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Abstract. Modern natural hazards research requires deal-
ing with several uncertainties that arise from limited process
knowledge, measurement errors, censored and incomplete
observations, and the intrinsic randomness of the govern-
ing processes. Nevertheless, deterministic analyses are still
widely used in quantitative hazard assessments despite the
pitfall of misestimating the hazard and any ensuing risks.

In this paper we show that Bayesian networks offer a flexi-
ble framework for capturing and expressing a broad range of
uncertainties encountered in natural hazard assessments. Al-
though Bayesian networks are well studied in theory, their
application to real-world data is far from straightforward,
and requires specific tailoring and adaptation of existing al-
gorithms. We offer suggestions as how to tackle frequently
arising problems in this context and mainly concentrate on
the handling of continuous variables, incomplete data sets,
and the interaction of both. By way of three case studies
from earthquake, flood, and landslide research, we demon-
strate the method of data-driven Bayesian network learning,
and showcase the flexibility, applicability, and benefits of this
approach.

Our results offer fresh and partly counterintuitive in-
sights into well-studied multivariate problems of earthquake-
induced ground motion prediction, accurate flood damage
quantification, and spatially explicit landslide prediction at
the regional scale. In particular, we highlight how Bayesian
networks help to express information flow and independence
assumptions between candidate predictors. Such knowledge
is pivotal in providing scientists and decision makers with
well-informed strategies for selecting adequate predictor
variables for quantitative natural hazard assessments.

1 Introduction

Natural hazards such as earthquakes, tsunamis, floods, land-
slides, or volcanic eruptions have a wide range of differing
causes, triggers, and consequences. Yet the art of predict-
ing such hazards essentially addresses very similar issues in
terms of model design: the underlying physical processes are
often complex, while the number of influencing factors is
large. The single and joint effects of the driving forces are
not always fully understood, which introduces a potentially
large degree of uncertainty into any quantitative analysis. Ad-
ditionally, observations that form the basis for any inference
are often sparse, inaccurate and incomplete, adding yet an-
other layer of uncertainty. For example,Merz et al.(2013)
point out the various sources of uncertainty (scarce data, poor
understanding of the damaging process, etc.) in the context
of flood damage assessments, whileBerkes(2007) calls at-
tention to the overall complexity of human–environment sys-
tems, as well as the importance of understanding underlying
uncertainties to improve resilience. Similarly,Bommer and
Scherbaum(2005) discuss the importance of capturing un-
certainties in seismic hazard analyses to balance between in-
vestments in provisions of seismic resistance and possible
consequences in the case of insufficient resistance.

Nevertheless, deterministic approaches are still widely
used in natural hazards assessments. Such approaches rarely
provide information on the uncertainty related to parame-
ter estimates beyond the use of statistical measures of dis-
persion such as standard deviations or standard errors about
empirical means. However, uncertainty is a carrier of infor-
mation to the same extent as a point estimate, and ignor-
ing it or dismissing it as simply an error may entail grave
consequences. Ignoring uncertainties in quantitative hazard
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appraisals may have disastrous effects, since it often leads to
over- or underestimates of certain event magnitudes. Yet de-
terministic approaches persist as the state of the art in many
applications. For example, tsunami early warning systems
evaluate pre-calculated synthetic databases and pick out the
scenario that appears closest to a given situation in order to
estimate its hazard (Blaser et al., 2011). Recently developed
models for flood damage assessments use classification ap-
proaches, where the event under consideration is assigned to
its corresponding class, and the caused damage is estimated
by taking the mean damage of all observed events belonging
to the same class (Elmer et al., 2010). In seismic hazard anal-
ysis the usage of regression-based ground motion models is
common practice, restricting the model to the chosen func-
tional form, which is defined based on physical constrains
(Kuehn et al., 2009).

In this paper we consider Bayesian networks (BNs), which
we argue are an intuitive, consistent, and rigorous way of
quantifying uncertainties.Straub(2005) underlines the large
potential of BNs for natural hazard assessments, herald-
ing not only the ability of BNs to model various inter-
dependences but also their intuitive format: the representa-
tion of (in)dependences between the involved variables in a
graphical network enables improved understandings and di-
rect insights into the relationships and workings of a nat-
ural hazard system. The conditional relationships between
dependent variables are described by probabilities, from
which not only the joint distribution of all variables but any
conditional probability distribution of interest can be derived.
BNs thus endorse quantitative analyses of specific hazard
scenarios or process-response chains.

In recent years, BNs have been used in avalanche risk as-
sessment (e.g.,Grêt-Regamey and Straub, 2006), tsunami
early warning (e.g.,Blaser et al., 2009, 2011), earthquake
risk management (e.g.,Bayraktarli and Faber, 2011), proba-
bilistic seismic hazard analysis (e.g.,Kuehn et al., 2011), and
earthquake-induced landslide susceptibility (e.g.,Song et al.,
2012). Aguilera et al.(2011) give an overview of applica-
tions of BNs in the environmental sciences between 1990 and
2010, and conclude that the potential of BNs remains under-
exploited in this field. This is partly because, even though
BNs are well studied in theory, their application to real-world
data is not straightforward. Handling of continuous variables
and incomplete observations remains the key problem. This
paper aims to overcome these challenges. Our objective is
to briefly review the technique of learning BNs from data,
and to suggest possible solutions to implementation prob-
lems that derive from the uncertainties mentioned above. We
use three examples of natural hazard assessments to discuss
the demands of analyzing real-world data, and highlight the
benefits of applying BNs in this regard.

In our first example (Sect.3), we develop a seismic ground
motion model based on a synthetic data set, which serves
to showcase some typical BN properties. In this context we
demonstrate a method to deal with continuous variables with-
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Figure 1. The figure shows the BN for the burglary exam-
ple. The graph structure illustrates the dependence relations of
the involved variables: the alarm can be triggered by a burg-
lary or earthquake. An earthquake might be reported in the
radio newscast. The joint distribution of all variables can be
decomposed into the product of its conditionals accordingly:
P(B, E, A, R) = P(B)P (E)P (A|B,E)P (R|E).

out any prior assumptions on their distributional family. In
Sect. 4 we use data that were collected after the 2002 and
2005/2006 floods in the Elbe and Danube catchments, Ger-
many, to learn a BN for flood damage assessments. This ex-
ample is emblematic of situations where data are incomplete,
and requires a treatment of missing observations, which can
be challenging in combination with continuous variables.
Our final example in Sect.5 deals with a regional landslide
susceptibility model for Japan, where we investigate how the
same set of potential predictors of slope stability may pro-
duce nearly equally well performing, though structurally dif-
ferent, BNs that reveal important and often overlooked vari-
able interactions in landslide studies. This application further
illustrates the model uncertainty related to BN learning.

2 Bayesian networks (BNs)

The probabilistic framework of BNs relies on the theorem
formulated by Reverend Thomas Bayes (1702–1761), and
expresses how to update probabilities in light of new evi-
dence (McGrayne, 2011). By combining probability theory
with graph theory, BNs depict probabilistic dependence re-
lations in a graph: the nodes of the graph represent the con-
sidered random variables, while (missing) edges between the
nodes illustrate the conditional (in)dependences between the
variables. Textbooks often refer to the burglary alarm sce-
nario for a simple illustration of BNs (Pearl, 1998). In this
example, the alarm of your home may not only be triggered
by burglary but also by earthquakes. Moreover, earthquakes
have a chance to be reported in the news. Figure1 shows the
dependence relations of these variables as captured by a BN.
Now, imagine you get a call from your neighbor notifying
you that the alarm went off. Supposing the alarm was trig-
gered by burglary, you drive home. On your way home you
hear the radio reporting a nearby earthquake. Even though
burglaries and earthquakes may be assumed to occur inde-
pendently, the radio announcement changes your belief in the
burglary, as the earthquake “explains away” the alarm. BNs
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Table 1. Conditional probabilities in the burglary example, giv-
ing the conditional probabilities forearthquake(e), burglary (b),
alarm (a), andearthquake reported(r). The parameters that define
the conditional distributions correspond for discrete variables to the
conditional (point) probabilities. Note that the conditional probabil-
ity values forno earthquake(e), no burglary(b), etc. can be derived
from the fact that the conditionals sum up to 1.

θe= p(e) = 0.001 θa|e,b = p(a|e, b) = 0.98
θb = p(b) = 0.01 θa|e,b = p(a|e, b) = 0.95

θr|e= p(r|e) = 0.95 θa|e,b = p(a|e, b) = 0.95
θr|e= p(r|e) = 0.001 θa|e,b = p(a|e, b) = 0.03

offer a mathematically consistent framework to conduct and
specify reasonings of such kind. A detailed introduction to
BNs is provided inKoller and Friedman(2009) andJensen
and Nielsen(2001), whileFenton and Neil(2012) offers easy
and intuitive access. In this paper we restrict ourselves to sev-
eral key aspects of the BN formalism.

2.1 Properties and benefits

Applying BNs to natural hazard assessments, we define the
specific variables of the hazard domain to be the nodes in a
BN. In the following we denote this set of random variables
asX = {X1, . . . , Xk}. The dependence relations between the
variables are encoded in the graph structure, generating a di-
rected acyclic graph (DAG). The directions of the edges de-
fine the flow of information, but do not necessarily indicate
causality. As we shall see in subsection “Learned ground mo-
tion model” of Sect. 3.2, it may prove beneficial to direct
edges counterintuitively in order to fulfill regularization con-
straints. The set of nodes from which edges are directed to a
specific node,Xi , is called the parent set,XPa(i), of Xi (see
Fig. 2). Table2 summarizes the notations used in this paper.

Apart from the graph structure, a BN is defined by con-
ditional probabilities that specify the dependence relations
encoded in the graph structure. The conditional probability
distribution for each variable,Xi , is given conditioned on its
parent set:p

(
Xi |XPa(i)

)
. For simplification we restrict our-

selves here to discrete variables for whichθ is the set of con-
ditional (point) probabilities for each combination of states
for Xi andXPa(i): θ = {θxi |xPa(i) = p(xi |xPa(i))}. The condi-
tional probabilities for the burglary BN example are given in
Table1. For continuous variables, the design of the param-
eters depends on the family of distributions of the particular
densitiesp(·|·).

Given the BN structure (DAG) and parameters (θ ), it fol-
lows from the axioms of probability theory that the joint dis-
tribution of all variables can be factorized into a product of
conditional distributions:

P(X|DAG, θ) =

k∏
i=1

p
(
Xi |XPa(i)

)
. (1)
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Figure 2. Illustration of a parent set in a BN.XPa(i) is the parent
set ofXi .

Further, applying Bayes theorem,P(A|B) =
P(A,B)
P (B)

=

P(B|A)P (A)
P (B)

, each conditional probability of interest can be
derived. In this way a BN is characterized by many attractive
properties that we may profit from in a natural hazard setting,
including the following properties:

– Property 1 – graphical representation: the interactions
of the variables of the entire “system” are encoded in the
DAG. The BN structure thus provides information about
the underlying processes and the way various variables
communicate and share “information” as it is propa-
gated through the network.

– Property 2 – use prior knowledge: the intuitive inter-
pretation of a BN makes it possible to define the
BN based on prior knowledge; alternatively it may be
learned from data, or even a combination of the two
(cast as Bayesian statistical problem) by posing a prior
BN and updating it based on observations (see below
for details).

– Property 3 – identify relevant variables: by learning the
BN from data we may identify the variables that are
(according to the data) relevant; “islands” or isolated
single unconnected nodes indicate potentially irrelevant
variables.

– Property 4 – capture uncertainty: uncertainty can eas-
ily be propagated between any nodes in the BN; we ef-
fectively compute or estimate probability distributions
rather than single-point estimates.

– Property 5 – allow for inference: instead of explicitly
modeling the conditional distribution of a predefined
target variable, the BN captures the joint distribution of
all variables. Via inference, we can express any given
or all conditional distribution(s) of interest, and reason
in any direction (including forensic and inverse reason-
ing): for example, for a given observed damage we may
infer the likely intensity of the causing event. A detailed
example for reasoning is given in Sect.4.3.
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Table 2.Summary of notations used in this paper.

Notation Meaning

Xi a specific variable
xi a realization ofXi

X = {X1, . . . , Xk} set of the considered variables
XPa(i) parent set ofXi

xPa(i) a realization of the parent set
X−Y all variables butY
DAG directed acyclic graph (graph structure)
p(Xi |XPa(i)) conditional probability of a variable conditioned on its parent set
θxi |xPa(i) parameter that defines the probability forxi givenxPa(i)

θ =

{
θxi |xPa(i)

}
set of model parameters that defines the conditional distributions

2 random variable for the set of model parameters
BN: (DAG, θ ) Bayesian network, defined by the pair of structure and parameters
d discrete/discretized data set that is used for BN learning
dc (partly) continuous data set that is used for BN learning
3 discretization that bins the original datadc into d

XMB(i) set of variables that form the Markov blanket ofXi (Sect.4.2)
Ch(i) variable indices of the children ofXi (Sect.4.2)

Note that inference in BNs is closed under restric-
tion, marginalization, and combination, allowing for
fast (close to immediate) and exact inference.

– Property 6 – use incomplete observations: during pre-
dictive inference (i.e., computing a conditional distribu-
tion), incomplete observations of data are not a problem
for BNs. By virtue of the probability axioms, it merely
impacts the overall uncertainty involved.

In the following we will refer to these properties 1–6 in
order to clarify what is meant. For “real-life” modeling prob-
lems, including those encountered in natural hazard analysis,
adhering strictly to the BN formalism is often a challeng-
ing task. Hence, the properties listed above may seem unduly
theoretical. Yet many typical natural hazard problems can be
formulated around BNs by taking advantage of these proper-
ties. We take a data-driven stance and thus aim to learn BNs
from collected observations.

2.2 Learning Bayesian networks

Data-based BN learning can be seen as an exercise in finding
a BN which, according to the decomposition in Eq. (1), could
have been “responsible for generating the data”. For this we
traverse the space of BNs (Castelo and Kocka, 2003) look-
ing for a candidate maximizing a fitness score that reflects
the “usefulness” of the BN. This should however be done
with careful consideration to the issues always arising in the
context of model selection, i.e., over-fitting, generalization,
etc. Several suggestions for BN fitness scoring are derived
from different theoretical principles and ideas (Bouckaert,
1995). Most of them are based on the maximum likelihood
estimation for different DAG structures according to Eq. (1).

In this paper we opt for a Bayesian approach to learn BNs
(note that BNs are not necessarily to be interpreted from
a Bayesian statistical perspective). Searching for the most
probable BN, (DAG,θ ), given the observed data,d, we aim
to maximize the BN MAP (Bayesian network maximum a
posteriori) score suggested byRiggelsen(2008):

P(DAG,2|d)︸ ︷︷ ︸
posterior

∝ P(d|DAG,2)︸ ︷︷ ︸
likelihood

P(2,DAG)︸ ︷︷ ︸
prior

. (2)

The likelihood term decomposes according to Eq. (1). The
prior encodes our prior belief in certain BN structures and pa-
rameters. This allows us to assign domain specific prior pref-
erences to specific BNs before seeing the data (Property 2)
and thus to compensate for sparse data, artifacts, bias, etc.
In the following applications we use a non-informative prior,
which nevertheless fulfills a significant function. Acting as
a penalty term, the prior regularizes the DAG complexity
and thus avoids over-fitting. Detailed descriptions for prior
and likelihood term are given in AppendixA1 andRiggelsen
(2008).

The following section illustrates the BN formalism “in ac-
tion” and will also underscore some theoretical and practi-
cal problems along with potential solutions in the context of
BN learning. We will learn a ground motion model, which
is used in probabilistic seismic hazard analysis, as a BN; the
data are synthetically generated. Subsequently, we consider
two other natural hazard assessments where we learn BNs
from real-world data.

Nat. Hazards Earth Syst. Sci., 14, 2605–2626, 2014 www.nat-hazards-earth-syst-sci.net/14/2605/2014/
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Table 3. Variables used in the ground motion model and the corresponding distributions used for the generation of the synthetic data set
which is used for BN learning.

Xi Description Distribution[range]

Predictors

M Moment magnitude of the earthquake U[5,7.5]

R Source-to-site distance Exp[1km,200km]

SD Stress released during the earthquake Exp[0bar,500bar]
Q0 Attenuation of seismic wave amplitudes in deep layers Exp

[0s−1,5000s−1]

κ0 Attenuation of seismic wave amplitudes near the surface Exp[0s,0.1s]
VS30 Average shear-wave velocity in the upper 30 m U

[600ms−1,2800ms−1]

Ground motion parameter

PGA Horizontal peak ground acceleration According to the stochastic model
(Boore, 2003)

3 Seismic hazard analysis: ground motion models

When it comes to decision making on the design of high-risk
facilities, the hazard arising from earthquakes is an impor-
tant aspect. In probabilistic seismic hazard analysis (PSHA)
we calculate the probability of exceeding a specified ground
motion for a given site and time interval. One of the most crit-
ical elements in PSHA, often carrying the largest amount of
uncertainty, is the ground motion model. It describes the con-
ditional probability of a ground motion parameter,Y , such
as(horizontal) peak ground acceleration, given earthquake-
and site-related predictor variables,X−Y . Ground motion
models are usually regression functions, where the func-
tional form is derived from expert knowledge and the ground
motion parameter is assumed to be lognormally distributed:
ln Y = f (X−Y ) + ε, with ε ∼N (0, σ 2). The definition of
the functional form off (·) is guided by physical model as-
sumptions about the single and joint effects of the different
parameters, but also contains some ad hoc elements (Kuehn
et al., 2011). Using the Bayesian network approach there is
no prior knowledge required per se, but if present it can be
accounted for by encoding it in the prior term of Eq. (2).
If no reliable prior knowledge is available, we work with
a non-informative prior, and the learned graph structure pro-
vides insight into the dependence structure of the variables
and helps in gaining a better understanding of the underlying
mechanism (Property 1). Modeling the joint distribution of
all variables,X = {X−Y ,Y }, the BN implicitly provides the
conditional distributionP(Y |X−Y , DAG, 2), which gives
the probability of the ground motion parameter for specific
event situations needed for the PSHA (Property 5).

3.1 The data

The event situation is described by the predictor variables
X−Y = {M, R, SD, Q0, κ0, VS30}, which are explained in
Table 3. We generate a synthetic data set consisting of
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Figure 3. When working with continuous variables, we have to
make assumptions about the functional form of the probability dis-
tributions (gray), e.g.,(a) exponential,(b) normal, and(c) uniform.
Thus we restrict the distributions to certain shapes that may not
match reality. In contrast, using a discrete multinomial distribution
(black), each continuous distribution can be approximated and we
avoid prior restrictions on the shape. Rather the shape is learned
from the data by estimating the probability for each interval.

10 000 records. The ground motion parameter,Y , is the hor-
izontal peak ground acceleration (PGA). It is generated by
a so-calledstochastic modelwhich is described in detail by
Boore(2003). The basic idea is to distort the shape of a ran-
dom time series according to physical principles and thus to
obtain a time series with properties that match the ground-
motion characteristics. The predictor variables are either uni-
form (U) or exponentially (Exp) distributed within a particu-
lar interval (see Table3).

The stochastic model does not have good analytical prop-
erties, and its usage is non-trivial and time consuming.
Hence, surrogate models, which describe the stochastic
model in a more abstract sense (e.g., regressions), are used
in PSHA instead. We show that BNs may be seen as a viable
alternative to the classical regression approach. However, be-
fore doing so, we need to touch upon some practical issues
arising when learning BNs from continuous data.

For continuous variables we need to define the distri-
butional family for the conditionalsp(·|·) and thus make
assumptions about the functional form of the distribu-
tion. To avoid such assumptions and “let the data speak”,
we discretize the continuous variables, thus allowing for
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Figure 4. Representation of the dependency assumptions in the
discretization approach: the dependency relations of the variables
are captured by their discrete representations (gray-shaded area). A
continuous variable,Xc

i
, depends only on its discrete counterpart,

Xi .

completely data-driven and distribution-free learning (see
Fig.3). In the following subsection we describe an automatic
discretization, which is part of the BN learning procedure and
takes the dependences between the single variables into ac-
count. However, the automatic discretization does not neces-
sarily result in a resolution that matches the requirements for
prediction purposes or decision support. To increase the po-
tential accuracy of predictions, we approximate, once the net-
work structure is learned, the continuous conditionals with
mixtures of truncated exponentials(MTE), as suggested by
Moral et al.(2001). More on this follows in Sect.3.3.

3.2 Automatic discretization for structure learning

The range of existing discretization procedures differs in
their course of action (supervised vs. unsupervised, global
vs. local, top-down vs. bottom-up, direct vs. incremental,
etc.), their speed and their accuracy.Liu et al. (2002) pro-
vide a systematic study of different discretization techniques,
while Hoyt (2008) concentrates on their usage in the context
with BN learning. The choice of a proper discretization tech-
nique is anything but trivial as the different approaches result
in different levels of information loss. For example, a dis-
cretization conducted as a pre-processing step to BN learning
does not account for the interplay of the variables and often
misses information hidden in the data. To keep the informa-
tion loss small, we use a multivariate discretization approach
that takes the BN structure into account. The discretization
is defined by a set of interval boundary points for all vari-
ables, forming a grid. All data points of the original contin-
uous (or partly continuous) data set,dc, that lie in the same
grid cell, correspond to the same value in the discretized data
set,d. In a multivariate approach, the “optimal” discretiza-
tion, denoted by3, depends on the structure of the BN and
the observed data,dc. Similar to Sect.2.2, we again cast the
problem in a Bayesian framework searching for the combin-
ation of (DAG,θ , 3) that has the highest posterior probabil-
ity given the data,
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2 . (a) shows a possible realization of a corresponding sample. According to Monti and Cooper (1998)

we now assume, that we can find a discretization, such that the resulting discretized variables X1 and X2

capture the dependence relation between Xc
1 and Xc

2 . This is illustrated by (b), where the shading of the grid

cells corresponds to their probabilities
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(which

:::
are
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defined

::
by

:::
θ). A darker color means, that we expect more

realizations in this grid cell. Further we say, that within each grid cell the realizations are uniformly distributed,

as illustrated in (c).
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Figure 5. For the discretization approach each multivariate contin-
uous distribution(a) is characterized by a discrete distribution that
captures the dependence relations(b) and a continuous uniform dis-
tribution over each grid cell(c). For exemplification assume we con-
sider two dependent, continuous variables:Xc

1 andXc
2. (a) shows a

possible realization of a corresponding sample. According toMonti
and Cooper(1998) we now assume that we can find a discretization,
such that the resulting discretized variablesX1 andX2 capture the
dependence relation betweenXc

1 andXc
2. This is illustrated by(b),

where the shading of the grid cells corresponds to their probabilities
(which are defined byθ ). A darker color means that we expect more
realizations in this grid cell. Further, we say that, within each grid
cell, the realizations are uniformly distributed, as illustrated in(c).

P
(
DAG, 2, 3|dc)︸ ︷︷ ︸

posterior

∝ P
(
dc

|DAG, 2, 3
)︸ ︷︷ ︸

likelihood

P (DAG, 2, 3)︸ ︷︷ ︸
prior

. (3)

Let us consider the likelihood term: expanding on an idea by
Monti and Cooper(1998), we assume that all communica-
tion/flow of information between the variables can be cap-
tured by their discrete representations (see Fig.4) and is de-
fined by the parametersθ . Thus only the distribution of the
discrete datad depends on the network structure, while the
distribution of the continuous datadc is, for givend, inde-
pendent of the DAG (see Figs.4 and5). Consequently the
likelihood for observingdc (for a given discretization, net-
work structure and parameters) can be written as

P
(
dc

|DAG, 2, 3
)
=P

(
dc

|d, 3
)
P (d|DAG, 2, 3) (4)

and Eq. (3) decomposes into

P
(
DAG, 2, 3|dc)

∝ P
(
dc

|d,3
)︸ ︷︷ ︸

continuous data

P(d|DAG, 2, 3)︸ ︷︷ ︸
likelihood (discrete)

P(DAG, 2, 3)︸ ︷︷ ︸
prior

.
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Figure 6. Theoretic BN for the ground motion model. It captures
the known dependences of the data-generating model.

The likelihood (discrete) term is now defined as for the sep-
arate BN learning for discrete data (Sect.2.2), and we use a
non-informative prior again. For the continuous data, we as-
sume that all continuous observations within the same inter-
val defined by3 have the same probability (Fig.5). More
information about the score definition can be found in the
AppendixA1, and technical details are given inVogel et al.
(2012, 2013). In the following we discuss the BN and dis-
cretization learned from the synthetic seismic data set.

Learned ground motion model

Since we generated the data ourselves, we know which
(in)dependences the involved variables should adhere to; this
is expected to be reflected in the BN DAG we learn from the
synthetic data (Property 1, 3). Due to data construction, the
predictor variablesM, R, SD,Q0, κ0, andVS30 are indepen-
dent of each other and PGA depends on the predictors. Fig-
ure 6 shows the dependence structure of the variables. The
converging edges at PGA indicate that the predictors become
conditionally dependent for a given PGA. This means that,
for a given PGA, they carry information about each other;
for example, for an observed large PGA value, a small stress
drop indicates a close distance to the earthquake. The knowl-
edge about the dependence relations gives the opportunity
to use the seismic hazard application for an inspection of the
BN learning algorithm regarding the reconstruction of the de-
pendences from the data, which is done in the following.

The network that we found to maximize
P(DAG, 2, 3|dc) for the 10 000 synthetic seismic
data records is shown in Fig.7. The corresponding dis-
cretization that was found is plotted in Fig.8, which shows
the marginal distributions of the discretized variables.
The learned BN differs from the original one, mainly
due to regularization constraints as we will explain in the
following: as mentioned in Sect.2, the joint distribution

Figure 7. BN for the ground motion model learned from the gen-
erated synthetic data. It captures the most dominant dependences.
Less distinctive dependences are neglected for the sake of parameter
reduction.

of all variables can be decomposed into the product of the
conditionals according to the network structure (see Eq.1).
For discrete/discretized variables, the number of parameters
needed for the definition ofp(Xi |XPa(i)) in Eq. (1) corre-
sponds to the number of possible state combinations for (Xi ,
XPa(i)). Taking the learned discretization shown in Fig.8,
the BN of the data-generating process (Fig.6) is defined
by 3858 parameters, 3840 needed alone for the description
of p(PGA|M, R, SD, Q0, κ0, VS30). A determination of
that many parameters from 10 000 records would lead to
a strongly over-fitted model. Instead we learn a BN that
compromises between model complexity and its ability
to generate the original data. The BN learned under these
requirements (Fig.7) consists of only 387 parameters and
still captures the most relevant dependences.

Figure 9 shows the ln PGA values of the data set plot-
ted against the single predictors. A dependence on stress
drop (SD) and distance (R) is clearly visible. These are also
the two variables with remaining converging edges on PGA,
revealing that, for a given PGA, SD contains information
aboutR and vice versa. The dependences between PGA and
the remaining predictors are much less distinctive, such that
the conditional dependences between the predictors are neg-
ligible and the edges can be reversed for the benefit of pa-
rameter reduction. The connection toVS30 is neglected com-
pletely, since its impact on PGA is of minor interest com-
pared to the variation caused by the other predictors.

Note that the DAG of a BN actually maps the indepen-
dences (not the dependences) between the variables. This
means that each (conditional) independence statement en-
coded in the DAG must be true, while encoded dependence
relations must not hold per se (see Fig.10 for explanation).
In turn this implies that each dependence holding for the
data should be encoded in the DAG. The learning approach

www.nat-hazards-earth-syst-sci.net/14/2605/2014/ Nat. Hazards Earth Syst. Sci., 14, 2605–2626, 2014
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Fig. 8. Marginal distribution of the variables included in the ground motion model, discretized according to the

discretization learned for the BN in Fig. 7. The number of intervals per variable ranges from 2 to 8.
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Figure 8. Marginal distribution of the variables included in the ground motion model, discretized according to the discretization learned for
the BN in Fig.7. The number of intervals per variable ranges from 2 to 8.

applied here fulfills the task quite well, detecting the rele-
vant dependences, while keeping the model complexity at a
moderate level.

The model complexity depends not only on the DAG but
also on the discretization. A complex DAG will enforce a
small number of intervals, and a large number of intervals
will only be chosen for variables with a strong influence on
other variables. This effect is also visible for the learned dis-
cretization (Fig.8). PGA is split into eight intervals, distance
and stress drop into four and five, respectively, and the other
variables consist of only two to three intervals.

3.3 Approximation of continuous distributions with
mixtures of exponentials (MTEs)

A major purpose of the ground motion model is the predic-
tion of the ground motion (ln PGA) based on observations
of the predictors; hence, although the BN captures the joint
distribution (Property 5) of all involved variables, the focus
in this context is on a single variable. The accuracy of the
prediction is limited by the resolution of the discretization
learned for the variable. For the BN shown above, the dis-
cretization of the target variable into eight intervals enables
a quite precise approximation of the continuous distribution,
but this is not the case per se. Complex network structures
and smaller data sets used for BN learning lead to a coarser
discretization of the variables. To enable precise estimates,
we may search for alternative approximations of the (or at
least some, in particular the primary variable(s) of interest)

continuous conditional distributions once the BN has been
learned.

Moral et al.(2001) suggest using MTEs for this purpose,
since they allow for the approximation of a variety of func-
tional shapes with a limited number of parameters (Langseth
and Nielsen, 2008) and they are closed under the opera-
tions used for BN inference: restriction, combination, and
marginalization (Langseth et al., 2009). The basic idea is
to approximate conditional distributionsp(Xi |XPa(i)) with a
combination/mixture of truncated exponential distributions.
For this purpose the domain�(Xi ,XPa(i)) is partitioned into
hypercubesD1, . . . ,DL, and the density within each hyper-
cube,Dl , is defined such that it follows the form

p↓Dl

(
Xi |XPa(i)

)
= a0 +

J∑
j=1

aj e
bj Xi+cT

j XPa(i) . (5)

The determination of the hypercubes and the number of ex-
ponential terms in each hypercube as well as the estimation
of the single parameters is done according to the maximum
likelihood approach described inLangseth et al.(2010). In
the following we show how the MTE approximation im-
proves the BN prediction performance compared to the us-
age of the discretized variables, and we compare the results
to those from a regression approach.

Prediction performance

We conduct a 10-fold cross validation to evaluate the pre-
diction performance of the BN compared to the regression
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Fig. 9. The single figures show the dependences between the predictor variables M,R,SD,Q0,κ0,VS30 and

the target variable lnPGA by plotting the data used to learn the BN for ground motion modeling.

(a) P (B)P (E)P (A|B,E)P (R|E) (b) P (B)P (A|B)P (E|A,B)P (R|E)

Fig. 10. The graph structure of a BN dictates, how the joint distribution of all variables decomposes into a

product of conditionals. Thus for a valid decomposition each independence assumption mapped into the BN

must hold. Usually this applies to a variety of graphs, i.e. the complete graph is always a valid independence

map as it does not make any independence assumption. (a) and (b) show two valid BN structures and the

corresponding decompositions for the burglary example. The independence assumptions made in both BNs

hold, however (b) does not capture the independence between earthquakes and burglaries. An independence

map that maps all independences (a) is called a perfect map, yet perfect maps do not exist for all applications.

Besides, for parameter reduction it might be beneficial to work with an independence map that differs from the

perfect map.
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Figure 9. The individual panels show the dependences between the predictor variablesM, R, SD,Q0, κ0, andVS30 and the target variable
ln PGA by plotting the data used to learn the BN for ground motion modeling.

approach: the complete data set is divided into 10 disjoint
subsamples, of which one is defined as a test set in each trial
while the others are used to learn the model (regression func-
tion or BN). The functional form of the regression function is
determined by expert knowledge based on the description of
the Fourier spectrum of seismic ground motion and follows
the form

f (X−Y ) =a0 + a1M + a2M · lnSD+ (a3 + a4M)

ln
√

a2
5 + R2 + a6κR + a7VS30+ a8 lnSD,

with κ = κ0 + t∗, t∗ =
R

Q0Vsq
andVsq= 3.5 km s−1.

We compare the regression approach in terms of predic-
tion performance to the BN with discretized variables and
with MTE approximations. For this purpose we determine
the conditional density distributions of ln PGA given the pre-
dictor variables for each approach and consider how much
probability it assigns to the real ln PGA value in each ob-
servation. For the regression approach the conditional den-
sity follows a normal distribution,N (f (X−Y ), σ 2), while it
is defined via the DAG and the parametersθ using the BN
models. Table4a shows for each test set the conditional den-
sity value of the observed ln PGA averaged over the individ-

ual records. Another measure for the prediction performance
is the mean squared error of the estimates for ln PGA (Ta-
ble 4b). Here the point estimate for ln PGA is defined as the
mean value of the conditional density. For example, in the
regression model the estimate corresponds tof (x−Y ).

Even though the discretization of ln PGA is relative precise
using the discrete BNs (eight intervals in each trial, except
for the first trial, where ln PGA is split into seven intervals),
the MTE approximation of the conditional distributions im-
proves the prediction performance of the BN. Still, it does
not entirely match the precision of the regression function.
However, the prediction performances are on the same order
of magnitude, and we must not forget that the success of the
regression approach relies on the expert knowledge used to
define its functional form, while the structure of the BN is
learned in a completely data-driven manner. Further the re-
gression approach profits in this example from the fact that
the target variable (ln PGA) is normally distributed, which
is not necessarily the case for other applications. Focusing
on the prediction of the target variable the regression ap-
proach also does not have the flexibility of the BN, which
is designed to capture the joint distribution of all variables
and thus allows for inference in all directions (Property 5),

www.nat-hazards-earth-syst-sci.net/14/2605/2014/ Nat. Hazards Earth Syst. Sci., 14, 2605–2626, 2014
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Table 4. Results of a 10-fold cross validation to test the prediction
performance of the BN (with discrete and MTE approximations of
the conditional distributions) and the regression approach.(a) con-
tains the calculated conditional densities for the observed ln PGA
values averaged over each trial.(b) contains the mean squared error
of the predicted ln PGA for each trial.

(a) Averaged conditional density

BNdiscrete BNMTE Regression

1 0.237 0.320 0.331
2 0.240 0.297 0.329
3 0.239 0.298 0.331
4 0.218 0.255 0.323
5 0.216 0.260 0.339
6 0.222 0.257 0.339
7 0.215 0.252 0.332
8 0.243 0.317 0.330
9 0.212 0.249 0.328

10 0.243 0.315 0.331

Avg. 0.229 0.282 0.331

(b) Mean squared error

BNdiscrete BNMTE Regression

1 1.021 0.749 0.663
2 1.197 0.963 0.680
3 1.082 0.821 0.673
4 1.262 0.951 0.723
5 1.201 0.851 0.629
6 1.298 1.059 0.625
7 1.297 1.077 0.672
8 1.149 0.713 0.701
9 1.343 1.161 0.692

10 1.169 0.841 0.666

Avg. 1.202 0.919 0.672

as exemplified in Sect.4.3. Additional benefits of BNs, like
their ability to make use of incomplete observations, will be
revealed in the following sections, where we investigate real-
world data.

4 Flood damage assessment

In the previous section we dealt with a fairly small BN (a few
variables/nodes) and a synthetic data set. In this section we
go one step further and focus on learning a larger BN from
real-life observations on damage caused to residential build-
ings by flood events. Classical approaches, so-called stage–
damage functions, relate the damage for a certain class of
objects to the water stage or inundation depth, while other
characteristics of the flooding situation and the flooded ob-
ject are rarely taken into account (Merz et al., 2010). Even
though it is known that the flood damage is influenced by a

Fig. 9. The single figures show the dependences between the predictor variables M,R,SD,Q0,κ0,VS30 and

the target variable lnPGA by plotting the data used to learn the BN for ground motion modeling.

(a) P (B)P (E)P (A|B,E)P (R|E) (b) P (B)P (A|B)P (E|A,B)P (R|E)

Fig. 10. The graph structure of a BN dictates, how the joint distribution of all variables decomposes into a

product of conditionals. Thus for a valid decomposition each independence assumption mapped into the BN

must hold. Usually this applies to a variety of graphs, i.e. the complete graph is always a valid independence

map as it does not make any independence assumption. (a) and (b) show two valid BN structures and the

corresponding decompositions for the burglary example. The independence assumptions made in both BNs

hold, however (b) does not capture the independence between earthquakes and burglaries. An independence

map that maps all independences (a) is called a perfect map, yet perfect maps do not exist for all applications.

Besides, for parameter reduction it might be beneficial to work with an independence map that differs from the

perfect map.
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Figure 10. The graph structure of a BN dictates how the joint dis-
tribution of all variables decomposes into a product of condition-
als. Thus for a valid decomposition each independence assumption
mapped into the BN must hold. Usually this applies to a variety of
graphs, i.e., the complete graph is always a valid independence map
as it does not make any independence assumption.(a) and(b) show
two valid BN structures and the corresponding decompositions for
the burglary example. The independence assumptions made in both
BNs hold; however(b) does not capture the independence between
earthquakes and burglaries. An independence map that maps all in-
dependences(a) is called a perfect map, yet perfect maps do not
exist for all applications. Furthermore, for parameter reduction it
might be beneficial to work with an independence map that differs
from the perfect map.

variety of factors (Thieken et al., 2005), stage–damage func-
tions are still widely used. This is because the number of po-
tential influencing factors is large and the single and joint ef-
fects of these parameters on the degree of damage are largely
unknown.

4.1 Real-life observations

The data collected after the 2002 and 2005/2006 flood
events in the Elbe and Danube catchments in Germany (see
Fig. 11) offer a unique opportunity to learn about the driv-
ing forces of flood damage from a BN perspective. The data
result from computer-aided telephone interviews with flood-
affected households, and contain 1135 records for which the
degree of damage could be reported. The data describe the
flooding and warning situation, building and household char-
acteristics, and precautionary measures. The raw data were
supplemented by estimates of return periods, building val-
ues, and loss ratios, as well as indicators for flow velocity,
contamination, flood warning, emergency measures, precau-
tionary measures, flood experience, and socioeconomic fac-
tors. Table5 lists the 29 variables allocated to their domains.
A detailed description of the derived indicators and the sur-
vey is given byThieken et al.(2005) andElmer et al.(2010).
In Sect.3.2we dealt with the issue of continuous data when
learning BNs; here we will apply the methodology presented
there. However, in contrast to the synthetic data from the
previous section, many real-world data sets are, for different
reasons, lacking some observations for various variables. For
the data set at hand, the percentage of missing values is be-
low 20 % for most variables, yet for others it reaches almost
70 %. In the next subsection we show how we deal with the
missing values in the setting of the automatic discretization
described in Sect.3.2when learning BNs.
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K. Vogel et al.: Bayesian network learning for natural hazard analyses 2615
Ta

bl
e

5.
Va

ria
bl

es
us

ed
in

th
e

flo
od

da
m

ag
e

as
se

ss
m

en
ta

nd
th

ei
r

co
rr

es
po

nd
in

g
ra

ng
es

.C
:c

on
tin

uo
us

;O
:o

rd
in

al
;N

:n
om

in
al

.

Va
ria

bl
e

S
ca

le
an

d
ra

ng
e

P
er

ce
nt

ag
e

of
m

is
si

ng
da

ta

F
lo

od
pa

ra
m

et
er

s

W
at

er
de

pt
h

C
:2

48
cm

be
lo

w
gr

ou
nd

to
67

0
cm

ab
ov

e
gr

ou
nd

1.
1

In
un

da
tio

n
du

ra
tio

n
C

:1
to

14
40

h
1.

6
F

lo
w

ve
lo

ci
ty

in
di

ca
to

r
O

:0
=

st
ill

to
3

=
hi

gh
ve

lo
ci

ty
1.

1
C

on
ta

m
in

at
io

n
in

di
ca

to
r

O
:0=

no
co

nt
am

in
at

io
n

to
6=

he
av

y
co

nt
am

in
at

io
n

0.
9

R
et

ur
n

pe
rio

d
C

:1
to

84
8

ye
ar

s
0

W
ar

ni
ng

an
d

em
er

ge
nc

y
m

ea
su

re
s

E
ar

ly
w

ar
ni

ng
le

ad
tim

e
C

:0
to

33
6

h
32

.3
Q

ua
lit

y
of

w
ar

ni
ng

O
:1

=
re

ce
iv

er
of

w
ar

ni
ng

kn
ew

ex
ac

tly
w

ha
tt

o
do

to
6

=
re

ce
iv

er
of

w
ar

ni
ng

ha
d

no
id

ea
w

ha
tt

o
do

55
.8

In
di

ca
to

r
of

flo
od

w
ar

ni
ng

so
ur

ce
N

:0=
no

w
ar

ni
ng

to
4=

of
fic

ia
lw

ar
ni

ng
th

ro
ug

h
au

th
or

iti
es

17
.4

In
di

ca
to

r
of

flo
od

w
ar

ni
ng

in
fo

rm
at

io
n

O
:0=

no
he

lp
fu

li
nf

or
m

at
io

n
to

11
=

m
an

y
he

lp
fu

l
in

fo
rm

at
io

n
19

.1

Le
ad

tim
e

pe
rio

d
el

ap
se

d
w

ith
ou

tu
si

ng
it

fo
r

em
er

ge
nc

y
m

ea
su

re
s

C
:0

to
33

5
h

53
.6

E
m

er
ge

nc
y

m
ea

su
re

s
in

di
ca

to
r

O
:1=

no
m

ea
su

re
s

un
de

rt
ak

en
to

17=
m

an
y

m
ea

su
re

s
un

de
rt

ak
en

0

P
re

ca
ut

io
n

P
re

ca
ut

io
na

ry
m

ea
su

re
s

in
di

ca
to

r
O

:0
=

no
m

ea
su

re
s

un
de

rt
ak

en
to

38=
m

an
y

ef
fic

ie
nt

m
ea

su
re

s
un

de
rt

ak
en

0

P
er

ce
pt

io
n

of
ef

fic
ie

nc
y

of
pr

iv
at

e
pr

ec
au

tio
n

O
:1=

ve
ry

ef
fic

ie
nt

to
6=

no
te

ffi
ci

en
ta

ta
ll

2.
9

F
lo

od
ex

pe
rie

nc
e

in
di

ca
to

r
O

:0=
no

ex
pe

rie
nc

e
to

9=
re

ce
nt

flo
od

ex
pe

rie
nc

e
68

.6
K

no
w

le
dg

e
of

flo
od

ha
za

rd
N

(y
es

/n
o)

32
.7

B
ui

ld
in

g
ch

ar
ac

te
ris

tic
s

B
ui

ld
in

g
ty

pe
N

:(
1=

m
ul

tif
am

ily
ho

us
e,

2=
se

m
i-d

et
ac

he
d

ho
us

e,
3

=
on

e-
fa

m
ily

ho
us

e)
0.

1

N
um

be
r

of
fla

ts
in

bu
ild

in
g

C
:1

to
45

fla
ts

1.
2

F
lo

or
sp

ac
e

of
bu

ild
in

g
C

:4
5

to
18

00
0

m2
1.

9
B

ui
ld

in
g

qu
al

ity
O

:1
=

ve
ry

go
od

to
6=

ve
ry

ba
d

0.
6

B
ui

ld
in

g
va

lu
e

C
:C

92
24

4
to

3
71

8
67

7
0.

2

S
oc

io
ec

on
om

ic
fa

ct
or

s

A
ge

of
th

e
in

te
rv

ie
w

ed
pe

rs
on

C
:1

6
to

95
ye

ar
s

1.
6

H
ou

se
ho

ld
si

ze
,i

.e
.,

nu
m

be
r

of
pe

rs
on

s
C

:1
to

20
pe

op
le

1.
1

N
um

be
r

of
ch

ild
re

n
(<

14
ye

ar
s)

in
ho

us
eh

ol
d

C
:0

to
6

10
.1

N
um

be
r

of
el

de
rly

pe
rs

on
s

(
>

65
ye

ar
s)

in
ho

us
eh

ol
d

C
:0

to
4

7.
6

O
w

ne
rs

hi
p

st
ru

ct
ur

e
N

:(
1=

te
na

nt
;2

=
ow

ne
r

of
fla

t;
3=

ow
ne

r
of

bu
ild

in
g)

0
M

on
th

ly
ne

ti
nc

om
e

in
cl

as
se

s
O

:1
1

=
be

lo
w

E
U

R
50

0
to

16
=

E
U

R
30

00
an

d
m

or
e

17
.6

S
oc

io
ec

on
om

ic
st

at
us

ac
co

rd
in

g
toP
la

pp
(2

00
3)

O
:3

=
ve

ry
lo

w
so

ci
oe

co
no

m
ic

st
at

us
to

13=
ve

ry
hi

gh
so

ci
oe

co
no

m
ic

st
at

us
25

.5

S
oc

io
ec

on
om

ic
st

at
us

ac
co

rd
in

g
toS
ch

ne
ll

et
al

.(1
99

9)
O

:9
=

ve
ry

lo
w

so
ci

oe
co

no
m

ic
st

at
us

to
60=

ve
ry

hi
gh

so
ci

oe
co

no
m

ic
st

at
us

31
.7

F
lo

od
lo

ss

rlo
ss

–
lo

ss
ra

tio
of

re
si

de
nt

ia
lb

ui
ld

in
g

C
:0=

no
da

m
ag

e
to

1=
to

ta
ld

am
ag

e
0

www.nat-hazards-earth-syst-sci.net/14/2605/2014/ Nat. Hazards Earth Syst. Sci., 14, 2605–2626, 2014



2616 K. Vogel et al.: Bayesian network learning for natural hazard analyses

Fig. 11. Catchments investigated for the flood damage assessment and location of communities reporting losses

from the 2002, 2005 and 2006 flood events in the Elbe and Danube catchments (Schroeter et al., 2014).
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Figure 11.Catchments investigated for the flood damage assessment and location of communities reporting losses from the 2002, 2005, and
2006 floods in the Elbe and Danube catchments (Schroeter et al., 2014).

4.2 Handling of incomplete records

To learn the BN, we again maximize the joint posterior for
the given data (Eq.3). This requires the number of counts
for each combination of states for(Xi, XPa(i)), considering
all variables,i = 1, . . . ,k (see AppendixA1). However this
is only given for complete data, and for missing values it can
only be estimated by using expected completions of the data.
We note that a reliable and unbiased treatment of incomplete
data sets (no matter which method is applied) is only possible
for missing data mechanisms that areignorableaccording to
themissing (completely) at random(M(C)AR) criteria as de-
fined inLittle and Rubin(1987), i.e., the absence/presence of
a data value is independent of the unobserved data. For the
data sets considered in this paper, we assume the MAR cri-
terion to hold and derive the predictive function/distribution
based on the observed part of the data in order to estimate the
part which is missing.

In the context of BNs a variety of approaches has been
developed to estimate the missing values (so-called “impu-
tation”). Most of these principled approaches are iterative
algorithms based on expectation maximization (e.g.,Fried-

man, 1997, 1998) or stochastic simulations (e.g.,Tanner and
Wong, 1987). In our case we already have to run several it-
erations of BN learning and discretization, each iteration re-
quiring the estimation of the missing values. Using an itera-
tive approach for the missing value prediction will thus eas-
ily become infeasible. Instead we use a more efficient albeit
approximate method, using theMarkov blanket predictorde-
veloped byRiggelsen(2006).

The idea is to generate a predictive function which enables
the prediction of a missing variableXi based on the observa-
tions of its Markov blanket (MB),XMB(i). The Markov blan-
ket identifies the variables that directly influenceXi , i.e., the
parents, and children ofXi , as well as the parents ofXi ’s
children. An example is given in Fig.12. Assuming the MB
is fully observed, it effectively blocks influence from all other
variables, i.e., the missing value depends only on its MB.
When some of the variables in the MB are missing, it does
not shield offXi . However, for predictive approximation pur-
poses, we choose to always ignore the impact from outside
the MB. Hence, the prediction ofXi based on the observed
data reduces to a prediction based on the observations of the
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Figure 12. Illustration of a Markov blanket (gray-shaded nodes) on
a blood group example: let us assume that I do not know my blood
group for some reason, but I know the genotypes of my relatives.
The genotypes of my parents provide information about my own
blood group specification – in the pictured example they restrict the
list of opportunities to the four options: AB, A0, B0 and BB – as
well as the genotype of my child reveals information, excluding BB
from the list of possible options. Considering the genotype of the
father/mother of my child alone does not provide any information
about my blood type (our blood groups are independent from each
other), but together with the information about our child it again re-
stricts the list of opportunities, leaving only AB and A0 as possible
options (conditioned on our child our blood groups become depen-
dent). All these variables (blood type of my parents, my children,
and the parents of my children) provide direct information about
the considered variable (my blood type) and form its Markov blan-
ket. If I know the values of the Markov blanket, further variables
do not provide any additional information. For example, knowing
the genotypes of my parents, the knowledge about my grandparents
does not deliver any further information about myself (the informa-
tion is “blocked” by my parents). Yet, if the blood type of my par-
ents is unknown, the information about my grandparents can “flow”
and provides new insights.

MB and factorizes according to the DAG in Fig.13a:

P
(
Xi |XMB(i), θ , DAG

)
∝ θXi |XPa(i)

∏
j∈Ch(i)

θXj |XPa(j)
, (6)

where Ch(i) are the variable indices for the children ofXi .
Thus the prediction ofXi requires, according to Eq. (6), in-
ference in the BN (albeit very simple) where correct esti-
mates ofθ are assumed. These in general can not be given
without resorting to iterative procedures. To avoid this we
define a slightly modified version of the predictive function,
for which we define all variables that belong to the MB ofXi

to be the parents ofXi in a modified DAG′ (see Fig.13 for
illustration). ThusXDAG′

Pa(i) corresponds toXDAG
MB(i). The result-

ing DAG′ preserves all dependences given in DAG and can

Fig. 13. (a) Illustration of a Markov Blanket of Xi. The Markov Blanket of a variable
::
Xi comprises the

::
its

parents and childrenof that variable, as well as the parents of the
:
its

:
children.

The prediction of missing values is based on the observations of the variables in the Markov Blanket. To

avoid inference that requires unknown parameters, the subgraph of DAG that spans the Markov Blanket (a) is

modified by directing all edges towards Xi, receiving the DAG′ pictured in (b).
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Figure 13. (a)The Markov blanket ofXi comprises its parents and
children, as well as the parents of its children. The prediction of
missing values is based on the observations of the variables in the
Markov blanket. To avoid inference that requires unknown parame-
ters, the subgraph of DAG that spans the Markov blanket(a) is mod-
ified by directing all edges towardsXi , receiving the DAG′ pictured
in (b).

alternatively be used for the prediction ofXi ,

P
(
Xi |X

DAG′

Pa(i) , θDAG′

,DAG′

)
def
= θDAG′

Xi |XPa(i)
. (7)

For this predictive distribution we need to estimate the pa-
rametersθDAG′

Xi |XPa(i)
. Note that more parameters are required

for the newly derived predictive distribution, but now at least
all influencing variables are considered jointly and an iter-
ative proceeding can be avoided. The parameters are esti-
mated with asimilar-casesapproach, which is described in
Appendix A2. A detailed description for the generation of
the predictive distribution is given inRiggelsen(2006) and
Vogel et al.(2013).

It is worth noting that, as the MBs of variables change dur-
ing the BN learning procedure, the prediction of missing val-
ues (depending on the MB) needs to be updated as well.

4.3 Results

Coming back to the flood damage data, we have three vari-
ables with more than one-third of the observations miss-
ing: flood experience (69 % missing), warning quality (56 %
missing) and lead time elapsed without emergency measures
(54 % missing). In a first “naive” application (Vogel et al.,
2012), no special attention was paid to a proper treatment
of missing values; the missing values were simply randomly
imputed, resulting in the isolation of two variables (flood ex-
perience and lead time elapsed) in the network; no connec-
tion to any other variable was learned (Fig.14a). With appli-
cation of the Markov blanket predictor, the situation changes
and a direct connection from the relative building damage,
rloss, to flood experience is found, as well as a connection
between warning source and elapsed lead time (Fig.14b).
These relations, especially the first one, match with experts’
expectations and speak for an improvement in the learned
BN structure.
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2618 K. Vogel et al.: Bayesian network learning for natural hazard analyses

(a)

(b)

Fig. 14. BNs learned for flood damage assessments, showing the effect of the applied missing value estimator.

The algorithm used to learn (a) replaces missing values randomly, while the one used to learn (b) applies the

Markov Blanket predictor for the estimation of missing values. Nodes with a bold frame belong to the Markov

Blanket of relative building loss and are thus assumed to have direct impact on the caused flood damage.
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Figure 14. BNs learned for flood damage assessments, showing the effect of the applied missing value estimator. The algorithm used to
learn(a) replaces missing values randomly, while the one used to learn(b) applies the Markov blanket predictor for the estimation of missing
values. Nodes with a bold frame belong to the Markov blanket ofrelative building lossand are thus assumed to have a direct impact on the
caused flood damage.

Using the graphical representation (Property 1), as men-
tioned in Sect.2.1, the learned DAG (Fig.14b) gives in-
sight into the dependence relations of the variables. It reveals
a number of direct links connecting the damage-describing
variable with almost all subdomains. This supports the de-
mand for improved flood damage assessments that take sev-
eral variables into account (Merz et al., 2010). Moreover,
the DAG shows which variables are the most relevant for

the prediction of rloss. The domains “precaution” and “flood
parameters” in particular are densely connected to building
damage and should be included in any damage assessment
(Property 3).

Existing approaches for flood damage assessments usually
consider fewer variables and an employment of a large num-
ber of variables is often considered as disadvantageous, since
complete observations for all involved variables are rare. The

Nat. Hazards Earth Syst. Sci., 14, 2605–2626, 2014 www.nat-hazards-earth-syst-sci.net/14/2605/2014/
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Fig. 15. (a) Conditional distribution of the building loss conditioned on the precaution. Flood specific param-

eters as well as other parameters are unknown and summed out. (b) Conditional distribution of the building

loss depending on precaution for a specific flood situation: water depth, duration and flow velocity are known.

Other parameters are unknown and summed out.
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Figure 15. (a)Conditional distribution of the building loss condi-
tioned on the precaution. Flood-specific parameters as well as other
parameters are unknown and summed out.(b) Conditional distribu-
tion of the building loss depending on precaution for a specific flood
situation: water depth, duration, and flow velocity are known. Other
parameters are unknown and summed out.

requirement for complete observations does not hold for BNs
(Property 6). The prediction of the building damage, for ex-
ample, depends only on the variables of its Markov blanket
(marked with a bold frame in Fig.14). If the observation of
the Markov blanket variables is incomplete (not all variables
are observed at inference time), information from outside
the Markov blanket “flows” into the prediction by indirectly
marginalizing (summing) missing variables out. The inclu-
sion of many variables thus provides additional knowledge
and proves to be an advantage of BNs.

Moreover, the capability of BNs to predict from incom-
plete observations enables us to make predictions at an early
stage of an event, employing only the information that is
present at any given time. The prediction can subsequently
be updated as new information becomes available.

4.3.1 Prediction performance

As for the seismic hazard example in Sect.3, the predic-
tion of a certain target variable is likewise of particular
interest in flood damage assessments. Similar to our pre-
vious proceeding (Sect.3.3) we approximate the distribu-
tion of the target variable with mixtures of truncated ex-
ponentials, thus achieving a better resolution for the distri-
bution of interest. The resulting prediction performance of
the BN is compared to currently used flood damage assess-
ment approaches, namely the stage–damage function (sdf)
and the FLEMOps+ r model (Elmer et al., 2010), which
was developed from the same data set, estimating the build-
ing damage based on water depth, flood frequency, building

Table 6. Results of a 5-fold cross validation to compare the pre-
diction performance of the three models used in the flood damage
assessment: stage–damage function, FLEMOps+ r, and Bayesian
networks. For each trial, the table contains the mean squared error
of the estimated fraction of building damage (in log scale).

sdf FLEMOps+ r BNMTE

1 0.0111 0.0108 0.0104
2 0.0133 0.0114 0.0116
3 0.0161 0.0145 0.015
4 0.0200 0.0194 0.0169
5 0.0166 0.0150 0.0163

Avg. 0.0154 0.0142 0.014

type, building quality, contamination, and private precaution.
While sdf and FLEMOps+ r give point estimates, the BN de-
livers a distribution for rloss and thus reveals the uncertainty
of the prediction (Property 4). Especially when it comes to
decision making, the identification of uncertainty is a major
advantage of the BN. However, to allow for model compar-
ison, we reduce the distribution provided by the BN to its
mean value, which we define to be the estimate of rloss. Ta-
ble 6 shows the mean squared error of a 5-fold cross vali-
dation for the three model approaches. The prediction per-
formance of the BN is comparable to the one of the FLE-
MOps+ r, while the BN has the additional advantage of
modeling the whole distribution of the target variable and
conducting the prediction even though not all variables are
observed.

4.3.2 Example for inference: impact of precaution

As an example of reasoning (Property 5), we consider the
effect of precaution on the building loss. Figure15 shows
the distribution of the building loss for a good precaution
(precautionary measures indicator> 14) and a bad precau-
tion (precautionary measures indicator≤ 14) in a general
case (Fig.15a: all other variables are unknown and summed
out) and for a specific flood event (Fig.15b: 7.5 m≤ water
depth< 96.5 m; 82 h≤ duration< 228 h; 1≤ velocity). We
may appreciate how a good precaution increases the chance
for no or only small building losses.

Similar investigations may support the identification of ef-
ficient precautionary measures, not only in the context of
flood events but also for natural hazards in general. They may
also help to convince authorities or private persons to under-
take the suggested precautions. Using the flexibility of BNs
and their ability to model specific situations, BNs may thus
contribute to a better communication between scientists and
non-scientific stakeholders. BNs can also be used for forensic
reasoning, i.e., we can turn around the direction of reasoning
in the example just considered and ask what a likely state
of precaution is for a given observed damage in a specific
or general event situation. Forensic reasoning might be of
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interest, for instance, for insurance companies. Forensic rea-
soning might be of interest, for instance, for insurance com-
panies.

5 Landslides

So far we assumed the existence of a unique model that ex-
plains the data best. In practical problems, however, there
may be many models almost as good as the best, i.e., ones
that explain the data similarly well. This results in an un-
certainty about which BN structure to use. We consider this
problem in our last application, where we apply BN learning
to landslides, which are another ubiquitous natural hazard in
many parts of the world.

A key theme in many landslide studies is the search for
those geological, hydroclimatological, topographic, and en-
vironmental parameters that sufficiently predict the suscepti-
bility to slope failure in a given region. A wide range of mul-
tivariate data analysis techniques has been proposed to meet
this challenge. Amongst the more prominent methods are
logistic regression, artificial neural networks, and Bayesian
weights of evidence. The popularity of such methods is only
matched by their seeming success: a recent review of 674 sci-
entific papers on the topic indicates that most reported suc-
cess rates are between 75 and 95 % (Korup and Stolle, 2014),
where in the majority of studies the success rate is defined as
the percentage of correctly (true positives and true negatives)
identified locations that were subject to slope instability in
the past. This raises the question as to why landslides still
continue to cause massive losses despite this seemingly high
predictive accuracy. Moreover, success rates do not show
any significant increase over the last 10 years regardless of
the number of landslide data or predictors used (Korup and
Stolle, 2014). An often overlooked key aspect in these analy-
ses is the potential for correlated or interacting predictor can-
didates. Few studies have stringently explored whether this
likely limitation is due to physical or statistical (sampling)
reasons.

5.1 Data

The landslide data are taken from an inventory of
∼ 300 000 digitally mapped landslide deposit areas across
the Japanese islands (Korup et al., 2014). These landslides
were mapped systematically mostly from stereographic im-
age interpretation of air photos, and compiled by the Na-
tional Research Institute for Earth Science and Disaster Pre-
vention NIED (http://lsweb1.ess.bosai.go.jp/gis-data/index.
html). The dominant types of failure in this database are
deep-seated slow-moving earthflows and more rapid rock-
slides. The mapped size range of the deposits from these
landslides spans from 102 to 107 m2 footprint area and is
distinctly heavy tailed (Korup et al., 2012). Many of the
landslide deposits are covered by vegetation. Individual de-

posits do not carry any time-stamp information, and so the
inventory contains both historic and prehistoric slope fail-
ures, likely containing landslides up to several thousands of
years old. Smaller rockfalls or soil slips are not included.
Similarly, the inventory contains no data on specific trigger
mechanisms (such as earthquakes, rainfall, or snowmelt), the
dominant type of materials mobilized, or absolute age infor-
mation for the bulk of individual landslides. In this context,
the data nicely reflect common constraints that scientists en-
counter when compiling large landslide databases from re-
mote sensing data covering different time slices. Yet this
type of inventory is frequently used as a key input for as-
sessing and mapping regional landslide susceptibility from
a number of statistical techniques, including BNs. However,
data-driven learning of BNs containing landslide information
has, to the best of our knowledge, not been attempted before.
We have compiled a number of geological, climatic, and to-
pographic metrics for individual catchments throughout the
Japanese islands to test their influence on the average frac-
tion of landslide-affected terrain that we computed within a
10 km radius. Most of our candidate predictors (Table7) have
been used in modified form in other studies (Korup et al.,
2014). While all of these candidate predictors may be phys-
ically related to slope instability, our choice of predictors is
intentionally arbitrary in order to learn more about their ef-
fects on BN learning and structure. The final data set used
for the BN learning consists of landslide and predictor data
that we averaged at the scale of 553 catchments that are up
to 103 km2 large, and that we sampled randomly from the
drainage network across Japan. This averaging approach pro-
duced∼ 0.4 % missing data in the subset, and aptly simulates
further commonly encountered constraints on the quality of
large landslide inventories.

5.2 Uncertainty in BN structure

Ideally, a given model should adequately encapsulate natural
phenomena such as the causes and triggers of slope instabil-
ity. However, there may be several equally well poised, but
competing, models because of the intrinsic uncertainty tied
to the governing processes. In practice we also face other
limitations that prevent us from focusing on one single best
model. The finite number of observations we have at our
disposal for learning, and the fact that it is unclear which
relevant predictor variables to consider for landslide predic-
tion, implies that several models may be justifiable. This is a
general problem when attempting to formally model natural
systems. In our case this means that several BNs might ex-
plain the data (almost) equally well, i.e., they receive a simi-
lar score according to Eq. (2).

An additional source of uncertainty stems from the struc-
ture learning algorithm used to maximize the score defined
in Eq. (2) or – for continuous variables – in Eq. (3). For in-
finite data sets the algorithm terminates according toMeek’s
conjecturein the (unique) optimal equivalence class of DAGs
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Table 7.Variables used in the landslide model.

Name Definition Unit

Mean elevation Average of elevation values within catchment boundaries [m]

Catchment area Log-transformed catchment area [a.u.]
Catchment perimeter Total length of catchment divides [m]

Mean local topographic relief Maximum elevation difference in a 10 km radius [m]

Mean annual precipitationa Based on interpolated rainfall station data (reference period 1980–2010) [mm]

Mean coefficient of variation of
annual precipitationa

Based on interpolated rainfall station data, with standard deviation divided by mean (reference
period 1980–2010)

[1]

Mean coefficient of variation of
monthly precipitationa

Based on interpolated rainfall station data, with standard deviation divided by mean (reference
period 1980–2010)

[1]

Mean surface uplift 2001–2011b GPS-derived accumulated surface uplift 2001–2011 [m]

Mean surface uplift 2010–2011b GPS-derived accumulated surface uplift 2010–2011 [m]

Mean fraction of 10 % steepest bedrock
channels

Average fraction of 10 % steepest channels per unit length of bedrock-river drainage network in
a 10 km radius, based on an arbitrarily set reference
concavityθ = 0.45

[1]

Mean bedrock channel
steepness

Average of channel steepness index per reach length, based on an arbitrarily set reference con-
cavity θ = 0.45

[1]

Regionalized river sinuosity Average bedrock-channel sinuosity weighted by drainage network length in
a 10 km radius calculated as the flow length of a given channel segment
divided by its shortest vertex distance

[1]

Fraction of volcanic rocksc Fraction of catchment area underlain by volcanic rocks [1]

Fraction of lakes Fraction of catchment area covered by lakes [1]

Fraction of plutonic rocksc Fraction of catchment area underlain by plutonic rocks [1]

Fraction of sedimentary rocksc Fraction of catchment area underlain by sedimentary rocks [1]

Fraction of accretionary complex
rocksc

Fraction of catchment area underlain by accretionary complex
rocks

[1]

Fraction of metamorphic rocksc Fraction of catchment area underlain by metamorphic rocks [1]

Median area of landslide-affected
terrain

Fraction of landslide terrain per unit catchment area within a 10 km radius
calculated using an inventory of mostly prehistoric landslide-deposit areas

[1]

a Calculated using data provided by the Japan Meteorological Agency (JMA,http://www.jma.go.jp/jma/indexe.html).
b Calculated from secular high-precision leveling data (Kimura et al., 2008).
c Calculated using the seamless digital geological map of Japan (1 : 200 000) available from the Geological Survey of Japan (https://gbank.gsj.jp/seamless).

(Chickering, 2002), but this does not necessarily hold for fi-
nite data sets, incomplete observations and a search space
extended by the discretization. The algorithm for the traver-
sal of the BN hypothesis space contains stochastic elements
and may get stuck in local optima, providing slightly differ-
ent results for different runs.

To analyze this random behavior, we run the BN learning
and discretization algorithm 10 times on the same data set of
landslide data. We do not expect to end up with the same BN
in each trial, as the constraints to meet Meek’s conjecture are
not fulfilled. Instead, we are more interested in documenting
how strongly the results differ from each other.

Figure 16 gives a summarized representation of the BN
DAG structures. The frequency with which an edge between
two variables is learned is encoded according to its widths
(by scaling it accordingly). Despite the differences in DAG
structures, all learned BNs seem to model the data-generating
process almost equally well, which can be gathered from
the score obtained by Eq. (3): for the BNs learned, we ob-
served scores between−64 364.42 and−64 253.98. This is
a promising result, since it indicates that, even though the al-
gorithm gets stuck in local maxima, the quality of the results

does not differ significantly. This supports the assumption
that the quality of the learned BN is not seriously affected
by random effects of the learning algorithm. Multiple runs of
the algorithm on other data sets confirm this assumption.

In literature on BN learning (and on model learning based
on data in general), ideas of how to handle several compet-
ing, but all justifiable, BNs have been investigated.Fried-
man et al.(1999) use bootstrap sampling to learn BNs from
different variations of the data set. Based on those they de-
velop a confidence measure on features of a network (e.g., the
presence of an edge or membership of a node to a cer-
tain Markov blanket). A Bayesian approach is presented by
Friedman and Koller(2000) andRiggelsen(2005), who ap-
proximate the Bayesian posterior on the DAG space using a
Markov chain Monte Carlo approach. An adaptation of these
methods for the extended MAP score introduced in this paper
is left for future work.

5.3 Results

Despite (or rather thanks to) the DAG structural differences,
we can glean some instructive insights from the learned BNs.
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Fig. 16. Summary of ten learned network structures modeling landslides susceptibility, all based on the same

data set. Arrow widths between the variables are scaled to the number of times they occur in the learned

BNs. Likewise, we color-coded the variables by the frequency with that they occur as part of the Markov

Blanket of fraction of landslide affected terrain (circular node shape), where darker hues indicate more frequent

occurrence.

Fig. 17. Illustration for the calculation of s(·) used for the parameter estimation in DAG′. The graph on the

left shows a DAG′ for the estimation of C conditioned on A and B. The three variables take the values t and

f . An exemplary data set is given in the table on the right together with the contribution for each record to

s(C = t,(A= t,B = f)).
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Figure 16. Summary of 10 learned network structures modeling landslides susceptibility, all based on the same data set. Arrow widths
between the variables are scaled to the number of times they occur in the learned BNs. Likewise, we color-coded the variables according
to the frequency with which they occur as part of the Markov blanket offraction of landslide-affected terrain(circular node shape), where
darker hues indicate more frequent occurrences.

The fact that we can learn something about the landslide-
affected terrain from several BN structures indicates that the
different predictors are highly interacting, and that a missed
link between two variables can often be compensated for by
other interactions. To understand which variables are most
relevant for the prediction of landslide-affected terrain, we
coded the variables in Fig.16 according to the frequency at
which they occur as part of the target variable’s Markov blan-
ket, where darker hues indicate more frequent occurrences.

Perhaps the most surprising aspect of the learned BNs is
that only few of the predictors that have traditionally been in-
voked to explain landslide susceptibility are duly represented
in the Markov blanket. These include mean annual precipita-
tion (part of the MB in each run) – including some derivatives
such as precipitation variability (either annual or monthly
variation is part of the MB) – and mean local topographic
relief (part of the MB in half of the runs).

Instead, predictors such as regionalized bedrock river sin-
uosity or short-term (10-year cumulative) surface uplift de-
rived from a dense network of GPS stations seem to pro-
vide relevant information about landslide-affected terrain in
Japan. Bedrock river sinuosity may reflect the ability of rivers
to carve more pronounced meanders in rocks with closely
spaced defects. Therefore, sinuosity could be linked to first
order to important rock-mass properties that govern the abun-
dance of landslides. However, the link to contemporary sur-
face uplift is less clear. Many of Japan’s currently subsiding
areas are limited to low-relief forearc areas, which feature

fewer landslides – hence an indirect connection via topogra-
phy seems plausible. Yet predictors such as mean elevation
or bedrock channel steepness (as a proxy of fluvial erosion
and undercutting of hillslopes) play largely subdued roles in
the MB of the learned BNs. Also, the role of lithology seems
to be of major importance for the landslide prediction. In our
data, lithology is expressed by the fractions of different rock
types outcropping in a given area, which form a highly inter-
acting cluster. Here the information about accretionary com-
plexes, i.e., heavily tectonized and welded remnants of for-
mer island arcs, is always part of the MB. Furthermore, it is
either the fraction of plutonic, sedimentary, or volcanic rocks
that is part of the MB.

The learned BN structures are counterintuitive compared
to many other susceptibility models that traditionally empha-
size hillslope inclination and topographic relief (Korup and
Stolle, 2014). Further studies may wish to elucidate whether
the dependences contained in the BNs are regional artifacts
or valid on a larger scale. Nevertheless, our results illus-
trate that the BN approach may reveal novel and unexpected
insights into regional landslide prediction by highlighting
unusual links between predictor variables that other multi-
variate models may not show as clearly. What is equally im-
portant is that BNs underscore which predictors may yield
sufficient predictive potential should others not be available.
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6 Conclusions

The Bayesian network approach is a powerful framework
to capture uncertainties and probabilistic elements in natu-
ral hazard assessments. We demonstrated its flexible applic-
ability in seismic hazard, flood damage, and landslide sus-
ceptibility analyses. In addition, we discussed the handling
of continuous data and incomplete observations, as well as
the uncertainty about the model structure, i.e., challenges that
may arise when BNs are learned from real-world data. Our
suggested way of dealing with these problems is fully data
driven and can thus easily be transferred to other domains.

Since the interest of most natural hazard assessment is
in the prediction of a certain target variable, we compared
the prediction performance of the BNs learned for the seis-
mic hazard and flood damage application to currently used
models. In both cases the BNs perform reasonable well. This
is especially promising, since the BNs are designed to cap-
ture the joint distribution of all variables and thus put similar
effort into the prediction of each variable, whereas alterna-
tive models focus on predicting the target variable solely. For
a better prediction performance, we might think of different
graphical models that share the focus on the target variable.
These could include (tree-augmented) naive Bayes networks
or an adapted score for the network learning that puts more
weight on the target variable. Thus learned networks may
also be more reliable in the identification of the variables
relevant for the prediction, but will fail to capture the overall
picture of dependence relations.

Working with BNs, we profit from several attractive prop-
erties inherent to the BN framework. No prior domain knowl-
edge is required, as the DAG structure and parameters can be
learned from data. Yet, if available, expert knowledge can be
exploited via the prior term, which is part of the scoring func-
tion. Discovered (in)dependence relations help us to under-
stand the underlying process and to identify (ir)relevant vari-
ables. An intuitive understanding is supported by the graph-
ical representation of BNs, although the same data may pro-
duce different graphs with comparable performance. This
highlights the potential for new insights into interactions be-
tween large sets of candidate predictors. The ability of BNs
to predict from incomplete observations allows for hazard
estimations at an early stage of an event. Using inference we
can estimate missing values of a variable based on the ob-
servations of neighboring variables. The prediction can be
updated as soon as new information becomes available about
variables that are missing so far.

BNs capture the uncertainty and provide a probability dis-
tribution instead of a point estimate. Consequently they pro-
vide a valuable contribution on the basis of which decision
making should be made. Moreover, BNs allow for inference,
and thus they enable detailed examinations of specific sce-
narios. Bayesian networks may thus be used for improved
communication between scientists and public authorities and
may help in creating a better assessment of natural hazards
that does not shy away from any uncertainties involved.
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Appendix A:

A1 BN learning: MAP score

For a data-based BN learning we search for the pair (DAG,
θ ) that has the highest probability for the observed data and
thus maximizes the joint posterior

P(DAG, 2|d)︸ ︷︷ ︸
posterior

∝ P(d|DAG, 2)︸ ︷︷ ︸
likelihood

P(2, DAG)︸ ︷︷ ︸
prior

,

which corresponds to the MAP score of the BN (Riggelsen,
2008).

Investigating the single components of the score, we find
that the likelihood termP(d|DAG, 2) is the product of
Eq. (1) for every independent sample; hence, for complete
data, this is

P(d|DAG, θ) =

|d|∏
l=1

k∏
i=1

p
(
x

(l)
i |x

(l)
Pa(i)

)
=

∏
i,xi ,xPa(i)

θ
n(xi ,xPa(i))
xi |xPa(i)

, (A1)

wherex
(l)
i is the observed value ofXi in the lth record and

x
(l)
Pa(i) is the corresponding observation of the parent set. This

reduces the score to a function ofn(xi, xPa(i)), the number
of counts (occurrences) of the values(xi, xPa(i)) in the data.

The joint prior distribution decomposes as
P(2, DAG) = P(2|DAG)P (DAG). For the applications in
this paper we assume that all DAGs are equally likely and
consequently defineP (DAG) to be uniform over the space of
BN structures.P(2|DAG) we define as a non-informative
prior, acting at the same time as a penalty term. For discrete
data, this is a (product) Dirichlet distribution given by

P(θ |DAG) =

k∏
i=1

∏
xPa(i)

0

(∑
xi

α
(
xi , xPa(i)

))
∏
xi

0
(
α
(
xi , xPa(i)

)) ∏
xi

θ
α(xi ,xPa(i))−1
xi |xPa(i)

, (A2)

whereα(·) are so-called hyperparameters, primarily govern-
ing the regularization (to avoid over-fitting).

MAP score extension for continuous variables

If continuous variables are contained in the data set, we learn
a discretization,3, parallel to the BN. The here used ex-
tended MAP score corresponds to the joint posterior of BN
and discretization:

P
(
DAG, 2, 3|dc)

∝ P(dc
|DAG, 2, 3)P (DAG, 2, 3).

Considering Eq. (4), we rewrite the equation above as

P(DAG,2, 3|dc) ∝ P
(
dc

|d, 3
)︸ ︷︷ ︸

continuous data

P(d|DAG, 2, 3)︸ ︷︷ ︸
likelihood (discrete)

P(DAG, θ , 3)︸ ︷︷ ︸
prior

.

The likelihood term is defined as in Eq. (A1), and the
prior decomposes intoP(2|DAG, 3)P (3|DAG)P (DAG).

Fig. 16. Summary of ten learned network structures modeling landslides susceptibility, all based on the same

data set. Arrow widths between the variables are scaled to the number of times they occur in the learned

BNs. Likewise, we color-coded the variables by the frequency with that they occur as part of the Markov

Blanket of fraction of landslide affected terrain (circular node shape), where darker hues indicate more frequent

occurrence.

Fig. 17. Illustration for the calculation of s(·) used for the parameter estimation in DAG′. The graph on the

left shows a DAG′ for the estimation of C conditioned on A and B. The three variables take the values t and

f . An exemplary data set is given in the table on the right together with the contribution for each record to

s(C = t,(A= t,B = f)).

40

Figure A1. Illustration of the calculation ofs(·) used for the pa-
rameter estimation in DAG′. The graph on the left shows a DAG′

for the estimation ofC conditioned onA andB. The three variables
take the valuest andf . An example data set is given in the table on
the right together with the contribution for each record tos (C = t ,
(A = t , B = f )).

For P(3|DAG) andP (DAG), we assume uniform distribu-
tions analogue as for the original MAP score and we define
P(2|DAG, 3) as product Dirichlet again (Eq.A2). For the
continuous data term we define

P(dc
|d, 3) =

∏
i

∏
xi

(
1

n(xi)

)n(xi )

,

which corresponds to the assumption that all continuous ob-
servations are equally likely within the same interval. The
joint posterior has a closed form as a function ofn(·).

A2 Similar-cases approach

The estimation of a missing value as described in Sect.4.2
requires, according to Eq. (7), the prediction of the param-
eterθDAG′

xi |xPa(i)
from incomplete data. Instead of using the un-

observed statisticsn(·), we rely on counts of similar cases
here. The statistics,s(xi, xPa(i)), are a weighted count of all
records whereXi = xi and the observed part of the parents
setXPa(i) matches withxPa(i). This means that we add 1 to
s(xi, xPa(i)) for each record where(xi, xPa(i)) is fully ob-
served. For each matching record with an incompletely ob-
served parents set, we count the possible completions for the
missing parents and add 1 divided by the number of possible
completions tos(xi, xPa(i)); refer to Fig.A1 for an example.
Finally we estimate the parameters

θ̂DAG′

xi |xPa(i)
=

s
(
xi, xPa(i)

)∑
xi

s
(
xi, xPa(i)

) ,
fully defining the predictive distribution forXi (Eq.7).

Nat. Hazards Earth Syst. Sci., 14, 2605–2626, 2014 www.nat-hazards-earth-syst-sci.net/14/2605/2014/



K. Vogel et al.: Bayesian network learning for natural hazard analyses 2625

Acknowledgements.We acknowledge Bruno Merz, Heidi Kreibich,
and Kai Schröter from the GFZ Helmholtz Centre in Potsdam for
providing their data and expertise about flood damage.

This work is supported and funded by PROGRESS, a research
cluster of universities and external organizations in the region
of Potsdam–Berlin (Germany). Additional funding comes from
DFG project RI 2037/2-1. Furthermore, we thank the editor and
reviewers for their constructive comments that helped to improve
the manuscript.

Edited by: B. D. Malamud
Reviewed by: D. Straub and one anonymous referee

References

Aguilera, P. A., Fernández, A., Fernández, R., Rumí, R.,
and Salmerón, A.: Bayesian networks in environmen-
tal modelling, Environ. Modell. Softw., 26, 1376–1388,
doi:10.1016/j.envsoft.2011.06.004, 2011.

Bayraktarli, Y. Y. and Faber, M. H.: Bayesian probabilistic network
approach for managing earthquake risks of cities, Georisk, 5, 2–
24, doi:10.1080/17499511003679907, 2011.

Berkes, F.: Understanding uncertainty and reducing vulnerability:
lessons from resilience thinking, Nat. Hazards, 41, 283–295,
doi:10.1007/s11069-006-9036-7, 2007.

Blaser, L., Ohrnberger, M., Riggelsen, C., and Scherbaum, F.:
Bayesian Belief Network for Tsunami Warning Decision Sup-
port, Lect. Notes. Artif. Int., 5590, 757–768, doi:10.1007/978-3-
642-02906-6_65, 2009.

Blaser, L., Ohrnberger, M., Riggelsen, C., Babeyko, A., and
Scherbaum, F.: Bayesian networks for tsunami early warning,
Geophys. J. Int., 185, 1431–1443, 2011.

Bommer, J. and Scherbaum, F.: Capturing and Limiting Groundmo-
tion Uncertainty in Seismic Hazard Assessment, Directions in
Strong Motion Instrumentation, Nato Science Series: IV: Earth
and Environmental Sciences, 58, 25–40, doi:10.1007/1-4020-
3812-7_2, 2005.

Boore, D.: Simulation of ground motion using the stochastic
method, Pure Appl. Geophys., 160, 635–676, 2003.003.

Bouckaert, R. R.: Bayesian belief networks: from construction to
inference, Ph.D. thesis, University Utrecht, Netherlands, 1995.

Castelo, R. and Kocka, T.: On inclusion-driven learning of Bayesian
networks, J. Mach. Learn. Res., 4, 527–574, 2003.

Chickering, D. M.: Optimal structure identification with greedy
search, J. Mach. Learn. Res., 3, 507–554, 2002.

Elmer, F., Thieken, A. H., Pech, I., and Kreibich, H.: Influence
of flood frequency on residential building losses, Nat. Hazards
Earth Syst. Sci., 10, 2145–2159, doi:10.5194/nhess-10-2145-
2010, 2010.

Fenton, N. and Neil, M.: Risk assessment and decision analysis with
bayesian networks, CRC Press, Inc. Boca Raton, FL, USA, 2012.

Friedman, N.: Learning belief networks in the presence of missing
values and hidden variables, Fourteenth International Conference
on Machine Learning, July 1997, Nashville, TN, 125–133, 1997.

Friedman, N.: The Bayesian structural EM algorithm, Four-
teenth conference on Uncertainty in artificial intelligence, 24–26
July 1998, Madison, WI, 129–138, 1998.

Friedman, N. and Koller, D.: Being Bayesian about network struc-
ture, Sixteenth conference on Uncertainty in artificial intelli-
gence, 30 June–3 July 2000, Stanford, CA, 201–210, 2000.

Friedman, N., Goldszmidt, M., and Wyner, A.: Data analysis with
Bayesian networks: a bootstrap approach, Fifteenth conference
on Uncertainty in artificial intelligence, 30 July–1 August 1999,
Stockholm, Sweden, 196–205, 1999.

Grêt-Regamey, A. and Straub, D.: Spatially explicit avalanche risk
assessment linking Bayesian networks to a GIS, Nat. Hazards
Earth Syst. Sci., 6, 911–926, doi:10.5194/nhess-6-911-2006,
2006.

Hoyt, P. J.: Discretization and Learning of Bayesian Networks us-
ing Stochastic Search, with Application to Base Realignment and
Closure (BRAC), Ph.D. thesis, George Mason University, Fair-
fax, VA, 2008

Jensen, F. and Nielsen, T.: Bayesian Networks and Decision Graphs,
Springer, New York, USA, 2001.

Koller, D. and Friedman, N.: Probabilistic Graphical Models: Prin-
ciples and Techniques, The MIT Press, 2009.

Korup, O. and Stolle, A.: Landslide Prediction from Machine
Learning, Geol. Today, 30, 26–33, 2014.

Korup, O., Gorum, T., Hayakawa, Y.: Without power? Landslide
inventories in the face of climate change, Earth Surf. Proc. Land.,
37, 92–99, 2012.

Korup, O., Hayakawa, Y., Codilean, A. T., Matsushi, Y., Saito, H.,
Oguchi, T., Matsuzaki, H.: Japan’s Sediment Flux to the Pacific
Ocean Revisited, Earth-Sci. Rev., 135, 1–16, 2014.

Kuehn, N., Scherbaum, F., and Riggelsen, C.: Deriving empirical
ground-motion models: Balancing data constraints and physical
assumptions to optimize prediction capability, B. Seismol. Soc.
Am., 99, 2335–2347, 2009.

Kuehn, N. M., Riggelsen, C., and Scherbaum, F.: Modeling the joint
probability of earthquake, site, and ground-motion parameters
using Bayesian networks, B. Seismol. Soc. Am., 101, 235–249,
2011.

Langseth, H. and Nielsen, T. D.: Parameter estimation in mixtures
of truncated exponentials, 4th European Workshop on Probabilis-
tic Graphical Models, 17–19 September 2008, Hirtshals, Den-
mark, 169–176, 2008.

Langseth, H., Nielsen, T. D., Rumí, R., and Salmerón, A.: Inference
in hybrid Bayesian networks, Reliab. Eng. Syst. Safe., 94, 1499–
1509, 2009.

Langseth, H., Nielsen, T. D., Rumí, R., and Salmerón, A.: Parame-
ter estimation and model selection for mixtures of truncated ex-
ponentials, Int. J. Approx. Reason., 51, 485–498, 2010.

Little, R. and Rubin, D.: Statistical Analysis with Missing Data,
vol. 4, Wiley, New York, 1987.

Liu, H., Hussain, F., Tan, C. L., and Dash, M.: Discretization: An
Enabling Technique, Data Mining Knowl. Discov., 6, 393–423,
2002.

McGrayne, S. B.: The Theory that Would Not Die: How Bayes’
Rule Cracked the Enigma Code, Hunted Down Russian Sub-
marines, & Emerged Triumphant from Two Centuries of Contro-
versy, Yale University Press, Yale, 2011.

Merz, B., Kreibich, H., Schwarze, R., and Thieken, A.: Review
article “Assessment of economic flood damage”, Nat. Hazards
Earth Syst. Sci., 10, 1697–1724, doi:10.5194/nhess-10-1697-
2010, 2010.

www.nat-hazards-earth-syst-sci.net/14/2605/2014/ Nat. Hazards Earth Syst. Sci., 14, 2605–2626, 2014

http://dx.doi.org/10.1016/j.envsoft.2011.06.004
http://dx.doi.org/10.1080/17499511003679907
http://dx.doi.org/10.1007/s11069-006-9036-7
http://dx.doi.org/10.1007/978-3-642-02906-6_65
http://dx.doi.org/10.1007/978-3-642-02906-6_65
http://dx.doi.org/10.1007/1-4020-3812-7_2
http://dx.doi.org/10.1007/1-4020-3812-7_2
http://dx.doi.org/10.5194/nhess-10-2145-2010
http://dx.doi.org/10.5194/nhess-10-2145-2010
http://dx.doi.org/10.5194/nhess-6-911-2006
http://dx.doi.org/10.5194/nhess-10-1697-2010
http://dx.doi.org/10.5194/nhess-10-1697-2010


2626 K. Vogel et al.: Bayesian network learning for natural hazard analyses

Merz, B., Kreibich, H., and Lall, U.: Multi-variate flood damage as-
sessment: a tree-based data-mining approach, Nat. Hazards Earth
Syst. Sci., 13, 53–64, doi:10.5194/nhess-13-53-2013, 2013.

Monti, S. and Cooper, G. F.: A multivariate discretization method
for learning Bayesian networks from mixed data, Fourteenth con-
ference on Uncertainty in artificial intelligence, 24–26 July 1998,
Madison, WI, 404–413, 1998.

Moral, S., Rumí, R., and Salmerón, A.: Mixtures of truncated expo-
nentials in hybrid Bayesian networks, in: Symbolic and Quantita-
tive Approaches to Reasoning with Uncertainty, edited by: Ben-
ferhat, S. and Besnard, P., Springer, Berlin, Heidelberg, 156–167,
2001.

Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference, Morgan Kaufmann, San Francisco, CA,
USA, 1998.

Plapp, S. T.: Wahrnehmung von Risiken aus Naturkatastrophen:
Eine empirische Untersuchung in sechs gefährdeten Gebieten
Süd- und Westdeutschlands, edited by: Werner, U., Verlag Ver-
sicherungswirtschaft, Karlsruhe, Germany, 2003 (in German).

Riggelsen, C.: MCMC learning of Bayesian network models
by Markov blanket decomposition, in: Machine Learning:
ECML 2005, Springer, Berlin, Heidelberg, 329–340, 2005.

Riggelsen, C.: Learning Bayesian networks from incomplete
data: an efficient method for generating approximate predic-
tive distributions, SIAM International conf. on data mining, 20–
22 April 2006, Bethesda, Maryland, 130–140, 2006.

Riggelsen, C.: Learning Bayesian networks: a MAP criterion for
joint selection of model structure and parameter, Eighth IEEE In-
ternational Conference on Data Mining, 15–19 December 2008,
Pisa, Italy, 522–529, 2008.

Schnell, R., Hill, P. B., and Esser, E.: Methoden der empirischen
Sozialforschung, 6th Edn., Walter De Gruyter, New York,
535 pp., 1999.

Schroeter, K., Kreibich, H., Vogel, K., Riggelsen, C.,
Scherbaum, F., and Merz, B.: How useful are complex
flood damage models?, Water Resour. Res., 50, 3378–3395,
doi:10.1002/2013WR014396, 2014.

Song, Y., Gong, J., Gao, S., Wang, D., Cui, T., Li, Y., and Wei, B.:
Susceptibility assessment of earthquake-induced landslides us-
ing Bayesian network: a case study in Beichuan, China, Comput.
Geosci., 42, 189–199, 2012.

Straub, D.: Natural hazards risk assessment using Bayesian net-
works, 9th International Conference on Structural Safety and Re-
liability, 20–23 June 2005, Rome, Italy, 2005.

Tanner, M. and Wong, W.: The calculation of posterior distributions
by data augmentation, J. Am. Stat. Assoc., 82, 528–540, 1987.

Thieken, A. H., Müller, M., Kreibich, H., and Merz, B.: Flood
damage and influencing factors: new insights from the Au-
gust 2002 flood in Germany, Water Resour. Res., 41, W12430,
doi:10.1029/2005WR004177, 2005.

Vogel, K., Riggelsen, C., Merz, B., Kreibich, H., and Scherbaum, F.:
Flood damage and influencing factors: a Bayesian network
perspective, 6th European Workshop on Probabilistic Graphi-
cal Models, 19–21 September 2012, Granada, Spain, 347–354,
2012.

Vogel, K., Riggelsen, C., Scherbaum, F., Schröter, K., Kreibich, H.,
and Merz, B.: Challenges for Bayesian network learning in a
flood damage assessment application, 11th International Confer-
ence on Structural Safety and Reliability, 16–20 June 2013, New
York, NY, 2013.

Nat. Hazards Earth Syst. Sci., 14, 2605–2626, 2014 www.nat-hazards-earth-syst-sci.net/14/2605/2014/

http://dx.doi.org/10.5194/nhess-13-53-2013
http://dx.doi.org/10.1002/2013WR014396
http://dx.doi.org/10.1029/2005WR004177

