Articles | Volume 16, issue 1
https://doi.org/10.5194/nhess-16-287-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/nhess-16-287-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Mobile augmented reality in support of building damage and safety assessment
W. Kim
CORRESPONDING AUTHOR
Faculty of Geo-Information Science and Earth Observation, University of
Twente, Enschede, the Netherlands
N. Kerle
Faculty of Geo-Information Science and Earth Observation, University of
Twente, Enschede, the Netherlands
Faculty of Geo-Information Science and Earth Observation, University of
Twente, Enschede, the Netherlands
Related authors
No articles found.
Phillipp Fanta-Jende, Francesco Vultaggio, Alexander Kern, Yasmin Loeper, and Markus Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W6-2025, 75–82, https://doi.org/10.5194/isprs-archives-XLVIII-1-W6-2025-75-2025, https://doi.org/10.5194/isprs-archives-XLVIII-1-W6-2025-75-2025, 2025
Selim Ahmet Iz, Francesco Nex, Norman Kerle, Henry Meissner, and Ralf Berger
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-2-W2-2025, 73–80, https://doi.org/10.5194/isprs-annals-X-2-W2-2025-73-2025, https://doi.org/10.5194/isprs-annals-X-2-W2-2025-73-2025, 2025
Mehdi Maboudi, Karam Mawas, and Markus Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1029–1034, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1029-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1029-2025, 2025
Said Harb, Pedro Achanccaray Diaz, Mehdi Maboudi, and Markus Gerke
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 341–348, https://doi.org/10.5194/isprs-annals-X-G-2025-341-2025, https://doi.org/10.5194/isprs-annals-X-G-2025-341-2025, 2025
Francesco Vultaggio, Phillipp Fanta-Jende, and Markus Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W4-2025, 131–138, https://doi.org/10.5194/isprs-archives-XLVIII-1-W4-2025-131-2025, https://doi.org/10.5194/isprs-archives-XLVIII-1-W4-2025-131-2025, 2025
Yasmin Loeper, Markus Gerke, Ahmed Alamouri, Alexander Kern, Mohammad Shafi Bajauri, and Phillipp Fanta-Jende
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 311–318, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-311-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-311-2024, 2024
Francesco Vultaggio, Phillipp Fanta-Jende, Matthias Schörghuber, Alexander Kern, and Markus Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 447–454, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-447-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-447-2024, 2024
Aulia Imania Sukma, Mila N. Koeva, Diana Reckien, Marija Bockarjova, Andre da Silva Mano, Giulia Canili, Giovanni Vicentini, and Norman Kerle
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W11-2024, 129–136, https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-129-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-129-2024, 2024
K. Mawas, M. Maboudi, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 307–313, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-307-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-307-2023, 2023
P. Achanccaray, M. Gerke, L. Wesche, S. Hoyer, K. Thiele, U. Knufinke, and C. Krafczyk
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1303–1309, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1303-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1303-2023, 2023
C. Berger and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2022, 223–230, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-223-2022, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-223-2022, 2022
M. S. Bajauri, A. Alamouri, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2022, 335–342, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-335-2022, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-335-2022, 2022
N. Zhang, F. Nex, G. Vosselman, and N. Kerle
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1189–1196, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1189-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1189-2022, 2022
K. Mawas, M. Maboudi, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2022, 459–466, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-459-2022, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-459-2022, 2022
S. Karam, F. Nex, O. Karlsson, J. Rydell, E. Bilock, M. Tulldahl, M. Holmberg, and N. Kerle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2022, 203–210, https://doi.org/10.5194/isprs-annals-V-1-2022-203-2022, https://doi.org/10.5194/isprs-annals-V-1-2022-203-2022, 2022
P. Kirui, B. Riedel, and M. Gerke
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 115–122, https://doi.org/10.5194/isprs-annals-V-3-2022-115-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-115-2022, 2022
T. Partovi, M. Dähne, M. Maboudi, D. Krueger, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2021, 85–92, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-85-2021, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-85-2021, 2021
M. Maboudi, A. Elbillehy, Y. Ghassoun, and M. Gerke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2021, 183–188, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-183-2021, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-183-2021, 2021
N. Zhang, F. Nex, N. Kerle, and G. Vosselman
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 427–432, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-427-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-427-2021, 2021
M. Maboudi, A. Alamouri, V. De Arriba López, M. S. Bajauri, C. Berger, and M. Gerke
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2021, 121–128, https://doi.org/10.5194/isprs-annals-V-1-2021-121-2021, https://doi.org/10.5194/isprs-annals-V-1-2021-121-2021, 2021
Seyedabdolhossein Mehvar, Kathelijne Wijnberg, Bas Borsje, Norman Kerle, Jan Maarten Schraagen, Joanne Vinke-de Kruijf, Karst Geurs, Andreas Hartmann, Rick Hogeboom, and Suzanne Hulscher
Nat. Hazards Earth Syst. Sci., 21, 1383–1407, https://doi.org/10.5194/nhess-21-1383-2021, https://doi.org/10.5194/nhess-21-1383-2021, 2021
Short summary
Short summary
This review synthesizes and complements existing knowledge in designing resilient vital infrastructure systems (VIS). Results from a systematic literature review indicate that (i) VIS are still being built without taking resilience explicitly into account and (ii) measures to enhance the resilience of VIS have not been widely applied in practice. The main pressing topic to address is the integration of the combined social, ecological, and technical resilience of these systems.
Cited articles
Adams, B., Ghosh, S., Wabnitz, C., and Alder, J.: Post-tsunami urban damage
assessment in Thailand, using optical satellite imagery and the VIEWSTM
field reconnaissance system, in: The 1755 Lisbon Earthquake: Revisited, Geot
Geol Earthquake, Springer Netherlands, 523–539, 2009.
Altan, O., Toz, G., Kulur, S., Seker, D., Volz, S., Fritsch, D., and Sester,
M.: Photogrammetry and geographic information systems for quick assessment,
documentation and analysis of earthquakes, ISPRS J Photogramm, 55, 359–372,
2001.
ATC: ATC-20-1 Field Manual: Postearthquake safety evaluation of buildings,
Applied Technology Council, 2005.
Azuma, R.: A survey of augmented reality, Presence-Teleop Virt, 6, 355–385,
1997.
Boddhu, S. K., Dave, R. P., McCartney, M., West, J. A., and Williams, R. L.:
Context-aware event detection smartphone application for first responders,
Proc. SPIE 8742, Ground/Air Multisensor Interoperability, Integration, and
Networking for Persistent ISR IV, 874213-874213-9; https://doi.org/10.1117/12.2016352,
2013.
Brunner, D., Lemoine, G., and Bruzzone, L.: Earthquake damage assessment of
buildings using VHR optical and SAR Imagery, IEEE T. Geosci. Remote, 48,
2403–2420, 2010.
Corbane, C., Saito, K., Dell'Oro, L., Gill, S., Piard, B., Huyck, C., Kemper,
T., Lemoine, G., Spence, R., and Krishnan, R.: A comprehensive analysis of
building damage in the January 12, 2010 Mw7 Haiti earthquake using
high-resolution satellite and aerial imagery, Photogramm. Eng. Rem. S., 77,
997–1009, 2011.
Curtis, A. and Mills, J. W.: Spatial video data collection in a
post-disaster landscape: The Tuscaloosa Tornado of April 27th 2011, Appl.
Geogr., 32, 393–400, 2012.
Dai, F., Dong, S., Kamat, V., and Lu, M.: Photogrammetry assisted
measurement of interstory drift for rapid post-disaster building damage
reconnaissance, J. Nondestruct. Eval., 30, 201–212,
2011.
Dell'Acqua, F. and Gamba, P.: Remote sensing and earthquake damage
assessment: Experiences, limits, and perspectives, Proc. IEEE,
100, 2876–2890, 2012.
Dong, S., Feng, C., and Kamat, V. R.: Sensitivity analysis of augmented
reality-assisted building damage reconnaissance using virtual prototyping,
Automat. Constr., 33, 24–36, 2013.
Feiner, S., MacIntyre, B., Höllerer, T., and Webster, A.: A touring
machine: Prototyping 3-D mobile augmented reality systems for exploring the
urban environment, Pers. Technol., 1, 208–217, 1997.
Fernandez Galarreta, J., Kerle, N., and Gerke, M.: UAV-based urban
structural damage assessment using object-based image analysis and semantic
reasoning, Nat. Hazards Earth Syst. Sci., 15, 1087–1101,
https://doi.org/10.5194/nhess-15-1087-2015, 2015.
Flesch, R.: European Manual for in-situ Assessment of Important Existing
Structures, LESSLOS Report, ISBN 9788861980068, 2007.
Gerke, M. and Kerle, N.: Automatic structural seismic damage assessment
with airborne oblique pictometry, Photogramm. Eng. Rem. S., 77, 885–898, 2011.
Ghosh, S., Huyck, C. K., Greene, M., Gill, S. P., Bevington, J., Svekla, W.,
DesRoches, R., and Eguchi, R. T.: Crowdsourcing for rapid damage assessment:
The Global Earth Observation Catastrophe Assessment Network (GEO-CAN),
Earthq Spectra, 27, S179–S198, 2011.
Kahn, S., Bockholt, U., Kuijper, A., and Fellner, D. W.: Towards precise
real-time 3-D difference detection for industrial applications, Computers in
Industry, 64, 1115–1128, 2013.
Kamat, V. R. and El-Tawil, S.: Evaluation of augmented reality for rapid
assessment of earthquake-induced building damage, J. Comput. Civil. Eng.,
21, 303–310, 2007.
Kerle, N.: Satellite-based damage mapping following the 2006 Indonesia
earthquake – How accurate was it?, Int. J. Appl. Earth Obs., 12, 466–476,
2010.
Kerle, N.: Remote sensing based post-disaster damage mapping with
collaborative methods, in: Intelligent Systems for Crisis Management,
Springer, 121–133, 2013.
Kerle, N. and Hoffman, R. R.: Collaborative damage mapping for emergency
response: the role of cognitive systems engineering, Nat. Hazards Earth Syst.
Sci, 13, 97–113, 2013.
Leebmann, J.: An augmented reality system for earthquake disaster response,
XXth ISPRS Congress, The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, Istanbul, 2004,
Quan, H. and Wu, M.: A real-time SFM method in augmented reality, in:
Proceedings of the 2012 International Conference on Information Technology
and Software Engineering, edited by: Lu, W., Cai, G., Liu, W., and Xing, W.,
Lecture Notes in Electrical Engineering, Springer Berlin Heidelberg,
841–848, 2013.
Rabbi, I. and Ullah, S.: A survey on augmented reality challenges and
tracking, Acta Graphica, 24, 29–46, 2013.
Sakurai, M., Watson, R. T., Abraham, C., and Kokuryo, J.: Sustaining life
during the early stages of disaster relief with a frugal information system:
learning from the great east Japan earthquake, Commun. Magaz.,
IEEE, 52, 176–185, 2014.
Schweier, C. and Markus, M.: Classification of collapsed buildings for fast
damage and loss Assessment, Bull. Earthquake Eng., 4, 177–192,
2006.
Tsai, M., Lee, Y., Lu, C., Chen, M., Chou, T., and Yau, N.: Integrating
geographical information and augmented reality techniques for mobile escape
guidelines on nuclear accident sites, J. Environ. Radioactiv., 109, 36–44,
2012.
Valentini, P. P., Gattamelata, D., and Pezzuti, E.: Virtual engineering in
Augmented Reality, in: Computer Animation, Nova Science Publisher Inc., New
York, 2010.
Verstockt, S., Gerke, M., and Kerle, N.: Geo-localization of crowdsourced
images for 3-D modeling of city points of interest, IEEE Geosci. Remote
Sens., 12, 1670–1674, 2015.
Wani, A. R., Shabir, S., and Naaz, R.: Augmented reality for fire and
emergency services, Int. Conf. on Recent Trends in Communication and
Computer Networks, Byderabad India, 2013,
Zollmann, S., Kalkofen, D., Hoppe, C., Kluckner, S., Bischof, H., and
Reitmayr, G.: Interactive 4D overview and detail visualization in Augmented
Reality, IEEE International Symposium on Mixed and Augmented Reality,
WOS:000319516900019, 167–176, 2012.
Short summary
This study assesses the value of a novel technology, mobile augmented reality, for rapid damage and safety assessment of the state of buildings in the aftermath of a disaster event. In this study, we propose and demonstrate conceptual frameworks and approaches for in situ ground-based assessment based on augmented reality using mobile devices such as smartphones and tablet PCs.
This study assesses the value of a novel technology, mobile augmented reality, for rapid damage...
Altmetrics
Final-revised paper
Preprint