Articles | Volume 16, issue 1
Research article
01 Feb 2016
Research article |  | 01 Feb 2016

Mobile augmented reality in support of building damage and safety assessment

W. Kim, N. Kerle, and M. Gerke

Abstract. Rapid and accurate assessment of the state of buildings in the aftermath of a disaster event is critical for an effective and timely response. For rapid damage assessment of buildings, the utility of remote sensing (RS) technology has been widely researched, with focus on a range of platforms and sensors. However, RS-based approaches still have limitations to assess structural integrity and the specific damage status of individual buildings. Structural integrity refers to the ability of a building to hold the entire structure. Consequently, ground-based assessment conducted by structural engineers and first responders is still required. This paper demonstrates the concept of mobile augmented reality (mAR) to improve performance of building damage and safety assessment in situ. Mobile AR provides a means to superimpose various types of reference or pre-disaster information (virtual data) on actual post-disaster building data (real buildings). To adopt mobile AR, this study defines a conceptual framework based on the level of complexity (LOC). The framework consists of four LOCs, and for each of these, the data types, required processing steps, AR implementation and use for damage assessment are described. Based on this conceptualization we demonstrate prototypes of mAR for both indoor and outdoor purposes. Finally, we conduct a user evaluation of the prototypes to validate the mAR approach for building damage and safety assessment.

Short summary
This study assesses the value of a novel technology, mobile augmented reality, for rapid damage and safety assessment of the state of buildings in the aftermath of a disaster event. In this study, we propose and demonstrate conceptual frameworks and approaches for in situ ground-based assessment based on augmented reality using mobile devices such as smartphones and tablet PCs.
Final-revised paper