical perspective). Searching for the most
probable BN, (DAG#), given the observed datd, we aim
— Property 6 — use incomplete observatiodsring pre- o maximize the BN MAP (Bayesian network maximum a

dictive inference (i.e., computing a conditional distribu- posteriori) score suggested Rjggelsen(2008:
tion), incomplete observations of data are not a problem

for BNs. By virtue of the probability axioms, it merely
impacts the overall uncertainty involved.

In the following we will refer to these properties 1-6 in P(DAG, ©|d) « P(d|DAG, ©) P(©,DAG). )

order to clarify what is meant. For “real-life” modeling prob- posterior likelihood prior

lems, including those encountered in natural hazard analysis,

adhering strictly to the BN formalism is often a challeng-

ing task. Hence, the properties listed above may seem undul)ll_ o _

theoretical. Yet many typical natural hazard problems can bel N€ likelihood term decomposes according to Eq. The
formulated around BNs by taking advantage of these properPrior encodes our prior belief in certain BN structures and pa-

ties. We take a data-driven stance and thus aim to learn BNEMeters. This allows us to assign domain specific prior pref-
from collected observations. erences to specific BNs before seeing the data (Property 2)

and thus to compensate for sparse data, artifacts, bias, etc.
2.2 Learning Bayesian networks In the following applications we use a non-informative prior,

which nevertheless fulfills a significant function. Acting as
Data-based BN learning can be seen as an exercise in finding penalty term, the prior regularizes the DAG complexity
a BN which, according to the decomposition in Et), €ould and thus avoids over-fitting. Detailed descriptions for prior
have been “responsible for generating the data”. For this weand likelihood term are given in Appendil andRiggelsen
traverse the space of BNE#&stelo and Kocka2003 look- (2008.
ing for a candidate maximizing a fithess score that reflects The following section illustrates the BN formalism “in ac-
the “usefulness” of the BN. This should however be donetion” and will also underscore some theoretical and practi-
with careful consideration to the issues always arising in thecal problems along with potential solutions in the context of
context of model selection, i.e., over-fitting, generalization, BN learning. We will learn a ground motion model, which
etc. Several suggestions for BN fitness scoring are deriveds used in probabilistic seismic hazard analysis, as a BN; the
from different theoretical principles and ideaBo{ckaert data are synthetically generated. Subsequently, we consider
1995. Most of them are based on the maximum likelihood two other natural hazard assessments where we learn BNs
estimation for different DAG structures according to E). ( from real-world data.

Nat. Hazards Earth Syst. Sci., 14, 26052626 2014 www.nat-hazards-earth-syst-sci.net/14/2605/2014/
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Table 3. Variables used in the ground motion model and the corresponding distributions used for the generation of the synthetic data set
which is used for BN learning.

X; Description Distributioftangg
Predictors

M Moment magnitude of the earthquake U[s,7.5]

R Source-to-site distance Epifkm, 200km

SD Stress released during the earthquake (P8R 500 bat

Qo Attenuation of seismic wave amplitudes in deep layers [6XR. 50005 1]

KQ Attenuation of seismic wave amplitudes near the surface (d&X g

Vs30  Average shear-wave velocity in the upper 30 m Uisooms1, 2800ms 1]

Ground motion parameter

PGA  Horizontal peak ground acceleration According to the stochastic model
(Boore 2003

3 Seismic hazard analysis: ground motion models

facilities, the hazard arising from earthquakes is an impor-
tant aspect. In probabilistic seismic hazard analysis (PSHA) @ (b) ©

we c.:alculate t'he prQbab”"Y of e_Xceeo””g a specified grou_ndFigure 3. When working with continuous variables, we have to
motion for a given site and time interval. One of the most crit- ya1e assumptions about the functional form of the probability dis-
ical elements in PSHA, often carrying the largest amount ofyiputions (gray), e.g(a) exponential(b) normal, andc) uniform.
uncertainty, is the ground motion model. It describes the con-Thus we restrict the distributions to certain shapes that may not
ditional probability of a ground motion parametér, such  match reality. In contrast, using a discrete multinomial distribution
as(horizontal) peak ground acceleratipgiven earthquake- (black), each continuous distribution can be approximated and we
and site-related predictor variableX, y. Ground motion avoid prior restrictions on the shape. Rather the shape is learned
models are usually regression functions, where the funcfrom the data by estimating the probability for each interval.

tional form is derived from expert knowledge and the ground

motion parameter is assumed to be lognormally distributed:

INY = f(X_y)+e, with e ~N(0, ). The definition of 10000 records. The ground motion parameteiis the hor-

the functional form off (-) is guided by physical model as- izontal peak ground acceleration (PGA). It is generated by
sumptions about the single and joint effects of the differenta so-calledstochastic modelvhich is described in detail by
parameters, but also contains some ad hoc elemigntht Boore(2003. The basic idea is to distort the shape of a ran-
et al, 201]). Using the Bayesian network approach there isdom time series according to physical principles and thus to
no prior knowledge required per se, but if present it can beobtain a time series with properties that match the ground-
accounted for by encoding it in the prior term of E).(  motion characteristics. The predictor variables are either uni-
If no reliable prior knowledge is available, we work with form (/) or exponentially (Exp) distributed within a particu-

a non-informative prior, and the learned graph structure prodar interval (see Tabl8).

vides insight into the dependence structure of the variables The stochastic model does not have good analytical prop-
and helps in gaining a better understanding of the underlyingsrties, and its usage is non-trivial and time consuming.
mechanism (Property 1). Modeling the joint distribution of Hence, surrogate models, which describe the stochastic
all variables, X = {X_y, Y}, the BN implicitly provides the  model in a more abstract sense (e.g., regressions), are used
conditional distributionP (Y|X_y, DAG, ©), which gives  in PSHA instead. We show that BNs may be seen as a viable
the probability of the ground motion parameter for specific alternative to the classical regression approach. However, be-

When it comes to decision making on the design of high-risk ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

event situations needed for the PSHA (Property 5). fore doing so, we need to touch upon some practical issues
arising when learning BNs from continuous data.
3.1 Thedata For continuous variables we need to define the distri-

butional family for the conditionalg(-|-) and thus make
The event situation is described by the predictor variablesassumptions about the functional form of the distribu-
X_y={M, R, SD, Qy, ko, Vs30}, which are explained in tion. To avoid such assumptions and “let the data speak”,
Table 3. We generate a synthetic data set consisting ofwe discretize the continuous variables, thus allowing for

www.nat-hazards-earth-syst-sci.net/14/2605/2014/ Nat. Hazards Earth Syst. Sci., 14, 26526 2014
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DAG .
(a) XS
Figure 4. Representation of the dependency assumptions in the corresponds according to Monti and Cooper (1998) to
discretization approach: the dependency relations of the variables
are captured by their discrete representations (gray-shaded area). , KK
. . . . 0 o AL A ]
continuous varlabIeXl.C, depends only on its discrete counterpart, < Faiiglee
Xi. . ¥ 2
o o G ..' e
x = > ) % .
2., B . ;‘“‘:
completely data-driven and distribution-free learning (see N Ar
Fig. 3). In the following subsection we describe an automatic ® » © X°
1 1

discretization, which is part of the BN learning procedure and
takes the dependences between the single variables into agigyre 5. For the discretization approach each multivariate contin-
count. However, the automatic discretization does not necespous distribution(a) is characterized by a discrete distribution that
sarily result in a resolution that matches the requirements foeaptures the dependence relati@isand a continuous uniform dis-
prediction purposes or decision support. To increase the potibution over each grid ce(t). For exemplification assume we con-
tential accuracy of predictions, we approximate, once the netsider two dependent, continuous variablg$:and X5. (a) shows a
work structure is learned, the continuous conditionals withpossible realization of a corresponding sample. Accordiriddati

mlxtures Of truncated exponentldlMTE), as Suggested by and COOpe(1998 we now assume that we can find a diSCretiZatiOn,
Moral et al.(2001). More on this follows in SecB.3. such that the resulting discretized variablesand X, capture the
dependence relation betwe#ij and X§. This is illustrated byb),

where the shading of the grid cells corresponds to their probabilities

3.2 Automatic discretization for structure learning (which are defined bg). A darker color means that we expect more
realizations in this grid cell. Further, we say that, within each grid

_— . L . ._cell, the realizations are uniformly distributed, as illustrate¢t)n
The range of existing discretization procedures differs in

their course of action (supervised vs. unsupervised, global
vs. local, top-down vs. bottom-up, direct vs. incremental, P (DAG, ©, A|d°) « P (d°|DAG, ©, A) P (DAG, ©, A). (3)
etc.), their speed and their accuratiu et al. (2002 pro- D S —
vide a systematic study of different discretization techniques,
while Hoyt (2008 concentrates on their usage in the context Let us consider the likelihood term: expanding on an idea by
with BN learning. The choice of a proper discretization tech- Monti and Coopel(1998, we assume that all communica-
nique is anything but trivial as the different approaches resultion/flow of information between the variables can be cap-
in different levels of information loss. For example, a dis- tured by their discrete representations (see #ignd is de-
cretization conducted as a pre-processing step to BN learninfined by the parametefs Thus only the distribution of the
does not account for the interplay of the variables and ofterdiscrete datal depends on the network structure, while the
misses information hidden in the data. To keep the informa-distribution of the continuous dai#f is, for givend, inde-
tion loss small, we use a multivariate discretization approactpendent of the DAG (see Figd.and5). Consequently the
that takes the BN structure into account. The discretizatiorlikelihood for observingd® (for a given discretization, net-

is defined by a set of interval boundary points for all vari- work structure and parameters) can be written as

ables, forming a grid. All data points of the original contin- c c
uous (or partly continuous) data séf, that lie in the same P (d°|DAG, ©, A)=P (d°|d, A) P (d|DAG, ©, A) )
grid cell, correspond to the same value in the discretized datang Eq. 8) decomposes into

set,d. In a multivariate approach, the “optimal” discretiza-

tion, denoted byA, depends on the structure of the BN and P (DAG, ©, A|d®) «x P (d°|d,A) P(d|DAG, ©, A)

the observed datd’. Similar to Sect2.2, we again cast the e o (discrete)
problem in a Bayesian framework searching for the combin-

posterior likelihood prior

continuous data likelihood (discrete)

ation of (DAG, 8, A) that has the highest posterior probabil- w
ity given the data, prior

Nat. Hazards Earth Syst. Sci., 14, 26052626 2014 www.nat-hazards-earth-syst-sci.net/14/2605/2014/
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Figure 6. Theoretic BN for the ground motion model. It captures Figure 7. BN for the ground motion model learned from the gen-

the known dependences of the data-generating model. erated synthetic data. It captures the most dominant dependences.
Less distinctive dependences are neglected for the sake of parameter
reduction.

The likelihood (discrete) term is now defined as for the sep-

arate BN learning for discrete data (SetB), and we use a

non-informative prior again. For the continuous data, we as-of all variables can be decomposed into the product of the
sume that all continuous observations within the same interconditionals according to the network structure (seelq.

val defined byA have the same probability (Fi). More For discrete/discretized variables, the number of parameters
information about the score definition can be found in theneeded for the definition 0p(X;|Xp4;)) in Eq. (1) corre-
AppendixAl, and technical details are givenMogel et al.  sponds to the number of possible state combinationsXgr (
(2012 2013. In the following we discuss the BN and dis- Xpg;)). Taking the learned discretization shown in Fj.

cretization learned from the synthetic seismic data set. the BN of the data-generating process (F&y.is defined
by 3858 parameters, 3840 needed alone for the description
Learned ground motion model of p(PGAM, R, SD, Qg, ko, Vs30). A determination of

that many parameters from 10000 records would lead to
Since we generated the data ourselves, we know whicla strongly over-fitted model. Instead we learn a BN that
(in)dependences the involved variables should adhere to; thisompromises between model complexity and its ability
is expected to be reflected in the BN DAG we learn from theto generate the original data. The BN learned under these
synthetic data (Property 1, 3). Due to data construction, theequirements (Fig7) consists of only 387 parameters and
predictor variabled/, R, SD, Qo, ko, andVs30 are indepen-  still captures the most relevant dependences.
dent of each other and PGA depends on the predictors. Fig- Figure 9 shows the InPGA values of the data set plot-
ure 6 shows the dependence structure of the variables. Théed against the single predictors. A dependence on stress
converging edges at PGA indicate that the predictors becomdrop (SD) and distancer]) is clearly visible. These are also
conditionally dependent for a given PGA. This means that,the two variables with remaining converging edges on PGA,
for a given PGA, they carry information about each other; revealing that, for a given PGA, SD contains information
for example, for an observed large PGA value, a small stresaboutR and vice versa. The dependences between PGA and
drop indicates a close distance to the earthquake. The knowthe remaining predictors are much less distinctive, such that
edge about the dependence relations gives the opportunitthe conditional dependences between the predictors are neg-
to use the seismic hazard application for an inspection of thdigible and the edges can be reversed for the benefit of pa-
BN learning algorithm regarding the reconstruction of the de-rameter reduction. The connectionitg30 is neglected com-
pendences from the data, which is done in the following.  pletely, since its impact on PGA is of minor interest com-

The network that we found to maximize pared to the variation caused by the other predictors.

P(DAG, O, A|d® for the 10000 synthetic seismic Note that the DAG of a BN actually maps the indepen-
data records is shown in Figi. The corresponding dis- dences (not the dependences) between the variables. This
cretization that was found is plotted in Fig. which shows means that each (conditional) independence statement en-
the marginal distributions of the discretized variables. coded in the DAG must be true, while encoded dependence
The learned BN differs from the original one, mainly relations must not hold per se (see Fi@.for explanation).
due to regularization constraints as we will explain in the In turn this implies that each dependence holding for the
following: as mentioned in Secg, the joint distribution  data should be encoded in the DAG. The learning approach
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Figure 8. Marginal distribution of the variables included in the ground motion model, discretized according to the discretization learned for
the BN in Fig.7. The number of intervals per variable ranges from 2 to 8.

applied here fulfills the task quite well, detecting the rele- continuous conditional distributions once the BN has been

vant dependences, while keeping the model complexity at dearned.

moderate level. Moral et al.(2001) suggest using MTEs for this purpose,
The model complexity depends not only on the DAG but since they allow for the approximation of a variety of func-

also on the discretization. A complex DAG will enforce a tional shapes with a limited number of parametéangseth

small number of intervals, and a large number of intervalsand Nielsen 2008 and they are closed under the opera-

will only be chosen for variables with a strong influence on tions used for BN inference: restriction, combination, and

other variables. This effect is also visible for the learned dis-marginalization angseth et al.2009. The basic idea is

cretization (Fig8). PGA is split into eight intervals, distance to approximate conditional distributiong X; | X pg;)) with a

and stress drop into four and five, respectively, and the othecombination/mixture of truncated exponential distributions.

variables consist of only two to three intervals. For this purpose the domax;, xp,;,) IS partitioned into
hypercubed;, ..., Dy, and the density within each hyper-
3.3 Approximation of continuous distributions with cube,Dy, is defined such that it follows the form
mixtures of exponentials (MTES) J ,
pio; (XilXpaiy) = a0+ Z“j ePiXitej Xpai, (5)
A major purpose of the ground motion model is the predic- j=1

tion of the ground motion (INPGA) based on observationsre getermination of the hypercubes and the number of ex-
of the predictors; hence, although the BN captures the joint, e niial terms in each hypercube as well as the estimation
Q|str|.but|on (Prc_)perty 5) .of all mvplved variables, the focus of the single parameters is done according to the maximum
in this context is on a single variable. The accuracy of the|i alihood approach described Irangseth et al(2010. In
prediction is limited by the resolution of the discretization . following we show how the MTE approximation im-

learned for tfhehvanable. For t';?e_BN s_hc;]wp abov:a, thetﬂ's'proves the BN prediction performance compared to the us-
cretization of the target variable into eight intervals enables, go of he discretized variables, and we compare the results
a quite precise approximation of the continuous distribution

S 'to those from a regression approach.
but this is not the case per se. Complex network structures

and smaller data sets used for BN learning lead to a coarsgsrediction performance

discretization of the variables. To enable precise estimates,

we may search for alternative approximations of the (or atWe conduct a 10-fold cross validation to evaluate the pre-
least some, in particular the primary variable(s) of interest)diction performance of the BN compared to the regression

Nat. Hazards Earth Syst. Sci., 14, 26052626 2014 www.nat-hazards-earth-syst-sci.net/14/2605/2014/
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Figure 9. The individual panels show the dependences between the predictor vanisbhiesSD, Qg, xg, andVs30 and the target variable
In PGA by plotting the data used to learn the BN for ground motion modeling.

approach: the complete data set is divided into 10 disjointual records. Another measure for the prediction performance
subsamples, of which one is defined as a test set in each triagd the mean squared error of the estimates for INnPGA (Ta-
while the others are used to learn the model (regression fundsle 4b). Here the point estimate for In PGA is defined as the

tion or BN). The functional form of the regression function is mean value of the conditional density. For example, in the

determined by expert knowledge based on the description ofegression model the estimate correspondsto_y).

the Fourier spectrum of seismic ground motion and follows Even though the discretization of In PGA is relative precise

the form using the discrete BNs (eight intervals in each trial, except
for the first trial, where In PGA is split into seven intervals),
f(X_y) =ao+aiM +axM - INSD+ (az + asM) the MTE approximation of the conditional distributions im-
n /a§~|— R2 -+ agk R + a7Vs30+ agIn SD., proves the prediction performance of the BN. Still, it does

not entirely match the precision of the regression function.
However, the prediction performances are on the same order
of magnitude, and we must not forget that the success of the

~ We compare the regression approach in terms of prediCregression approach relies on the expert knowledge used to
tion performance to the BN with discretized variables and yefine its functional form, while the structure of the BN is

with MTE approximations. For this purpose we determine |gared in a completely data-driven manner. Further the re-
the conditional density distributions of In PGA given the pre- gression approach profits in this example from the fact that
dictor variables for each approach and consider how muclihe target variable (InPGA) is normally distributed, which
probability it assigns to the real In PGA value in each ob- g not necessarily the case for other applications. Focusing
servation. For the regression approach the conditional deny, the prediction of the target variable the regression ap-
sity follows a normal distribution)'(f (X -y), %), while it proach also does not have the flexibility of the BN, which

is defined via the DAG and the parametérssing the BN s gesigned to capture the joint distribution of all variables
models. Tablela shows for each test set the conditional den-anq thus allows for inference in all directions (Property 5),

sity value of the observed In PGA averaged over the individ-

; R 1
with k =« +1*, t* = ToVeq andVgq=3.5kms™-.
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Table 4. Results of a 10-fold cross validation to test the prediction
performance of the BN (with discrete and MTE approximations of
the conditional distributions) and the regression appro@tton-
tains the calculated conditional densities for the observed In PGA
values averaged over each trigd) contains the mean squared error
of the predicted In PGA for each trial.

@  P(B)P(E)P(A|B,E)P(R|E) ()  P(B)P(A|B)P(E|A, B)P(R|E)

Figure 10. The graph structure of a BN dictates how the joint dis-
tribution of all variables decomposes into a product of condition-
als. Thus for a valid decomposition each independence assumption

(a) Averaged conditional density

BNgiscrete BNMTE Regression mapped into the BN must hold. Usually this applies to a variety of
graphs, i.e., the complete graph is always a valid independence map
1 0.237 0.320 0.331 as it does not make any independence assumgapand(b) show
2 0.240 0.297 0.329 two valid BN structures and the corresponding decompositions for
3 0.239 0.298 0.331 the burglary example. The independence assumptions made in both
4 0.218 0.255 0.323 BNs hold; howeve(b) does not capture the independence between
5 0.216 0.260 0.339 earthquakes and burglaries. An independence map that maps all in-
6 0.222 0.257 0.339 dependence@) is called a perfect map, yet perfect maps do not
7 0.215 0.252 0.332 exist for all applications. Furthermore, for parameter reduction it
8 0.243 0.317 0.330 might be beneficial to work with an independence map that differs
9 0.212 0.249 0.328 from the perfect map.
10 0.243 0.315 0.331
Avg. 0.229 0.282 0.331

variety of factors Thieken et al.2009, stage—damage func-

(b) Mean squared error i e e
tions are still widely used. This is because the number of po-

BNgiscrete BNmTE ~ Regression tential influencing factors is large and the single and joint ef-
1 1.021 0.749 0.663 fects of these parameters on the degree of damage are largely
2 1.197 0.963 0.680 unknown.
3 1.082 0.821 0.673
4 1262 0.951 0.723 4.1 Real-life observations
5 1.201 0.851 0.629
? 1;83 1:8?3 g:ggg The dqta collected after the 2002 and 2_005/2006 flood
8 1149 0713 0701 eyents in the Elbe_ and Danube (_:atchments in Germany_ (see
9 1.343 1.161 0.692 F|g. 11) offer a unique opportunity to learn abo_ut the driv-
10  1.169 0.841 0.666 ing forces of flood damage from a BN perspective. The data
result from computer-aided telephone interviews with flood-
Avg.  1.202 0.919 0.672 affected households, and contain 1135 records for which the

degree of damage could be reported. The data describe the
flooding and warning situation, building and household char-
as exemplified in Sect.3. Additional benefits of BNs, like  acteristics, and precautionary measures. The raw data were
their ability to make use of incomplete observations, will be supplemented by estimates of return periods, building val-
revealed in the following sections, where we investigate real-ues, and loss ratios, as well as indicators for flow velocity,
world data. contamination, flood warning, emergency measures, precau-
tionary measures, flood experience, and socioeconomic fac-
tors. Tableb lists the 29 variables allocated to their domains.
4 Flood damage assessment A detailed description of the derived indicators and the sur-
vey is given byThieken et al(2005 andEImer et al.(2010.
In the previous section we dealt with a fairly small BN (a few In Sect.3.2we dealt with the issue of continuous data when
variables/nodes) and a synthetic data set. In this section wkearning BNs; here we will apply the methodology presented
go one step further and focus on learning a larger BN fromthere. However, in contrast to the synthetic data from the
real-life observations on damage caused to residential buildprevious section, many real-world data sets are, for different
ings by flood events. Classical approaches, so-called stagereasons, lacking some observations for various variables. For
damage functions, relate the damage for a certain class dhe data set at hand, the percentage of missing values is be-
objects to the water stage or inundation depth, while othedow 20 % for most variables, yet for others it reaches almost
characteristics of the flooding situation and the flooded ob-70%. In the next subsection we show how we deal with the
ject are rarely taken into accour¥lérz et al, 2010. Even missing values in the setting of the automatic discretization
though it is known that the flood damage is influenced by adescribed in SecB8.2when learning BNs.
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Figure 11. Catchments investigated for the flood damage assessment and location of communities reporting losses from the 2002, 2005, anc
2006 floods in the Elbe and Danube catchme8th(oeter et 812014).

4.2 Handling of incomplete records man 1997, 1998 or stochastic simulations (e.Janner and
Wong 1987). In our case we already have to run several it-
) . . i erations of BN learning and discretization, each iteration re-
To learn the BN, we again maximize the joint posterior for ¢ iring the estimation of the missing values. Using an itera-
the given data_ ('593)- This requires the number qf C‘?“”ts tive approach for the missing value prediction will thus eas-
for each combination of states 0K, Xpgi)), considering i, pecome infeasible. Instead we use a more efficient albeit

all variables =1,..., k (see AppendbAl). However this o5 6vimate method, using tMarkov blanket predictode-
is only given for complete data, and for missing values it Canveloped byRiggelser(2006.

only be estimated by using expected completions of the data. e jyea is to generate a predictive function which enables
We note that a reliable and unbiased treatment of incomplete, prediction of a missing variabk based on the observa-

. . . . . 1
data ;et_s (no matter wh|c_h method _|s applied) is only possml%ons of its Markov blanket (MB)X s ;). The Markov blan-
for missing data mechanisms that gorableaccording to ot jgentifies the variables that directly influencg i.e., the
themissing (completely) at rando@v(C)AR) criteria as de- parents, and children of;, as well as the parents of;’s
fined inLittle and Rubin(1987), i.e., the absence/presence of -iqren. An example is given in Fig2. Assuming the MB

a data value is independent of the unobserved data. For the ¢,y ohserved, it effectively blocks influence from all other

data sets considered in this paper, we assume the MAR “ariables, i.e., the missing value depends only on its MB.

terion to hold and derive the predictive function/distribution When some of the variables in the MB are missing, it does

based on the observed part of the data in order to estimate they shield offx,. However, for predictive approximation pur-
part which is missing. , poses, we choose to always ignore the impact from outside
In the context of BNs a variety of approaches has beerfy,q \g Hence, the prediction of; based on the observed

developed to estimate the missing values (so-called “Impua, reduces to a prediction based on the observations of the
tation”). Most of these principled approaches are iterative

algorithms based on expectation maximization (e-ged-

Nat. Hazards Earth Syst. Sci., 14, 26052626 2014 www.nat-hazards-earth-syst-sci.net/14/2605/2014/
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Q grandparents Q

Figure 13. (a) The Markov blanket o; comprises its parents and
children, as well as the parents of its children. The prediction of
missing values is based on the observations of the variables in the
Markov blanket. To avoid inference that requires unknown parame-
ters, the subgraph of DAG that spans the Markov blat&es mod-

ified by directing all edges towards;, receiving the DAGpictured

Q in (b).
grandchild

Figure 12.lllustration of a Markov blanket (gray-shaded nodes) on

a blood group example: let us assume that | do not know my bloodalternatively be used for the prediction Xf,

group for some reason, but | know the genotypes of my relatives.

The genotypes of my parents provide information about my own / / def /

blood group specification — in the pictured example they restrict theP’ (Xi |XBQ?) ’ 6°"C ’ DAG/) = eﬁ?ﬁ%pan' )

list of opportunities to the four options: AB, A0, BO and BB — as

well as the genotype of my child reveals information, excluding BB For this predictive distribution we need to estimate the pa-

from the list of possible options. Considering the genotype of thergmetergyPAC’ Note that more parameters are required

; ; ; ; XilXpaiy®
father/mother of my child alone does not pr.ov'de any information for the newly derived predictive distribution, but now at least
about my blood type (our blood groups are independent from each

other), but together with the information about our child it again re- al! |nf|uenC|ng' variables are c?onS|dered jointly and an iter- .
stricts the list of opportunities, leaving only AB and A0 as possible ative Pfolceeo'!”g can be avoided. The. par'ameters' are. esti-
options (conditioned on our child our blood groups become depenMated with asimilar-casesapproach, which is described in
dent). All these variables (blood type of my parents, my children, Appendix A2. A detailed description for the generation of
and the parents of my children) provide direct information about the predictive distribution is given iRiggelsen(2006 and

the considered variable (my blood type) and form its Markov blan- Vogel et al.(2013.

ket. If I know the values of the Markov blanket, further variables |t is worth noting that, as the MBs of variables change dur-
do not provide any additional information. For example, knowing ing the BN learning procedure, the prediction of missing val-

the genotypes of my parents, the knowledge about my grandparenigag (depending on the MB) needs to be updated as well.
does not deliver any further information about myself (the informa-

tion is “blocked” by my parents). Yet, if the blood type of my par- 43 Results
ents is unknown, the information about my grandparents can “flow”
and provides new insights.

of my child

my child

Coming back to the flood damage data, we have three vari-
ables with more than one-third of the observations miss-

MB and factorizes according to the DAG in Fitga: ing: f_Iood experiem_:e (69 % missing), warning quality (56 %
missing) and lead time elapsed without emergency measures

P (Xi1XwB(). 8. DAG) o x| Xpa) H 0,1 Xp - (6) (54 % missing). In a first “naive” applicatiorMggel et al,

jecha) 2012, no special attention was paid to a proper treatment

of missing values; the missing values were simply randomly

where Ch{) are the variable indices for the children f.  imputed, resulting in the isolation of two variables (flood ex-
Thus the prediction oX; requires, according to Eg6), in-  perience and lead time elapsed) in the network; no connec-

ference in the BN (albeit very simple) where correct esti- tion to any other variable was learned (Flga). With appli-
mates off are assumed. These in general can not be giveration of the Markov blanket predictor, the situation changes
without resorting to iterative procedures. To avoid this we and a direct connection from the relative building damage,
define a slightly modified version of the predictive function, rloss, to flood experience is found, as well as a connection
for which we define all variables that belong to the MBXf  between warning source and elapsed lead time (F4b).

to be the parents of; in a modified DAG (see Fig.13for  These relations, especially the first one, match with experts’
illustration). ThusXBQ?) corresponds td%%)- Theresult-  expectations and speak for an improvement in the learned
ing DAG' preserves all dependences given in DAG and canBN structure.

www.nat-hazards-earth-syst-sci.net/14/2605/2014/ Nat. Hazards Earth Syst. Sci., 14, 261826 2014
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Figure 14. BNs learned for flood damage assessments, showing the effect of the applied missing value estimator. The algorithm used to
learn(a) replaces missing values randomly, while the one used to (baapplies the Markov blanket predictor for the estimation of missing
values. Nodes with a bold frame belong to the Markov blanke¢lative building lossand are thus assumed to have a direct impact on the
caused flood damage.

Using the graphical representation (Property 1), as menthe prediction of rloss. The domains “precaution” and “flood
tioned in Sect2.1, the learned DAG (Figldb) gives in-  parameters” in particular are densely connected to building
sight into the dependence relations of the variables. It revealslamage and should be included in any damage assessment
a number of direct links connecting the damage-describingProperty 3).
variable with almost all subdomains. This supports the de- Existing approaches for flood damage assessments usually
mand for improved flood damage assessments that take seeonsider fewer variables and an employment of a large num-
eral variables into accounMgrz et al, 2010. Moreover,  ber of variables is often considered as disadvantageous, since
the DAG shows which variables are the most relevant forcomplete observations for all involved variables are rare. The
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o | ] Table 6. Results of a 5-fold cross validation to compare the pre-
i T bzgdp“ii:ﬂggn(:ﬂ; diction performance of the three models used in the flood damage
oo || goodp assessment: stage—damage function, FLEM@psand Bayesian
'§ = ' networks. For each trial, the table contains the mean squared error
35 \ of the estimated fraction of building damage (in log scale).
0
e sdf  FLEMOpstr BNwTe
T T T T
0.0 0.2 0.4 0.6 0.8 1.0
(a) relative building loss é 881;; 88123 88122
0 - -~ bad precaution (<=14) 3 0.0161 0.0145 0.015
good precaution (> 14) 4 0.0200 0.0194 0.0169
29k 5 0.0166 0.0150 0.0163
g n 7.5 <= water depth [m] < 96.5
o o it N 82 <= duration hours < 228 Avg. 0.0154 0.0142 0.014
! NI flow velocity >= 1
o t— —Ft====-an.
0.0 02 0.4 056 08 1.0 type, building quality, contamination, and private precaution.
b) relative building loss

While sdf and FLEMOps-r give point estimates, the BN de-
Figure 15. (a) Conditional distribution of the building loss condi- livers a distribution for rloss and thus reveals the uncertainty
tioned on the precaution. Flood-specific parameters as well as othe?f the prediction (Property 4). Especially when it comes to
parameters are unknown and summed @)tConditional distribu-  decision making, the identification of uncertainty is a major
tion of the building loss depending on precaution for a specific floodadvantage of the BN. However, to allow for model compar-
situation: water depth, duration, and flow velocity are known. Otherison, we reduce the distribution provided by the BN to its
parameters are unknown and summed out. mean value, which we define to be the estimate of rloss. Ta-
ble 6 shows the mean squared error of a 5-fold cross vali-
dation for the three model approaches. The prediction per-
requirement for complete observations does not hold for BNSormance of the BN is comparable to the one of the FLE-
(Property 6). The prediction of the building damage, for ex- MOps+r, while the BN has the additional advantage of
ample, depends only on the variables of its Markov blanketmodeling the whole distribution of the target variable and

(marked with a bold frame in FidL4). If the observation of  conducting the prediction even though not all variables are
the Markov blanket variables is incomplete (not all variables ghserved.

are observed at inference time), information from outside

the Markov blanket “flows” into the prediction by indirectly 4.3.2 Example for inference: impact of precaution

marginalizing (summing) missing variables out. The inclu-

sion of many variables thus provides additional knowledgeAs an example of reasoning (Property 5), we consider the

and proves to be an advantage of BNSs. effect of precaution on the building loss. Figutd shows
Moreover, the capability of BNs to predict from incom- the distribution of the building loss for a good precaution

plete observations enables us to make predictions at an earfprecautionary measures indicatofi4) and a bad precau-

stage of an event, employing only the information that istion (precautionary measures indicatot4) in a general

present at any given time. The prediction can subsequentlgase (Figl5a: all other variables are unknown and summed

be updated as new information becomes available. out) and for a specific flood event (FigSb: 7.5 m< water
depth< 96.5m; 82 h< duration< 228 h; 1< velocity). We

4.3.1 Prediction performance may appreciate how a good precaution increases the chance
for no or only small building losses.

As for the seismic hazard example in Segt.the predic- Similar investigations may support the identification of ef-

tion of a certain target variable is likewise of particular ficient precautionary measures, not only in the context of
interest in flood damage assessments. Similar to our preflood events but also for natural hazards in general. They may
vious proceeding (SecB8.3) we approximate the distribu- also help to convince authorities or private persons to under-
tion of the target variable with mixtures of truncated ex- take the suggested precautions. Using the flexibility of BNs

ponentials, thus achieving a better resolution for the distri-and their ability to model specific situations, BNs may thus

bution of interest. The resulting prediction performance of contribute to a better communication between scientists and
the BN is compared to currently used flood damage assession-scientific stakeholders. BNs can also be used for forensic
ment approaches, namely the stage—damage function (sdfasoning, i.e., we can turn around the direction of reasoning
and the FLEMOps-r model Elmer et al, 2010, which in the example just considered and ask what a likely state
was developed from the same data set, estimating the buildsf precaution is for a given observed damage in a specific
ing damage based on water depth, flood frequency, buildingr general event situation. Forensic reasoning might be of
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interest, for instance, for insurance companies. Forensic regosits do not carry any time-stamp information, and so the
soning might be of interest, for instance, for insurance com-inventory contains both historic and prehistoric slope fail-
panies. ures, likely containing landslides up to several thousands of
years old. Smaller rockfalls or soil slips are not included.
Similarly, the inventory contains no data on specific trigger
5 Landslides mechanisms (such as earthquakes, rainfall, or snowmelt), the
dominant type of materials mobilized, or absolute age infor-
So far we assumed the existence of a unique model that exhation for the bulk of individual landslides. In this context,
plains the data best. In practical problems, however, theréhe data nicely reflect common constraints that scientists en-
may be many models almost as good as the best, i.e., on@ounter when compiling large landslide databases from re-
that explain the data similarly well. This results in an un- mote sensing data covering different time slices. Yet this
certainty about which BN structure to use. We consider thistype of inventory is frequently used as a key input for as-
problem in our last application, where we apply BN learning sessing and mapping regional landslide susceptibility from
to landslides, which are another ubiquitous natural hazard ir2 number of statistical techniques, including BNs. However,
many parts of the world. data-driven learning of BNs containing landslide information
A key theme in many landslide studies is the search forhas, to the best of our knowledge, not been attempted before.
those geological, hydroclimatological, topographic, and en-We have compiled a number of geological, climatic, and to-
vironmental parameters that sufficiently predict the susceptifographic metrics for individual catchments throughout the
bility to slope failure in a given region. A wide range of mul- Japanese islands to test their influence on the average frac-
tivariate data analysis techniques has been proposed to me&en of landslide-affected terrain that we computed within a
this challenge. Amongst the more prominent methods arelO km radius. Most of our candidate predictors (TaBleave
logistic regression, artificial neural networks, and Bayesianbeen used in modified form in other studié®(up et al,
weights of evidence. The popularity of such methods is only2014. While all of these candidate predictors may be phys-
matched by their seeming success: a recent review of 674 scically related to slope instability, our choice of predictors is
entific papers on the topic indicates that most reported sucintentionally arbitrary in order to learn more about their ef-
cess rates are between 75 and 95&r(p and Stolle2014), fects on BN learning and structure. The final data set used
where in the majority of studies the success rate is defined afor the BN learning consists of landslide and predictor data
the percentage of correctly (true positives and true negativesihat we averaged at the scale of 553 catchments that are up
identified locations that were subject to slope instability in to 10°km? large, and that we sampled randomly from the
the past. This raises the question as to why landslides stilrainage network across Japan. This averaging approach pro-
continue to cause massive losses despite this seemingly higiuced~ 0.4 % missing data in the subset, and aptly simulates
predictive accuracy. Moreover, success rates do not shodurther commonly encountered constraints on the quality of
any significant increase over the last 10 years regardless d@rge landslide inventories.
the number of landslide data or predictors us€drgp and
Stolle, 2014). An often overlooked key aspect in these analy- 5.2  Uncertainty in BN structure
ses is the potential for correlated or interacting predictor can-
didates. Few studies have stringently explored whether thiddeally, a given model should adequately encapsulate natural
likely limitation is due to physical or statistical (sampling) phenomena such as the causes and triggers of slope instabil-

reasons. ity. However, there may be several equally well poised, but
competing, models because of the intrinsic uncertainty tied
5.1 Data to the governing processes. In practice we also face other

limitations that prevent us from focusing on one single best
The landslide data are taken from an inventory of model. The finite humber of observations we have at our
~ 300000 digitally mapped landslide deposit areas acrosslisposal for learning, and the fact that it is unclear which
the Japanese island&dqrup et al, 2014. These landslides relevant predictor variables to consider for landslide predic-
were mapped systematically mostly from stereographic im-tion, implies that several models may be justifiable. This is a
age interpretation of air photos, and compiled by the Na-general problem when attempting to formally model natural
tional Research Institute for Earth Science and Disaster Presystems. In our case this means that several BNs might ex-
vention NIED ttp://Iswebl.ess.bosai.go.jp/gis-data/index. plain the data (almost) equally well, i.e., they receive a simi-
html). The dominant types of failure in this database arelar score according to Eq2).
deep-seated slow-moving earthflows and more rapid rock- An additional source of uncertainty stems from the struc-
slides. The mapped size range of the deposits from thestire learning algorithm used to maximize the score defined
landslides spans from 2o 10’ m? footprint area and is in Eq. () or — for continuous variables — in EG)( For in-
distinctly heavy tailed Korup et al, 2012. Many of the finite data sets the algorithm terminates accordinilézk’s
landslide deposits are covered by vegetation. Individual deconjecturen the (unique) optimal equivalence class of DAGs
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Table 7.Variables used in the landslide model.

Name Definition Unit
Mean elevation Average of elevation values within catchment boundaries [m]
Catchment area Log-transformed catchment area [a.u]
Catchment perimeter Total length of catchment divides [m]
Mean local topographic relief Maximum elevation difference in a 10 km radius [m]
Mean annual precipitatién Based on interpolated rainfall station data (reference period 1980-2010) [mm]
Mean coefficient of variation of Based on interpolated rainfall station data, with standard deviation divided by mean (referghice
annual precipitatioh period 1980-2010)
Mean coefficient of variation of Based on interpolated rainfall station data, with standard deviation divided by mean (refertice
monthly precipitatioft period 1980-2010)
Mean surface uplift 2001-2021 GPS-derived accumulated surface uplift 2001-2011 [m]
Mean surface uplift 2010-2021 GPS-derived accumulated surface uplift 2010-2011 [m]
Mean fraction of 10 % steepest bedrockAverage fraction of 10 % steepest channels per unit length of bedrock-river drainage netwolrk]in
channels a 10 km radius, based on an arbitrarily set reference

concavityd =0.45
Mean bedrock channel Average of channel steepness index per reach length, based on an arbitrarily set referencglton-
steepness cavityd =0.45
Regionalized river sinuosity Average bedrock-channel sinuosity weighted by drainage network length in [1]

a 10 km radius calculated as the flow length of a given channel segment
divided by its shortest vertex distance

Fraction of volcanic rocks Fraction of catchment area underlain by volcanic rocks [1]
Fraction of lakes Fraction of catchment area covered by lakes [1]
Fraction of plutonic rocks Fraction of catchment area underlain by plutonic rocks [1]
Fraction of sedimentary rocks Fraction of catchment area underlain by sedimentary rocks [1]
Fraction of accretionary complex Fraction of catchment area underlain by accretionary complex [1]
rocks rocks

Fraction of metamorphic rocks Fraction of catchment area underlain by metamorphic rocks [1]
Median area of landslide-affectedFraction of landslide terrain per unit catchment area within a 10 km radius

terrain calculated using an inventory of mostly prehistoric landslide-deposit areas

2 Calculated using data provided by the Japan Meteorological Agency (B www.jma.go.jp/jma/indexe.html
b Calculated from secular high-precision leveling data (Kimura et al., 2008).
¢ Calculated using the seamless digital geological map of Japan (1 : 200 000) available from the Geological Surveyutgsiabgnk.gsj.jp/seamlgss

(Chickering 2002, but this does not necessarily hold for fi- does not differ significantly. This supports the assumption

nite data sets, incomplete observations and a search spatiat the quality of the learned BN is not seriously affected

extended by the discretization. The algorithm for the traver-by random effects of the learning algorithm. Multiple runs of

sal of the BN hypothesis space contains stochastic elementfe algorithm on other data sets confirm this assumption.

and may get stuck in local optima, providing slightly differ-  In literature on BN learning (and on model learning based

ent results for different runs. on data in general), ideas of how to handle several compet-
To analyze this random behavior, we run the BN learninging, but all justifiable, BNs have been investigat&died-

and discretization algorithm 10 times on the same data set afnan et al(1999 use bootstrap sampling to learn BNs from

landslide data. We do not expect to end up with the same BNlifferent variations of the data set. Based on those they de-

in each trial, as the constraints to meet Meek’s conjecture ar@elop a confidence measure on features of a network (e.g., the

not fulfilled. Instead, we are more interested in documentingpresence of an edge or membership of a node to a cer-

how strongly the results differ from each other. tain Markov blanket). A Bayesian approach is presented by
Figure 16 gives a summarized representation of the BN Friedman and Kolle(2000 andRiggelsen(2005, who ap-

DAG structures. The frequency with which an edge betweerproximate the Bayesian posterior on the DAG space using a

two variables is learned is encoded according to its widthsMarkov chain Monte Carlo approach. An adaptation of these

(by scaling it accordingly). Despite the differences in DAG methods for the extended MAP score introduced in this paper

structures, all learned BNs seem to model the data-generatinig left for future work.

process almost equally well, which can be gathered from

the score obtained by Eq@B) for the BNs learned, we ob- 53 Results

served scores betweer64 364.42 and-64 253.98. This is

a promising result, since it indicates that, even though the aI—D

. ; . ) espite (or rather thanks to) the DAG structural differences,
gorithm gets stuck in local maxima, the quality of the results

we can glean some instructive insights from the learned BNs.
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Figure 16. Summary of 10 learned network structures modeling landslides susceptibility, all based on the same data set. Arrow widths
between the variables are scaled to the number of times they occur in the learned BNs. Likewise, we color-coded the variables according
to the frequency with which they occur as part of the Markov blankdtaaftion of landslide-affected terraicircular node shape), where

darker hues indicate more frequent occurrences.

The fact that we can learn something about the landslidefewer landslides — hence an indirect connection via topogra-
affected terrain from several BN structures indicates that thephy seems plausible. Yet predictors such as mean elevation
different predictors are highly interacting, and that a missedor bedrock channel steepness (as a proxy of fluvial erosion
link between two variables can often be compensated for byand undercutting of hillslopes) play largely subdued roles in
other interactions. To understand which variables are mosthe MB of the learned BNs. Also, the role of lithology seems
relevant for the prediction of landslide-affected terrain, we to be of major importance for the landslide prediction. In our
coded the variables in Fig.6 according to the frequency at data, lithology is expressed by the fractions of different rock
which they occur as part of the target variable’s Markov blan-types outcropping in a given area, which form a highly inter-
ket, where darker hues indicate more frequent occurrences.acting cluster. Here the information about accretionary com-
Perhaps the most surprising aspect of the learned BNs iplexes, i.e., heavily tectonized and welded remnants of for-
that only few of the predictors that have traditionally been in- mer island arcs, is always part of the MB. Furthermore, it is
voked to explain landslide susceptibility are duly representeceither the fraction of plutonic, sedimentary, or volcanic rocks
in the Markov blanket. These include mean annual precipitathat is part of the MB.
tion (part of the MB in each run) —including some derivatives  The learned BN structures are counterintuitive compared
such as precipitation variability (either annual or monthly to many other susceptibility models that traditionally empha-
variation is part of the MB) — and mean local topographic size hillslope inclination and topographic reliédrup and
relief (part of the MB in half of the runs). Stolle 2014). Further studies may wish to elucidate whether
Instead, predictors such as regionalized bedrock river sinthe dependences contained in the BNs are regional artifacts
uosity or short-term (10-year cumulative) surface uplift de- or valid on a larger scale. Nevertheless, our results illus-
rived from a dense network of GPS stations seem to proirate that the BN approach may reveal novel and unexpected
vide relevant information about landslide-affected terrain ininsights into regional landslide prediction by highlighting
Japan. Bedrock river sinuosity may reflect the ability of rivers unusual links between predictor variables that other multi-
to carve more pronounced meanders in rocks with closelwariate models may not show as clearly. What is equally im-
spaced defects. Therefore, sinuosity could be linked to firsportant is that BNs underscore which predictors may yield
order to important rock-mass properties that govern the abunsufficient predictive potential should others not be available.
dance of landslides. However, the link to contemporary sur-
face uplift is less clear. Many of Japan’s currently subsiding
areas are limited to low-relief forearc areas, which feature
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6 Conclusions Working with BNs, we profit from several attractive prop-
erties inherent to the BN framework. No prior domain knowl-
The Bayesian network approach is a powerful frameworkedge is required, as the DAG structure and parameters can be
to capture uncertainties and probabilistic elements in natutearned from data. Yet, if available, expert know|edge can be
ral hazard assessments. We demonstrated its flexible appliexploited via the prior term, which is part of the scoring func-
ability in seismic hazard, flood damage, and landslide sustion. Discovered (in)dependence relations help us to under-
ceptibility analyses. In addition, we discussed the handlingstand the underlying process and to identify (ir)relevant vari-
of continuous data and incomplete observations, as well agples. An intuitive understanding is supported by the graph-
the Uncertainty about the model structure, i.e., Challenges that;a| representation of BNs, a|though the same data may pro-
may arise when BNs are learned from real-world data. Ourduce different graphs with Comparab|e performance_ This
suggested way of dealing with these problems is fully datahighlights the potential for new insights into interactions be-
driven and can thus easily be transferred to other domains. tween large sets of candidate predictors. The ability of BNs
Since the interest of most natural hazard assessment ig predict from incomplete observations allows for hazard
in the prediction of a certain target variable, we comparedestimations at an early stage of an event. Using inference we
the prediction performance of the BNs learned for the SEiS-Can estimate missing values of a variable based on the ob-
mic hazard and flood damage application to currently usedservations of neighboring variables. The prediction can be
models. In both cases the BNs perform reasonable well. Thigipdated as soon as new information becomes available about
is especially promising, since the BNs are designed to capvariables that are missing so far.
ture the joint distribution of all variables and thus put similar  BNs capture the uncertainty and provide a probability dis-
effort into the prediction of each variable, whereas a|terna-tributi0n instead of a point estimate. Consequenﬂy they pro-
tive models focus on predicting the target variable solely. Foryide a valuable contribution on the basis of which decision
a better prediction performance, we might think of different making should be made. Moreover, BNs allow for inference,
graphical models that share the focus on the target variableand thus they enable detailed examinations of specific sce-
These could include (tree-augmented) naive Bayes networkfarios. Bayesian networks may thus be used for improved
or an adapted score for the network learning that puts morgommunication between scientists and public authorities and
weight on the target variable. Thus learned networks maymay help in creating a better assessment of natural hazards

also be more reliable in the identification of the variablesthat does not shy away from any uncertainties involved.
relevant for the prediction, but will fail to capture the overall

picture of dependence relations.
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Appendix A: DAG' for C contribution
Al BN learning: MAP score 0 e C A B | tos(t(t,f))
1
For a data-based BN learning we search for the pair (DAG, t ot 2
0) that has the highest probability for the observed data and @ f f 0
thus maximizes the joint posterior Eaii ¢t f 1
stimate
P(DAG, O|d) o< P(d|DAG, ©) P(©, DAG), . -t f 0
posterior likelihood prior ; t - t 0
) ’S(tv(tvf)): 4 t N _ 1
which corresponds to the MAP score of the BRiggelsen 1

20:?2' tioating the sinal moonents of th e w ﬁndFigure ALl. lllustration of the calculation of(-) used for the pa-
estigating the single components of the score, we rameter estimation in DAG The graph on the left shows a DAG

that the l'kel'hoo_d termP (d|DAG, ©) is the product of for the estimation o€ conditioned oA andB. The three variables
Eq. () for every independent sample; hence, for completeiaye the valuesand f. An example data set is given in the table on
data, this is the right together with the contribution for each record (@ =1,
(A=t,B=f)).

|d| k
P@oAG. 0) =[] r (x"leh) = T oL, (A1)

1=1i=1 ,X;,XPgi)

For P(A|DAG) and P(DAG), we assume uniform distribu-
wherexi(l) is the observed value df; in theth record and tions analogue as for the original MAP score and we define

xg;(i) is the corresponding observation of the parent set. ThisP(®|DAG’ A) as product Dirichlet again (Edh2). For the

) continuous data term we define
reduces the score to a functionmofy;, xpgi)), the number

of counts (occurrences) of the valugs, xpg;)) in the data. . 1 \"x)
The joint prior distribution decomposes as P@°ld, A)=]] (n (x')>
P(O, DAG) = P(O|DAG) P (DAG). For the applications in i !

this paper we assume that all DAGs are equally likely and
consequently defin€ (DAG) to be uniform over the space of - goryations are equally likely within the same interval. The
BI_\I struc_tures.P(G)lDAG) we define as a non-|nforma_t|ve joint posterior has a closed form as a functiom6f.

prior, acting at the same time as a penalty term. For discrete

which corresponds to the assumption that all continuous ob-

data, this is a (product) Dirichlet distribution given by A2 Similar-cases approach
r (Za(x- Yo )> The estimation of a missing value as described in Skgt.
X is XPai) . . ..
P(OIDAG) — l—[ 1—[ Xi l—[ea(x,-,xpa(i))—l (A2) reqwres,/accordmg to Eq7), the prediction of the param-
Cites T (@ xpapn)) S0P eterg s, from incomplete data. Instead of using the un-

observed statistics(-), we rely on counts of similar cases
wherea(-) are so-called hyperparameters, primarily govern-here. The statistics(x;, xpa;)), are a weighted count of all

ing the regularization (to avoid over-fitting). records whereX; = x; and the observed part of the parents
setXpg;) matches withepy;). This means that we add 1 to
MAP score extension for continuous variables s(xi, xpgiy) for each record wheréx;, xpy;)) is fully ob-

) _ ) ) served. For each matching record with an incompletely ob-
If continuous variables are contained in the data set, we leargeryed parents set, we count the possible completions for the
a discretization A, parallel to the BN. The here used ex- mjssing parents and add 1 divided by the number of possible
tended MAP score corresponds to the joint posterior of BNcompletions tos (x;, xpai)); refer to Fig.A1 for an example.

and discretization: Finally we estimate the parameters

C Cc
P (DAG, O, Ald°) « P(d°|DAG, ©, A)P(DAG, O, A). ons 5 (31, Xpap)

. . . xilxpaiy — . -\’
Considering Eq.4), we rewrite the equation above as Pan ;S (x,, xPa(z))

P(DAG,©, Ald®) o P (d°|d, A) P(dIDAG, ©, A) P(DAG, 6. A). fully defining the predictive distribution fax; (Eq. 7).

Ne—— ——
continuous data likelihood (discrete prior

The likelihood term is defined as in EgAX), and the
prior decomposes int® (@|DAG, A) P(A|DAG) P (DAG).
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