Articles | Volume 14, issue 11
https://doi.org/10.5194/nhess-14-2933-2014
https://doi.org/10.5194/nhess-14-2933-2014
Research article
 | 
07 Nov 2014
Research article |  | 07 Nov 2014

Simulating lightning into the RAMS model: implementation and preliminary results

S. Federico, E. Avolio, M. Petracca, G. Panegrossi, P. Sanò, D. Casella, and S. Dietrich

Related authors

The impact of global navigation satellite system (GNSS) zenith total delay data assimilation on the short-term precipitable water vapor and precipitation forecast over Italy using the Weather Research and Forecasting (WRF) model
Rosa Claudia Torcasio, Alessandra Mascitelli, Eugenio Realini, Stefano Barindelli, Giulio Tagliaferro, Silvia Puca, Stefano Dietrich, and Stefano Federico
Nat. Hazards Earth Syst. Sci., 23, 3319–3336, https://doi.org/10.5194/nhess-23-3319-2023,https://doi.org/10.5194/nhess-23-3319-2023, 2023
Short summary
The impact of lightning and radar reflectivity factor data assimilation on the very short-term rainfall forecasts of RAMS@ISAC: application to two case studies in Italy
Stefano Federico, Rosa Claudia Torcasio, Elenio Avolio, Olivier Caumont, Mario Montopoli, Luca Baldini, Gianfranco Vulpiani, and Stefano Dietrich
Nat. Hazards Earth Syst. Sci., 19, 1839–1864, https://doi.org/10.5194/nhess-19-1839-2019,https://doi.org/10.5194/nhess-19-1839-2019, 2019
Short summary
Precipitable water vapour content from ESR/SKYNET sun–sky radiometers: validation against GNSS/GPS and AERONET over three different sites in Europe
Monica Campanelli, Alessandra Mascitelli, Paolo Sanò, Henri Diémoz, Victor Estellés, Stefano Federico, Anna Maria Iannarelli, Francesca Fratarcangeli, Augusto Mazzoni, Eugenio Realini, Mattia Crespi, Olivier Bock, Jose A. Martínez-Lozano, and Stefano Dietrich
Atmos. Meas. Tech., 11, 81–94, https://doi.org/10.5194/amt-11-81-2018,https://doi.org/10.5194/amt-11-81-2018, 2018
Short summary
Impact of the assimilation of lightning data on the precipitation forecast at different forecast ranges
Stefano Federico, Marco Petracca, Giulia Panegrossi, Claudio Transerici, and Stefano Dietrich
Adv. Sci. Res., 14, 187–194, https://doi.org/10.5194/asr-14-187-2017,https://doi.org/10.5194/asr-14-187-2017, 2017
Short summary
Comparison of hourly surface downwelling solar radiation estimated from MSG–SEVIRI and forecast by the RAMS model with pyranometers over Italy
Stefano Federico, Rosa Claudia Torcasio, Paolo Sanò, Daniele Casella, Monica Campanelli, Jan Fokke Meirink, Ping Wang, Stefania Vergari, Henri Diémoz, and Stefano Dietrich
Atmos. Meas. Tech., 10, 2337–2352, https://doi.org/10.5194/amt-10-2337-2017,https://doi.org/10.5194/amt-10-2337-2017, 2017
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
The unique features in the 4 d widespread extreme rainfall event over North China in July 2023
Jinfang Yin, Feng Li, Mingxin Li, Rudi Xia, Xinghua Bao, Jisong Sun, and Xudong Liang
Nat. Hazards Earth Syst. Sci., 25, 1719–1735, https://doi.org/10.5194/nhess-25-1719-2025,https://doi.org/10.5194/nhess-25-1719-2025, 2025
Short summary
Classifying extratropical cyclones and their impact on Finland's electricity grid: insights from 92 damaging windstorms
Ilona Láng-Ritter, Terhi Kristiina Laurila, Antti Mäkelä, Hilppa Gregow, and Victoria Anne Sinclair
Nat. Hazards Earth Syst. Sci., 25, 1697–1717, https://doi.org/10.5194/nhess-25-1697-2025,https://doi.org/10.5194/nhess-25-1697-2025, 2025
Short summary
Evaluation of machine learning approaches for large-scale agricultural drought forecasts to improve monitoring and preparedness in Brazil
Joseph W. Gallear, Marcelo Valadares Galdos, Marcelo Zeri, and Andrew Hartley
Nat. Hazards Earth Syst. Sci., 25, 1521–1541, https://doi.org/10.5194/nhess-25-1521-2025,https://doi.org/10.5194/nhess-25-1521-2025, 2025
Short summary
Soil moisture–atmosphere coupling strength over central Europe in the recent warming climate
Thomas Schwitalla, Lisa Jach, Volker Wulfmeyer, and Kirsten Warrach-Sagi
Nat. Hazards Earth Syst. Sci., 25, 1405–1424, https://doi.org/10.5194/nhess-25-1405-2025,https://doi.org/10.5194/nhess-25-1405-2025, 2025
Short summary
A data-driven framework for assessing climatic impact drivers in the context of food security
Marcos Roberto Benso, Roberto Fray Silva, Gabriela Chiquito Gesualdo, Antonio Mauro Saraiva, Alexandre Cláudio Botazzo Delbem, Patricia Angélica Alves Marques, José Antonio Marengo, and Eduardo Mario Mendiondo
Nat. Hazards Earth Syst. Sci., 25, 1387–1404, https://doi.org/10.5194/nhess-25-1387-2025,https://doi.org/10.5194/nhess-25-1387-2025, 2025
Short summary

Cited articles

Altaratz, O., Levin, Z., Yair, Y., and Ziv, B.: Lightning activity over land and sea on the eastern coast of the Mediterranean, Mon. Weather Rev., 131, 2060–2070, https://doi.org/10.1175/1520-0493(2003)131<2060:LAOLAS>2.0.CO;2, 2003.
Barthe, C., Molinie, G., and Pinty, J.: Description and first results of an explicit electrical scheme in a 3D cloud resolving model. Atmos. Res., 76, 95–113, 2005.
Barthe, C., W., Deierling, and Barth, M. C.: Estimation of total lightning from various storm parameters: A cloud-resolving model study, J. Geophys. Res., 115, D24202, https://doi.org/10.1029/2010JD014405, 2010.
Betz, H. D., Schmidt, K., Laroche, P., Blanchet, P., Oettinger, W. P., Defer, E., Dziewit, Z., and Konarski, J.: LINET – An in- ternational lightning detection network in Europe, Atmos. Res., 91, 564–573, 2009.
Bright, D. R., Wandishin, M. S., Jewell, R. E., and Weiss, S. J.: A physically based parameter for lightning prediction and its calibration in ensemble forecasts. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Am. Meteor. Soc., 4.3, available at: http://ams.confex.com/ams/pdfpapers/84173.pdf, 2004.
Download
Short summary
This paper shows the implementation of a simple model for simulating lightning into the RAMS model. The methodology is applied to six case studies that occurred in central Italy and the results are verified against LINET observations. Advantages and weaknesses of the methodology are discussed.
Share
Altmetrics
Final-revised paper
Preprint