Articles | Volume 17, issue 9
https://doi.org/10.5194/nhess-17-1623-2017
https://doi.org/10.5194/nhess-17-1623-2017
Research article
 | 
25 Sep 2017
Research article |  | 25 Sep 2017

Effects of sample size on estimation of rainfall extremes at high temperatures

Berry Boessenkool, Gerd Bürger, and Maik Heistermann

Related authors

Brief communication: Training of AI-based nowcasting models for rainfall early warning should take into account user requirements
Georgy Ayzel and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 25, 41–47, https://doi.org/10.5194/nhess-25-41-2025,https://doi.org/10.5194/nhess-25-41-2025, 2025
Short summary
Brief communication: Stay local or go global? On the construction of plausible counterfactual scenarios to assess flash flood hazards
Paul Voit and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 24, 4609–4615, https://doi.org/10.5194/nhess-24-4609-2024,https://doi.org/10.5194/nhess-24-4609-2024, 2024
Short summary
Brief Communication: A new drought monitoring network in the state of Brandenburg (Germany) using cosmic-ray neutron sensing
Daniel Altdorff, Maik Heistermann, Till Francke, Martin Schrön, Sabine Attinger, Albrecht Bauriegel, Frank Beyrich, Peter Biró, Peter Dietrich, Rebekka Eichstädt, Peter Martin Grosse, Arvid Markert, Jakob Terschlüsen, Ariane Walz, Steffen Zacharias, and Sascha E. Oswald
EGUsphere, https://doi.org/10.5194/egusphere-2024-3848,https://doi.org/10.5194/egusphere-2024-3848, 2024
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
The ability of a stochastic regional weather generator to reproduce heavy precipitation events across scales
Xiaoxiang Guan, Dung Viet Nguyen, Paul Voit, Bruno Merz, Maik Heistermann, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-143,https://doi.org/10.5194/nhess-2024-143, 2024
Revised manuscript under review for NHESS
Short summary
Virtual joint field campaign: a framework of synthetic landscapes to assess multiscale measurement methods of water storage
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-106,https://doi.org/10.5194/gmd-2024-106, 2024
Revised manuscript accepted for GMD
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
The anomalously thundery month of June 1925 in southwest Spain: description and synoptic analysis
Francisco Javier Acero, Manuel Antón, Alejandro Jesús Pérez Aparicio, Nieves Bravo-Paredes, Víctor Manuel Sánchez Carrasco, María Cruz Gallego, José Agustín García, Marcelino Núñez, Irene Tovar, Javier Vaquero-Martínez, and José Manuel Vaquero
Nat. Hazards Earth Syst. Sci., 25, 305–320, https://doi.org/10.5194/nhess-25-305-2025,https://doi.org/10.5194/nhess-25-305-2025, 2025
Short summary
Spatial identification of regions exposed to multi-hazards at the pan-European level
Tiberiu-Eugen Antofie, Stefano Luoni, Aloïs Tilloy, Andrea Sibilia, Sandro Salari, Gustav Eklund, Davide Rodomonti, Christos Bountzouklis, and Christina Corbane
Nat. Hazards Earth Syst. Sci., 25, 287–304, https://doi.org/10.5194/nhess-25-287-2025,https://doi.org/10.5194/nhess-25-287-2025, 2025
Short summary
Classification of North Atlantic and European extratropical cyclones using multiple measures of intensity
Joona Cornér, Clément Bouvier, Benjamin Doiteau, Florian Pantillon, and Victoria A. Sinclair
Nat. Hazards Earth Syst. Sci., 25, 207–229, https://doi.org/10.5194/nhess-25-207-2025,https://doi.org/10.5194/nhess-25-207-2025, 2025
Short summary
Subseasonal forecasts of heat waves in West African cities
Cedric G. Ngoungue Langue, Christophe Lavaysse, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 25, 147–168, https://doi.org/10.5194/nhess-25-147-2025,https://doi.org/10.5194/nhess-25-147-2025, 2025
Short summary
Impacts on and damage to European forests from the 2018–2022 heat and drought events
Florian Knutzen, Paul Averbeck, Caterina Barrasso, Laurens M. Bouwer, Barry Gardiner, José M. Grünzweig, Sabine Hänel, Karsten Haustein, Marius Rohde Johannessen, Stefan Kollet, Mortimer M. Müller, Joni-Pekka Pietikäinen, Karolina Pietras-Couffignal, Joaquim G. Pinto, Diana Rechid, Efi Rousi, Ana Russo, Laura Suarez-Gutierrez, Sarah Veit, Julian Wendler, Elena Xoplaki, and Daniel Gliksman
Nat. Hazards Earth Syst. Sci., 25, 77–117, https://doi.org/10.5194/nhess-25-77-2025,https://doi.org/10.5194/nhess-25-77-2025, 2025
Short summary

Cited articles

Asquith, W. H.: Distributional analysis with L-moment statistics using the R environment for statistical computing, CreateSpace Independent Publishing Platform, http://scholar.google.com/scholar?cluster=4144393830145643403&hl=en&oi=scholarr (last access: 15 September 2017), 2011.
Asquith, W. H.: lmomco: L-moments, Censored L-moments, Trimmed L-moments, L-comoments, and Many Distributions, https://cran.r-project.org/package=lmomco (last access: 15 September 2017), 2016.
Berg, P. and Haerter, J. O.: Unexpected increase in precipitation intensity with temperature. A result of mixing of precipitation types?, Atmos. Res., 119, 56–61, https://doi.org/10.1016/j.atmosres.2011.05.012, 2013.
Berg, P., Haerter, J. O., Thejll, P., Piani, C., Hagemann, S., and Christensen, J. H.: Seasonal characteristics of the relationship between daily precipitation intensity and surface temperature, J. Geophys. Res.-Atmos., 114, D18102, https://doi.org/10.1029/2009JD012008, 2009.
Berg, P., Moseley, C., and Haerter, J. O.: Strong increase in convective precipitation in response to higher temperatures, Nat. Geosci., 6, 181–185, https://doi.org/10.1038/ngeo1731, 2013.
Download
Short summary
Rainfall is more intense at high temperatures than in cooler weather, as can be seen in summer thunder storms. The relationship between temperature and rainfall intensity seems to invert at very high temperatures, however. There are some possible meteorological explanations, but we propose that part of the reason might be the low number of observations, due to which the actually possible values are underestimated. We propose a better way to estimate high quantiles from small datasets.
Altmetrics
Final-revised paper
Preprint