Articles | Volume 17, issue 9
https://doi.org/10.5194/nhess-17-1623-2017
https://doi.org/10.5194/nhess-17-1623-2017
Research article
 | 
25 Sep 2017
Research article |  | 25 Sep 2017

Effects of sample size on estimation of rainfall extremes at high temperatures

Berry Boessenkool, Gerd Bürger, and Maik Heistermann

Related authors

Virtual Joint Field Campaign: a framework of synthetic landscapes to assess multiscale measurement methods of water storage
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev., 18, 819–842, https://doi.org/10.5194/gmd-18-819-2025,https://doi.org/10.5194/gmd-18-819-2025, 2025
Short summary
Groundwater recharge in Brandenburg is declining – but why?
Till Francke and Maik Heistermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-222,https://doi.org/10.5194/egusphere-2025-222, 2025
Short summary
Brief communication: Training of AI-based nowcasting models for rainfall early warning should take into account user requirements
Georgy Ayzel and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 25, 41–47, https://doi.org/10.5194/nhess-25-41-2025,https://doi.org/10.5194/nhess-25-41-2025, 2025
Short summary
Brief communication: Stay local or go global? On the construction of plausible counterfactual scenarios to assess flash flood hazards
Paul Voit and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 24, 4609–4615, https://doi.org/10.5194/nhess-24-4609-2024,https://doi.org/10.5194/nhess-24-4609-2024, 2024
Short summary
Brief Communication: A new drought monitoring network in the state of Brandenburg (Germany) using cosmic-ray neutron sensing
Daniel Altdorff, Maik Heistermann, Till Francke, Martin Schrön, Sabine Attinger, Albrecht Bauriegel, Frank Beyrich, Peter Biró, Peter Dietrich, Rebekka Eichstädt, Peter Martin Grosse, Arvid Markert, Jakob Terschlüsen, Ariane Walz, Steffen Zacharias, and Sascha E. Oswald
EGUsphere, https://doi.org/10.5194/egusphere-2024-3848,https://doi.org/10.5194/egusphere-2024-3848, 2024
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Temporal dynamic vulnerability – impact of antecedent events on residential building losses to wind storm events in Germany
Andreas Trojand, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 25, 2331–2350, https://doi.org/10.5194/nhess-25-2331-2025,https://doi.org/10.5194/nhess-25-2331-2025, 2025
Short summary
Verifying the relationships among the variabilities of summer rainfall extremes over Japan in the d4PDF climate ensemble, Pacific sea surface temperature, and monsoon activity
Shao-Yi Lee, Sicheng He, and Tetsuya Takemi
Nat. Hazards Earth Syst. Sci., 25, 2225–2253, https://doi.org/10.5194/nhess-25-2225-2025,https://doi.org/10.5194/nhess-25-2225-2025, 2025
Short summary
Tree fall along railway lines: modelling the impact of wind and other meteorological factors
Rike Lorenz, Nico Becker, Barry Gardiner, Uwe Ulbrich, Marc Hanewinkel, and Benjamin Schmitz
Nat. Hazards Earth Syst. Sci., 25, 2179–2196, https://doi.org/10.5194/nhess-25-2179-2025,https://doi.org/10.5194/nhess-25-2179-2025, 2025
Short summary
The probabilistic skill of extended-range heat wave forecasts over Europe
Natalia Korhonen, Otto Hyvärinen, Virpi Kollanus, Timo Lanki, Juha Jokisalo, Risto Kosonen, David S. Richardson, and Kirsti Jylhä
Nat. Hazards Earth Syst. Sci., 25, 1865–1879, https://doi.org/10.5194/nhess-25-1865-2025,https://doi.org/10.5194/nhess-25-1865-2025, 2025
Short summary
An appraisal of the value of simulated weather data for quantifying coastal flood hazard in the Netherlands
Cees de Valk and Henk van den Brink
Nat. Hazards Earth Syst. Sci., 25, 1769–1788, https://doi.org/10.5194/nhess-25-1769-2025,https://doi.org/10.5194/nhess-25-1769-2025, 2025
Short summary

Cited articles

Asquith, W. H.: Distributional analysis with L-moment statistics using the R environment for statistical computing, CreateSpace Independent Publishing Platform, http://scholar.google.com/scholar?cluster=4144393830145643403&hl=en&oi=scholarr (last access: 15 September 2017), 2011.
Asquith, W. H.: lmomco: L-moments, Censored L-moments, Trimmed L-moments, L-comoments, and Many Distributions, https://cran.r-project.org/package=lmomco (last access: 15 September 2017), 2016.
Berg, P. and Haerter, J. O.: Unexpected increase in precipitation intensity with temperature. A result of mixing of precipitation types?, Atmos. Res., 119, 56–61, https://doi.org/10.1016/j.atmosres.2011.05.012, 2013.
Berg, P., Haerter, J. O., Thejll, P., Piani, C., Hagemann, S., and Christensen, J. H.: Seasonal characteristics of the relationship between daily precipitation intensity and surface temperature, J. Geophys. Res.-Atmos., 114, D18102, https://doi.org/10.1029/2009JD012008, 2009.
Berg, P., Moseley, C., and Haerter, J. O.: Strong increase in convective precipitation in response to higher temperatures, Nat. Geosci., 6, 181–185, https://doi.org/10.1038/ngeo1731, 2013.
Download
Short summary
Rainfall is more intense at high temperatures than in cooler weather, as can be seen in summer thunder storms. The relationship between temperature and rainfall intensity seems to invert at very high temperatures, however. There are some possible meteorological explanations, but we propose that part of the reason might be the low number of observations, due to which the actually possible values are underestimated. We propose a better way to estimate high quantiles from small datasets.
Share
Altmetrics
Final-revised paper
Preprint