Articles | Volume 16, issue 5
https://doi.org/10.5194/nhess-16-1259-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/nhess-16-1259-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Preface: Advances in meteorological hazards and extreme events
Laboratory of Climatology and Atmospheric Environment, National and Kappodistrian University of Athens, Athens, Greece
Nicolas R. Dalezios
University of Thessaly, Volos, Greece
Related authors
Anna Karali, Konstantinos V. Varotsos, Christos Giannakopoulos, Panagiotis P. Nastos, and Maria Hatzaki
Nat. Hazards Earth Syst. Sci., 23, 429–445, https://doi.org/10.5194/nhess-23-429-2023, https://doi.org/10.5194/nhess-23-429-2023, 2023
Short summary
Short summary
As climate change leads to more frequent and severe fires, forecasting fire danger before fire season begins can support fire management. This study aims to provide high-resolution probabilistic seasonal fire danger forecasts in a Mediterranean environment and assess their ability to capture years with increased fire activity. Results indicate that forecasts are skillful in predicting above-normal fire danger conditions and can be exploited by regional authorities in fire prevention management.
Panagiotis T. Nastos, Nicolas R. Dalezios, Ioannis N. Faraslis, Kostas Mitrakopoulos, Anna Blanta, Marios Spiliotopoulos, Stavros Sakellariou, Pantelis Sidiropoulos, and Ana M. Tarquis
Nat. Hazards Earth Syst. Sci., 21, 1935–1954, https://doi.org/10.5194/nhess-21-1935-2021, https://doi.org/10.5194/nhess-21-1935-2021, 2021
Short summary
Short summary
Risk assessment consists of three steps: identification, estimation and evaluation. Nevertheless, the risk management framework also includes a fourth step, the need for feedback on all the risk assessment undertakings. However, there is a lack of such feedback, which constitutes a serious deficiency in the reduction of environmental hazards at the present time. The objective of this review paper consists of addressing meteorological hazards and extremes within the risk management framework.
K. Papachristopoulou, I. T. Matsangouras, and P. T. Nastos
Adv. Sci. Res., 12, 45–49, https://doi.org/10.5194/asr-12-45-2015, https://doi.org/10.5194/asr-12-45-2015, 2015
P. T. Nastos and I. T. Matsangouras
Nat. Hazards Earth Syst. Sci., 14, 2409–2421, https://doi.org/10.5194/nhess-14-2409-2014, https://doi.org/10.5194/nhess-14-2409-2014, 2014
I. T. Matsangouras, I. Pytharoulis, and P. T. Nastos
Nat. Hazards Earth Syst. Sci., 14, 1905–1919, https://doi.org/10.5194/nhess-14-1905-2014, https://doi.org/10.5194/nhess-14-1905-2014, 2014
Anna Karali, Konstantinos V. Varotsos, Christos Giannakopoulos, Panagiotis P. Nastos, and Maria Hatzaki
Nat. Hazards Earth Syst. Sci., 23, 429–445, https://doi.org/10.5194/nhess-23-429-2023, https://doi.org/10.5194/nhess-23-429-2023, 2023
Short summary
Short summary
As climate change leads to more frequent and severe fires, forecasting fire danger before fire season begins can support fire management. This study aims to provide high-resolution probabilistic seasonal fire danger forecasts in a Mediterranean environment and assess their ability to capture years with increased fire activity. Results indicate that forecasts are skillful in predicting above-normal fire danger conditions and can be exploited by regional authorities in fire prevention management.
Panagiotis T. Nastos, Nicolas R. Dalezios, Ioannis N. Faraslis, Kostas Mitrakopoulos, Anna Blanta, Marios Spiliotopoulos, Stavros Sakellariou, Pantelis Sidiropoulos, and Ana M. Tarquis
Nat. Hazards Earth Syst. Sci., 21, 1935–1954, https://doi.org/10.5194/nhess-21-1935-2021, https://doi.org/10.5194/nhess-21-1935-2021, 2021
Short summary
Short summary
Risk assessment consists of three steps: identification, estimation and evaluation. Nevertheless, the risk management framework also includes a fourth step, the need for feedback on all the risk assessment undertakings. However, there is a lack of such feedback, which constitutes a serious deficiency in the reduction of environmental hazards at the present time. The objective of this review paper consists of addressing meteorological hazards and extremes within the risk management framework.
Juan José Martín-Sotoca, Antonio Saa-Requejo, Rubén Moratiel, Nicolas Dalezios, Ioannis Faraslis, and Ana María Tarquis
Nat. Hazards Earth Syst. Sci., 19, 1685–1702, https://doi.org/10.5194/nhess-19-1685-2019, https://doi.org/10.5194/nhess-19-1685-2019, 2019
Short summary
Short summary
Vegetation indices based on satellite images, such as the normalized difference vegetation index (NDVI), have been used for damaged pasture insurance. The occurrence of damage is usually defined by NDVI thresholds mainly based on normal statistics. In this work a pasture area in Spain was delimited by MODIS images. A statistical analysis of NDVI was applied to search for alternative distributions. Results show that generalized extreme value distributions present a better fit than normal ones.
K. Papachristopoulou, I. T. Matsangouras, and P. T. Nastos
Adv. Sci. Res., 12, 45–49, https://doi.org/10.5194/asr-12-45-2015, https://doi.org/10.5194/asr-12-45-2015, 2015
N. R. Dalezios, A. Blanta, N. V. Spyropoulos, and A. M. Tarquis
Nat. Hazards Earth Syst. Sci., 14, 2435–2448, https://doi.org/10.5194/nhess-14-2435-2014, https://doi.org/10.5194/nhess-14-2435-2014, 2014
P. T. Nastos and I. T. Matsangouras
Nat. Hazards Earth Syst. Sci., 14, 2409–2421, https://doi.org/10.5194/nhess-14-2409-2014, https://doi.org/10.5194/nhess-14-2409-2014, 2014
I. T. Matsangouras, I. Pytharoulis, and P. T. Nastos
Nat. Hazards Earth Syst. Sci., 14, 1905–1919, https://doi.org/10.5194/nhess-14-1905-2014, https://doi.org/10.5194/nhess-14-1905-2014, 2014
Cited articles
Akhtar, N., Brauch, J., Dobler, A., Béranger, K., and Ahrens, B.: Medicanes in an ocean–atmosphere coupled regional climate model, Nat. Hazards Earth Syst. Sci., 14, 2189–2201, https://doi.org/10.5194/nhess-14-2189-2014, 2014.
Alexakis, D. D., Grillakis, M. G., Koutroulis, A. G., Agapiou, A., Themistocleous, K., Tsanis, I. K., Michaelides, S., Pashiardis, S., Demetriou, C., Aristeidou, K., Retalis, A., Tymvios, F., and Hadjimitsis, D. G.: GIS and remote sensing techniques for the assessment of land use change impact on flood hydrology: the case study of Yialias basin in Cyprus, Nat. Hazards Earth Syst. Sci., 14, 413–426, https://doi.org/10.5194/nhess-14-413-2014, 2014.
Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Rupa Kumar, K., Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D. B., Burn, J., Aguilar, E., Brunet, M., Taylor, M., New, M., Zhai, P., Rusticucci, M., and Vazquez-Aguirre, J. L.: Global observed changes in daily climate extremes of temperature and precipitation, J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290, 2006.
Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M., and García-Herrera, R.: The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe, Science, 332, 220–224, https://doi.org/10.1126/science.1201224, 2011.
Benhamrouche, A., Boucherf, D., Hamadache, R., Bendahmane, L., Martin-Vide, J., and Teixeira Nery, J.: Spatial distribution of the daily precipitation concentration index in Algeria, Nat. Hazards Earth Syst. Sci., 15, 617–625, https://doi.org/10.5194/nhess-15-617-2015, 2015.
Beniston, M., Stephenson, D. B., Christensen, O. B., Ferro, C. A. T., Frei, C., Goyette, S., Halsnaes, K., Holt, T., Jylhä, K., Koffi, B., Palutikof, J., Schöll, R., Semmler, T., and Woth, K.: Current and future extreme climatic events in Europe: observations and modeling studies conducted within the EU PRUDENCE project, Climatic Change, 81, 71–95, 2007.
Bovio, G., Quaglino, A., and Nosenzo, A.: Individuazione di un indice di previsione per il Pericolo di Incendi Boschivi, Monti e Boschi Anno, XXXV, 39–44, 1984.
Brázdil, R., Chromá, K., Dobrovolný, P., and Černoch, Z.: The tornado history of the Czech Lands, AD 1119–2010, Atmos. Res., 118, 193–204, 2012.
Burič, D., Lukovič, J., Bajat, B., Kilibarda, M., and Živkovič, N.: Recent trends in daily rainfall extremes over Montenegro (1951–2010), Nat. Hazards Earth Syst. Sci., 15, 2069–2077, https://doi.org/10.5194/nhess-15-2069-2015, 2015.
Businger, S. and Reed, R.: Cyclogenesis in cold air masses, Weather Forecast., 20, 133–156, 1989.
Dalezios, N. R., Blanta, A., and Spyropoulos, N. V.: Assessment of remotely sensed drought features in vulnerable agriculture, Nat. Hazards Earth Syst. Sci., 12, 3139–3150, https://doi.org/10.5194/nhess-12-3139-2012, 2012.
Dalezios, N. R., Blanta, A., Spyropoulos, N. V., and Tarquis, A. M.: Risk identification of agricultural drought for sustainable Agroecosystems, Nat. Hazards Earth Syst. Sci., 14, 2435–2448, https://doi.org/10.5194/nhess-14-2435-2014, 2014.
Deeming, J. E., Burgan, R. E., and Cohen, J. D.: The National Fire-Danger Rating System – 1978, USDA Forest Service General technical Report INT-39, Intermountain Forest and Range Experiment Station, Ogden, UT, 1977.
Doswell, C. A., Brooks, H. E. and Maddox, R. A.: Flash flood forecasting: An ingredients based methodology, Weather Forecast., 11, 560–581, 1996.
Dotzek, N.: An updated esti mate of tornado occurrence in Europe, Atmos. Res., 67–68, 153–161, 2003.
Emanuel, K.: Genesis and maintenance of “Mediterranean hurricanes”, Adv. Geosci., 2, 217–220, https://doi.org/10.5194/adgeo-2-217-2005, 2005.
Fujita, T. T.: Tornadoes around the world, Weatherwise, 26, 56–83, 1973.
Gayà, M., Homar, V., Romero, R., and Ramis, C.: Tornadoes and waterspouts in the Balearic Islands: Phenomena and environment characterization, Atmos. Res., 56, 253–267, 2000.
Giannaros, T. M., Melas, D., Daglis, I. A., and Keramitsoglou, I.: Development of an operational modeling system for urban heat islands: an application to Athens, Greece, Nat. Hazards Earth Syst. Sci., 14, 347–358, https://doi.org/10.5194/nhess-14-347-2014, 2014.
Haghroosta, T., Ismail, W. R., Ghafarian, P., and Barekati, S. M.: The efficiency of the Weather Research and Forecasting (WRF) model for simulating typhoons, Nat. Hazards Earth Syst. Sci., 14, 2179–2187, https://doi.org/10.5194/nhess-14-2179-2014, 2014.
Homar, V., Romero, R., Stensrud, D. J., Ramis, C., and Alonso, S.: Numerical diagnosis of a small, quasi-tropical cyclone over the western Mediterranean: Dynamical vs. boundary factors, Q. Roy. Meteorol. Soc., 129, 1469–1490, 2003.
Houze, R. A.: Structure and dynamics of a tropical squall-line system, Mon. Weather Rev., 105, 1540–1567, 1977.
ICONA: Experimentacion de un nuevo sistema para determinacion del peligro de incendios forestales derivado de los combustibles:instrucciones de calculo, Instituto Nacional para la Conservacion de la Naturaleza, Madrid, Spain, 1988.
IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., Cambridge University Press, Cambridge, UK, and New York, NY, USA, 582 pp., 2012.
IPCC: Summary for Policymakers, in: Climate Change 2013, The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Joyce, L. A., Blate, G. M., Littell, J. S., McNulty, S. G., Millar, C. I., Moser, S. C., Neilson, R. P., O'Halloran, K., and Peterson, D. L.: National Forests, in: Preliminary review of adaptation options for climate-sensitive ecosystems and resources, A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, US Environmental Protection Agency, Washington, D.C., USA, 3-1–3-127, 2008.
Karali, A., Hatzaki, M., Giannakopoulos, C., Roussos, A., Xanthopoulos, G., and Tenentes, V.: Sensitivity and evaluation of current fire risk and future projections due to climate change: the case study of Greece, Nat. Hazards Earth Syst. Sci., 14, 143–153, https://doi.org/10.5194/nhess-14-143-2014, 2014.
Katsafados, P., Papadopoulos, A., Varlas, G., Papadopoulou, E., and Mavromatidis, E.: Seasonal predictability of the 2010 Russian heat wave, Nat. Hazards Earth Syst. Sci., 14, 1531–1542, https://doi.org/10.5194/nhess-14-1531-2014, 2014.
Koppe, C., Jendritzky, G., Kovats, S., and Menne, B.: Heat-waves: risks and responses, Series No. 2, Regional Office for Europe, Health and Global Environmental Change, Kopenhagen, Denmark, 2004.
Korologou, M., Flocas, H., and Michalopoulou, H.: Developing an index for heavy convective rainfall forecasting over a Mediterranean coastal area, Nat. Hazards Earth Syst. Sci., 14, 2205–2214, https://doi.org/10.5194/nhess-14-2205-2014, 2014.
Kostopoulou, E., Giannakopoulos, C., Hatzaki, M., Karali, A., Hadjinicolaou, P., Lelieveld, J., and Lange, M. A.: Spatio-temporal patterns of recent and future climate extremes in the eastern Mediterranean and Middle East region, Nat. Hazards Earth Syst. Sci., 14, 1565–1577, https://doi.org/10.5194/nhess-14-1565-2014, 2014.
Macrinoniene, I.: Tornadoes in Lithuania in the period of 1950–2002 including analysis of the strongest tornado of 29 May 1981, Atmos. Res., 67–68, 475–484, 2003.
Matsangouras, I. T., Nastos, P. T., Bluestein, H. B., and Sioutas, M. V.: A climatology of tornadic activity over Greece based on historical records, Int. J. Climatol., 34, 2538–2555, 2014a.
Matsangouras, I. T., Pytharoulis, I., and Nastos, P. T.: Numerical modeling and analysis of the effect of complex Greek topography on tornadogenesis, Nat. Hazards Earth Syst. Sci., 14, 1905–1919, https://doi.org/10.5194/nhess-14-1905-2014, 2014b.
McArthur, A. G.: Fire Behaviour in Eucalypt Forests, Department of National Development, Leaflet No. 107, Forestry and Timber Bureau, Canberra, Australia, 1967.
McKee, T. B., Doesken, N. J. and Kleist, J.: The relationship of drought frequency and duration to time scale, in: Preprints Eighth Conference on Applied Climatology, 17–22 January 1993, American Meteorological Society, Anaheim, CA, 179–184, 1993.
Meaden, G. T.: Tornadoes in Britain: Their intensities and distribution in space and time, J. Meteorol., 1, 242–251, 1976.
Mechler, R., Hochrainer, S., Aaheim, A., Salen, H., and Wreford, A.: Modelling economic impacts and adaptation to extreme events: Insights from European case studies, Mitig. Adapt. Strat. Global Change, 15, 737–762, 2010.
Miglietta, M. M., Mastrangelo, D., and Conte, D.: Influence of physics parameterization schemes on the simulation of a tropical-like cyclone in the Mediterranean Sea, Atmos. Res., 153, 360–375, 2015.
Moscatello, A., Miglietta, M. M., and Rotunno, R.: Numerical analysis of a Mediterranean 'hurricane' over southeastern Italy, Mon. Weather Rev., 136, 4373–4397, 2008.
Nastos, P. T. and Kapsomenakis, J.: Regional climate model simulations of extreme air temperature in Greece. Abnormal or common records in the future climate?, Atmos. Res., 152, 43–60, 2015.
Nastos, P. T. and Matsangouras, I. T.: Tornado activity in Greece within the 20th Century, Adv. Geosci., 26, 49–51, https://doi.org/10.5194/adgeo-26-49-2010, 2010.
Nastos, P. T. and Matsangouras, I. T.: Analysis of synoptic conditions for tornadic days over western Greece, Nat. Hazards Earth Syst. Sci., 14, 2409–2421, https://doi.org/10.5194/nhess-14-2409-2014, 2014.
Nastos, P. T., Politi, N., and Kapsomenakis, J.: Spatial and temporal variability of the Aridity Index in Greece, Atmos. Res., 119, 140–152, 2013.
Nastos, P. T., Karavana-Papadimou, K., and Matzangouras, I. T.: Tropical-like cyclones in the Mediterranean: Impacts and composite daily means and anomalies of synoptic conditions, Proceedings of the 14th International Conference on Environmental Science and Technology, 3–5 September 2015, Rhodes, Greece, CEST2015_00407, 2015.
Palmer, W. C.: Meteorological drought, Research Paper No. 45, US Department of Commerce Weather Bureau, Washington, D.C., 1965.
Peterson, R. E.: A historical review of tornadoes in Italy, J. Wind Eng. Ind. Aerod., 74–76, 123–130, 1998.
Price, C.: Thunderstorms, Lightning and Climate Change, in: Lightning: Principles, Instruments and Applications, edited by: Betz, H. D., Schumann, U., and Laroche, P., Springer Publications, Berlin, 521–536, 2009.
Pytharoulis, I., Craig, G. C., and Ballard, S. P.: The hurricane-like Mediterranean cyclone of January 1995, Meteorol. Appl., 7, 261–279, 2000.
Rahuala, J., Brooks, E. H., and Schultz, M. D.: Tornado climatology of Finland, Mon. Weather Rev., 140, 1446–1456, 2012.
Reynolds, D. J.: A revised U.K. tornado climatology, 1960–1989, J. Meteorol., 24, 290–321, 1999.
Robinson, P. J.: On the definition of heat waves, J. Appl. Meteorol., 40, 762–775, 2001.
Rogers, R.: Doppler radar investigation of Hawaiian rain, Tellus, 19, 432–454, 1967.
Running, S. W.: Is Global Warming Causing More, Larger Wildfires?, Science, 313, 927–928, 2006.
Salinger, J., Sivakumar, M. V. K., and Motha, R. P. (Eds.): Increasing Climate Variability and Change: Reducing the Vulnerability of Agriculture and Forestry, Springer, Berlin, p. 362, 2005.
Segoni, S., Rosi, A., Rossi, G., Catani, F., and Casagli, N.: Analysing the relationship between rainfalls and landslides to define a mosaic of triggering thresholds for regional-scale warning systems, Nat. Hazards Earth Syst. Sci., 14, 2637–2648, https://doi.org/10.5194/nhess-14-2637-2014, 2014a.
Segoni, S., Rossi, G., Rosi, A., and Catani, F.: Landslides triggered by rainfall: a semi-automated procedure to define consistent intensity-duration thresholds, Comput. Geosci., 63, 123–131, 2014b.
Smith, K.: Environmental Hazards: Assessing Risk and Reducing Disaster, 6th Edition, Routledge, New York, 478 pp., 2013.
Tolika, K., Maheras, P., Pytharoulis, I., and Anagnostopoulou, C.: The anomalous low and high temperatures of 2012 over Greece – an explanation from a meteorological and climatological perspective, Nat. Hazards Earth Syst. Sci., 14, 501–507, https://doi.org/10.5194/nhess-14-501-2014, 2014.
Tooming, H. K., Kotli, H., and Peterson, R. E.: Vigorous tornadoes and waterspouts during the last 35 years in Estonia, Meteorology in Estonia in Johannes Letzmann's Times and Today, edited by: Eelsalu, H., and Tooming, H., Estonian Academy Publishers, Tallinn, Estonia, 168–179, 1995.
Tsakiris, G., Pangalou, D., and Vangelis, H.: Regional drought assessment based on the Reconnaissance Drought Index (RDI), Water Resour. Manage., 21, 821–833, 2007.
Tucker, C. J.: Red and photographic infrared linear combinations for monitoring vegetation, Remote Sens. Environ., 8, 127–150, 1979.
Tucker, C. J. and Choudhury, B. J.: Satellite remote sensing of drought conditions, Remote Sens. Environ., 23, 243–251, 1987.
Tyrrell, J.: A tornado climatology for Ireland, Atmos. Res., 67–68, 671–684, 2003.
UNESCO – United Nations Educational, Scientific and Cultural Organization: Map of the world distribution of arid regions: Map at scale 1 : 25,000,000 with explanatory note, MAB Technical Notes 7, UNESCO, Paris, 1979.
van Wagner, C. E.: Development and structure of a Canadian forest fire weather index system, Forestry Tech. Rep. 35, Canadian Forestry Service, Ottawa, 1987.
Venäläinen, A. and Heikinheimo, M.: The Finnish forest fire index calculation system, in: Early warning systems for natural disaster reduction, edited by: Zschau, J. and Kuppers, A., Springer, Berlin, 645–648, 2003.
Wang, G.: Agricultural drought in a future climate: Results from 15 global climate models participating in the IPCC 4th assessment, Clim. Dynam., 25, 739–753, 2005.
Weghorst, K.: The reclamation drought index: Guidelines and practical applications, Bureau of Reclamation, Denver, CO, 6 pp., 1996.
WMO – World Meteorological Organization: Preventing and mitigating natural disasters, WMO-No. 993, Geneva, 2006.
Special issue
Altmetrics