Articles | Volume 26, issue 2
https://doi.org/10.5194/nhess-26-733-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-26-733-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling the effectiveness of GLOF DRM measures – a case study from the Ala-Archa valley, Kyrgyz Republic
Department of Geography, University of Zurich, Zurich, Switzerland
Holger Frey
Department of Geography, University of Zurich, Zurich, Switzerland
Simon Allen
Department of Geography, University of Zurich, Zurich, Switzerland
University of Geneva, Geneva, Switzerland
Nazgul Alybaeva
Central-Asian Institute for Applied Geosciences (CAIAG), Bishkek, Kyrgyz Republic
Christian Huggel
Department of Geography, University of Zurich, Zurich, Switzerland
Bolot Moldobekov
Central-Asian Institute for Applied Geosciences (CAIAG), Bishkek, Kyrgyz Republic
Vitalii Zaginaev
Mountain Societies Research Institute, University of Central Asia, Bishkek, Kyrgyz Republic
Related authors
No articles found.
Sonam Rinzin, Stuart Dunning, Rachel Joanne Carr, Simon Allen, Sonam Wangchuk, and Ashim Sattar
EGUsphere, https://doi.org/10.5194/egusphere-2025-3206, https://doi.org/10.5194/egusphere-2025-3206, 2025
Short summary
Short summary
This study redefines dangerous glacial lakes in Bhutan by integrating flood modelling with downstream exposure and vulnerability data. It finds that around 22,399 people, 2,613 buildings, and critical infrastructure are at risk from GLOFs. Thorthormi Tsho is classified as very high danger, with five other lakes posing high threats. Fourteen LGUs face high or very high GLOF danger, including six and three lakes not previously recognized, highlighting the need for stronger GLOF preparedness.
Léo C. P. Martin, Sebastian Westermann, Michele Magni, Fanny Brun, Joel Fiddes, Yanbin Lei, Philip Kraaijenbrink, Tamara Mathys, Moritz Langer, Simon Allen, and Walter W. Immerzeel
Hydrol. Earth Syst. Sci., 27, 4409–4436, https://doi.org/10.5194/hess-27-4409-2023, https://doi.org/10.5194/hess-27-4409-2023, 2023
Short summary
Short summary
Across the Tibetan Plateau, many large lakes have been changing level during the last decades as a response to climate change. In high-mountain environments, water fluxes from the land to the lakes are linked to the ground temperature of the land and to the energy fluxes between the ground and the atmosphere, which are modified by climate change. With a numerical model, we test how these water and energy fluxes have changed over the last decades and how they influence the lake level variations.
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Short summary
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In this work, we review GLOF research papers published between 2017 and 2021 and complement the analysis with research community insights gained from the 2021 GLOF conference we organized. The transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Andreas Kääb, Mylène Jacquemart, Adrien Gilbert, Silvan Leinss, Luc Girod, Christian Huggel, Daniel Falaschi, Felipe Ugalde, Dmitry Petrakov, Sergey Chernomorets, Mikhail Dokukin, Frank Paul, Simon Gascoin, Etienne Berthier, and Jeffrey S. Kargel
The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, https://doi.org/10.5194/tc-15-1751-2021, 2021
Short summary
Short summary
Hardly recognized so far, giant catastrophic detachments of glaciers are a rare but great potential for loss of lives and massive damage in mountain regions. Several of the events compiled in our study involve volumes (up to 100 million m3 and more), avalanche speeds (up to 300 km/h), and reaches (tens of kilometres) that are hard to imagine. We show that current climate change is able to enhance associated hazards. For the first time, we elaborate a set of factors that could cause these events.
Cornelia Zech, Tilo Schöne, Julia Illigner, Nico Stolarczuk, Torsten Queißer, Matthias Köppl, Heiko Thoss, Alexander Zubovich, Azamat Sharshebaev, Kakhramon Zakhidov, Khurshid Toshpulatov, Yusufjon Tillayev, Sukhrob Olimov, Zabihullah Paiman, Katy Unger-Shayesteh, Abror Gafurov, and Bolot Moldobekov
Earth Syst. Sci. Data, 13, 1289–1306, https://doi.org/10.5194/essd-13-1289-2021, https://doi.org/10.5194/essd-13-1289-2021, 2021
Short summary
Short summary
The regional research network Water in Central Asia (CAWa) funded by the German Federal Foreign Office consists of 18 remotely operated multi-parameter stations (ROMPSs) in Central Asia, and they are operated by German and Central Asian institutes and national hydrometeorological services. They provide up to 10 years of raw meteorological and hydrological data, especially in remote areas with extreme climate conditions, for applications in climate and water monitoring in Central Asia.
Fang Chen, Meimei Zhang, Huadong Guo, Simon Allen, Jeffrey S. Kargel, Umesh K. Haritashya, and C. Scott Watson
Earth Syst. Sci. Data, 13, 741–766, https://doi.org/10.5194/essd-13-741-2021, https://doi.org/10.5194/essd-13-741-2021, 2021
Short summary
Short summary
We developed a 30 m dataset to characterize the annual coverage of glacial lakes in High Mountain Asia (HMA) from 2008 to 2017. Our results show that proglacial lakes are a main contributor to recent lake evolution in HMA, accounting for 62.87 % (56.67 km2) of the total area increase. Regional geographic variability of debris cover, together with trends in warming and precipitation over the past few decades, largely explains the current distribution of supra- and proglacial lake area.
Cited articles
Allen, S., Rastner, P., Arora, M., Huggel, C., and Stoffel, M.: Lake outburst and debris flow disaster at Kedarnath, June 2013: hydrometeorological triggering and topographic predisposition, Landslides, 13, 1479–1491, https://doi.org/10.1007/s10346-015-0584-3, 2016.
Allen, S., Frey, H., Huggel, C. et al.: GAPHAZ 2017: Assessment of Glacier and Permafrost Hazards in Mountain Regions – Technical Guidance Document, Standing Group on Glacier and Permafrost Hazards in Mountains (GAPHAZ) of the International Association of Cryospheric Sciences (IACS) and the International Permafrost Association (IPA), Zurich, Switzerland/Lima, Peru, 72 pp., https://gaphaz.org/data-reports (last access: 3 February 2026), 2017.
Allen, S., Zhang, G., Wang, W., Yao, T., and Bolch, T.: Potentially dangerous glacial lakes across the Tibetan Plateau revealed using a large-scale automated assessment approach, Sci. Bull. (Beijing), 64, 435–445, https://doi.org/10.1016/j.scib.2019.03.011, 2019.
Ballesteros Cánovas, J. A., Stoffel, M., Corona, C., Schraml, K., Gobiet, A., Tani, S., Sinabell, F., Fuchs, S., and Kaitna, R.: Debris-flow risk analysis in a managed torrent based on a stochastic life-cycle performance, Science of the Total Environment, 557–558, 142–153, https://doi.org/10.1016/j.scitotenv.2016.03.036, 2016.
Bartelt, P., Bieler, C., Bühler, Y., Christen, M., Deubelbeiss, Y., Graf, C., McArdell, B., Salz, M., and Schneider, M.: RAMMS: DEBRISFLOW User Manual v1.8.0, https://ramms.ch/wp-content/uploads/RAMMS_DBF_Manual.pdf (last access: 3 February 2026), 2022.
Benson, C. and Twigg, J.: Measuring Mitigation: Methodologies for assessing natural hazard risks and the net benefits of mitigation – a scoping study, Geneva, synthesis report, International Federation of Red Cross and Red Crescent Societies (IFRC), ProVention Consortium, https://www.unisdr.org/files/1065_MMscopingstudy.pdf (last access: 3 February 2026), 2004.
Bernard, M., Boreggio, M., Degetto, M., and Gregoretti, C.: Model-based approach for design and performance evaluation of works controlling stony debris flows with an application to a case study at Rovina di Cancia (Venetian Dolomites, Northeast Italy), Science of the Total Environment, 688, 1373–1388, https://doi.org/10.1016/j.scitotenv.2019.05.468, 2019.
Bundesamt für Umwelt (BAFU): EconoMe 5.2 Wirkung und Wirtschaftlichkeit von Schutzmassnahmen gegen Naturgefahren, https://econome.ch/eco_work/index.php, last access: 20 December 2024.
Cardona, O. D., Ordaz, M. G., Yamin, L. E., Marulanda, M. C., and Barbat, A. H.: Earthquake loss assessment for integrated disaster risk management, in: Journal of Earthquake Engineering, 48–59, https://doi.org/10.1080/13632460802013495, 2008.
Chen, S. C., Wu, C. Y., and Huang, B. T.: The efficiency of a risk reduction program for debris-flow disasters – a case study of the Songhe community in Taiwan, Nat. Hazards Earth Syst. Sci., 10, 1591–1603, https://doi.org/10.5194/nhess-10-1591-2010, 2010.
Chiou, I. J., Chen, C. H., Liu, W. L., Huang, S. M., and Chang, Y. M.: Methodology of disaster risk assessment for debris flows in a river basin, Stochastic Environmental Research and Risk Assessment, 29, 775–792, https://doi.org/10.1007/s00477-014-0932-1, 2015.
Christen, M., Kowalski, J., and Bartelt, P.: RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain, Cold Reg. Sci. Technol., 63, 1–14, https://doi.org/10.1016/j.coldregions.2010.04.005, 2010.
Cutter, S. L.: The origin and diffusion of the social vulnerability index (SoVI), International Journal of Disaster Risk Reduction, 109, https://doi.org/10.1016/j.ijdrr.2024.104576, 2024.
Dan, M. B.: Decision making based on benefit-costs analysis: Costs of preventive retrofit versus costs of repair after earthquake hazards, Sustainability (Switzerland), 10, https://doi.org/10.3390/su10051537, 2018.
Emmer, A.: Understanding the risk of glacial lake outburst floods in the twenty-first century, Nature Water, 2, 608–610, https://doi.org/10.1038/s44221-024-00254-1, 2024.
Emmer, A., Allen, S. K., Carey, M., Frey, H., Huggel, C., Korup, O., Mergili, M., Sattar, A., Veh, G., Chen, T. Y., Cook, S. J., Correas-Gonzalez, M., Das, S., Diaz Moreno, A., Drenkhan, F., Fischer, M., Immerzeel, W. W., Izagirre, E., Joshi, R. C., Kougkoulos, I., Kuyakanon Knapp, R., Li, D., Majeed, U., Matti, S., Moulton, H., Nick, F., Piroton, V., Rashid, I., Reza, M., Ribeiro de Figueiredo, A., Riveros, C., Shrestha, F., Shrestha, M., Steiner, J., Walker-Crawford, N., Wood, J. L., and Yde, J. C.: Progress and challenges in glacial lake outburst flood research (2017–2021): a research community perspective, Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, 2022.
Erokhin, S. A. and Dikikh, A. N.: Evaluation of the danger of debris flows and flood flows in the territory of the Ala-Archa National Park, Proceedings of the National Academy of Sciences of the Kyrgyz Republic, 2003.
Erokhin, S. A. and Zaginaev, V. V.: Types of mountain lakes in Kyrgyzstan by the level of their outburst hazard, Georisk, 14, 78–86, https://doi.org/10.25296/1997-8669-2020-14-3-78-86, 2020.
Erokhin, S. A., Zaginaev, V. V., Meleshko, A. A., Ruiz-Villanueva, V., Petrakov, D. A., Chernomorets, S. S., Viskhadzhieva, K. S., Tutubalina, O. V., and Stoffel, M.: Debris flows triggered from non-stationary glacier lake outbursts: the case of the Teztor Lake complex (Northern Tian Shan, Kyrgyzstan), Landslides, 15, 83–98, https://doi.org/10.1007/s10346-017-0862-3, 2018.
Erokhin, S. A., Chontoev, D. T., and Zaginaev, V. V.: Outburst-prone lakes of Kyrgyzstan, Print Express Publishing, 2020.
Frank, F., McArdell, B. W., Huggel, C., and Vieli, A.: The importance of entrainment and bulking on debris flow runout modeling: examples from the Swiss Alps, Nat. Hazards Earth Syst. Sci., 15, 2569–2583, https://doi.org/10.5194/nhess-15-2569-2015, 2015.
Frey, H., Huggel, C., Chisolm, R. E., Baer, P., McArdell, B., Cochachin, A., and Portocarrero, C.: Multi-Source Glacial Lake Outburst Flood Hazard Assessment and Mapping for Huaraz, Cordillera Blanca, Peru, Front. Earth Sci. (Lausanne), 6, https://doi.org/10.3389/feart.2018.00210, 2018.
Furian, W., Loibl, D., and Schneider, C.: Future glacial lakes in High Mountain Asia: An inventory and assessment of hazard potential from surrounding slopes, Journal of Glaciology, 67, 653–670, https://doi.org/10.1017/jog.2021.18, 2021.
Gan, F., He, B., and Wang, T.: Water and soil loss from landslide deposits as a function of gravel content in the Wenchuan earthquake area, China, revealed by artificial rainfall simulations, PLoS One, 13, https://doi.org/10.1371/journal.pone.0196657, 2018.
Google Earth: Image 2024 Airbus, http://www.google.com/earth/index.html, last access: 12 November 2024.
Haeberli, W., Schaub, Y., and Huggel, C.: Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges, Geomorphology, 293, 405–417, https://doi.org/10.1016/j.geomorph.2016.02.009, 2017.
Hoyos, M. C. and Silva, V.: Exploring benefit cost analysis to support earthquake risk mitigation in Central America, International Journal of Disaster Risk Reduction, 80, https://doi.org/10.1016/j.ijdrr.2022.103162, 2022.
Hudson, P. and Wouter Botzen, W. J.: Cost–benefit analysis of flood-zoning policies: A review of current practice, Wiley Interdisciplinary Reviews: Water, 6, https://doi.org/10.1002/WAT2.1387, 2019.
Hugenbusch, D. and Neumann, T.: Enhancing efficiency in humanitarian action through reducing risk. A study on cost-benefit of disaster risk reduction, Aktion Deutschland Hilft e. V., Bonn, https://www.aktion-deutschland-hilft.de/fileadmin/fm-dam/pdf/publikationen/2021-05_studie-katastrophenvorsorge-zahlt-sich-aus-englisch.pdf (last access: 3 February 2026), 2021.
Huggel, C., Haeberli, W., Kääb, A., Bieri, D., and Richardson, S.: An assessment procedure for glacial hazards in the Swiss Alps, Canadian Geotechnical Journal, 41, 1068–1083, https://doi.org/10.1139/T04-053, 2004.
Huggel, C., Cochachin, A., Drenkhan, F., Fluixá-Sanmartín, J., Frey, H., García Hernández, J., Jurt, C., Muñoz, R., Price, K., and Vicuña, L.: Glacier Lake 513, Peru: Lessons for early warning service development, WMO Bulletin, 69, 45–52, 2020.
Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M., Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink, P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter, T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A. B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.: Importance and vulnerability of the world's water towers, Nature, 577, 364–369, https://doi.org/10.1038/s41586-019-1822-y, 2020.
IPCC: Annex I: Glossary, edited by: Matthews, J. B. R., in: Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., in press, 2018.
Iribarren Anacona, P., Norton, K., Mackintosh, A., Escobar, F., Allen, S., Mazzorana, B., and Schaefer, M.: Dynamics of an outburst flood originating from a small and high-altitude glacier in the Arid Andes of Chile, Natural Hazards, 94, 93–119, https://doi.org/10.1007/s11069-018-3376-y, 2018.
Ives, J. D., Shrestha, R. B., and Mool, P. K.: Formation of Glacial Lakes in the Hindu Kush-Himalayas and GLOF Risk Assessment, International Centre for Integrated Mountain Development (ICIMOD), ISBN 9789291151370, 2010.
Kassenov, M.: Report providing a comprehensive listing and description of GLOF and glacial mudflow mitigation and prevention methods over the past 50 years in Kazakhstan, 1–29 pp., 2022.
Kenny, C.: Why Do People Die in Earthquakes? The Costs, Benefits and Institutions of Disaster Risk Reduction in Developing Countries, Policy Research Working Paper 4823, Finance Economics & Urban Department, Sustainable Development Network, https://openknowledge.worldbank.org/server/api/core/bitstreams/d667ab90-a0f1-575d-83d6-41d4dafce08d/content (last access: 3 February 2026), 2009.
Kim, A. and Gruzdov, Y.: Nights of fear, MSN LLC, https://www.msn.kg/ru/news/4699/ (last access: 17 January 2025), 2003 (in Russian).
Kolenko, A., Teysseire, P., and Zimmermann, M.: Safety concept for debris flow hazards. The Täsch case-study, in: Internationales Symposion Intrapraevent, 193–206, 2004.
Kopp, R. J., Krupnick, A. J., and Toman, M.: Cost-Benefit Analysis and Regulatory Reform: An Assessment of the Science and the Art, Resources for the Future, https://media.rff.org/documents/RFF-DP-97-19.pdf (last access: 3 February 2026), 1997.
Kull, D., Mechler, R., and Hochrainer-Stigler, S.: Probabilistic cost-benefit analysis of disaster risk management in a development context, Disasters, 37, 374–400, https://doi.org/10.1111/disa.12002, 2013.
Lateltin, O., Haemmig, C., Raetzo, H., and Bonnard, C.: Landslide risk management in Switzerland, Landslides, 2, 313–320, https://doi.org/10.1007/s10346-005-0018-8, 2005.
Liu, M., Zhang, Y., Tian, S.-F., Chen, N.-S., Mahfuzr, R., and Javed, I.: Effects of loose deposits on debris flow processes in the Aizi Valley, southwest China, J. Mt. Sci., 17, 156–172, https://doi.org/10.1007/s11629-019-5388-9, 2020.
Mani, P., Allen, S., Evans, S. G., Kargel, J. S., Mergili, M., Petrakov, D., and Stoffel, M.: Geomorphic Process Chains in High-Mountain Regions – A Review and Classification Approach for Natural Hazards Assessment, Reviews of Geophysics, 61, https://doi.org/10.1029/2022RG000791, 2023.
Mechler, R.: The Cost-Benefit Analysis Methodology, in: From Risk to Resilience Working Paper No. 1, edited by: Moench, M., Caspari, E., and Pokhrel, A., ISET-Nepal and ProVention, Kathmandu, Nepal, https://www.preventionweb.net/publication/risk-resilience-working-paper-1-cost-benefit-analysis-methodology (last access: 3 February 2026), 2008.
Mechler, R.: Reviewing estimates of the economic efficiency of disaster risk management: opportunities and limitations of using risk-based cost–benefit analysis, Natural Hazards, 81, 2121–2147, https://doi.org/10.1007/s11069-016-2170-y, 2016.
Menk, L., Schinko, T., Karabaczek, V., Hagen, I., and Kienberger, S.: What's at stake? A human well-being based proposal for assessing risk of loss and damage from climate change, Front. Clim., 4, https://doi.org/10.3389/fclim.2022.1032886, 2022.
Ministry of Emergency Situations (MES): Monitoring, forecasting of dangerous processes and phenomena on the territory of the Kyrgyz Republic, 21st edn. with amendments and additions, Bishkek, 833 pp., 2023.
Niggli, L., Allen, S., Frey, H., Huggel, C., Petrakov, D., Raimbekova, Z., Reynolds, J., and Wang, W.: GLOF Risk Management Experiences and Options: A Global Overview, in: Oxford Research Encyclopedia of Natural Hazard Science, Oxford University Press, https://doi.org/10.1093/acrefore/9780199389407.013.540, 2024.
Popov, N.: Assessment of glacial debris flow hazard in the North Tien-Shan, in: Proceedings of the Soviet-China-Japan Symposium and Field Workshop on Natural Disasters, 384–391, 1991.
Portocarrero Rodríguez, C. A.: The Glacial Lake Handbook. Reducing risk from dangerous glacial lakes in the Cordillera Blanca, Peru, Washington D.C., United States Agency for International Development (USAID), https://sinia.minam.gob.pe/sites/default/files/siar-ancash/archivos/public/docs/usaid_glacial_lake_handbookrfs_0-ilovepdf-compressed_0.pdf (last access: 3 February 2026), 2014.
Radio Azattyk: Radio Free Europe/Radio Liberty (RFE/RL), Kyrgyz Service, 8 September 2024, https://rus.azattyk.org/a/33111563.html (last access: 11 December 2024), 2024.
Rai, R. K., van den Homberg, M. J. C., Ghimire, G. P., and McQuistan, C.: Cost-benefit analysis of flood early warning system in the Karnali River Basin of Nepal, International Journal of Disaster Risk Reduction, 47, https://doi.org/10.1016/j.ijdrr.2020.101534, 2020.
Reynolds, J. M., Dolecki, A., and Portocarero, C.: The construction of a drainage tunnel as part of glacial lake hazard mitigation at Hualcán, Cordillera Blanca, Peru, in: Geohazards in Engineering Geology, edited by: Maund, J. G. and Eddleston, M., Engineering Geology Special Publications, London, 41–48, https://doi.org/10.1144/gsl.eng.1998.015.01.05, 1998.
Riedel, I. and Guéguen, P.: Modeling of damage-related earthquake losses in a moderate seismic-prone country and cost–benefit evaluation of retrofit investments: application to France, Natural Hazards, 90, 639–662, https://doi.org/10.1007/s11069-017-3061-6, 2018.
Sattar, A., Allen, S., Mergili, M., Haeberli, W., Frey, H., Kulkarni, A. V., Haritashya, U. K., Huggel, C., Goswami, A., and Ramsankaran, R.: Modeling Potential Glacial Lake Outburst Flood Process Chains and Effects From Artificial Lake-Level Lowering at Gepang Gath Lake, Indian Himalaya, J. Geophys. Res. Earth Surf., 128, https://doi.org/10.1029/2022JF006826, 2023.
Scaini, C., Tamaro, A., Adilkhan, B., Sarzhanov, S., Ismailov, V., Umaraliev, R., Safarov, M., Belikov, V., Karayev, J., and Faga, E.: A new regionally consistent exposure database for Central Asia: population and residential buildings, Nat. Hazards Earth Syst. Sci., 24, 929–945, https://doi.org/10.5194/nhess-24-929-2024, 2024.
Schneider, D., Huggel, C., Cochachin, A., Guillén, S., and García, J.: Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru, Adv. Geosci., 35, 145–155, https://doi.org/10.5194/adgeo-35-145-2014, 2014.
Schwanghart, W., Worni, R., Huggel, C., Stoffel, M., and Korup, O.: Uncertainty in the Himalayan energy-water nexus: Estimating regional exposure to glacial lake outburst floods, Environmental Research Letters, 11, https://doi.org/10.1088/1748-9326/11/7/074005, 2016.
Shatravin, V. I.: Report on the expert examination of the Aksay debris flow source, 65 pp., 1978.
Shreve, C. M. and Kelman, I.: Does mitigation save? Reviewing cost-benefit analyses of disaster risk reduction, International Journal of Disaster Risk Reduction, 10, 213–235, https://doi.org/10.1016/j.ijdrr.2014.08.004, 2014.
Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S., Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S., and Strattman, K.: Rapid worldwide growth of glacial lakes since 1990, Nat. Clim. Chang., 10, 939–945, https://doi.org/10.1038/s41558-020-0855-4, 2020.
Strava: Global Heatmap, https://www.strava.com/maps/global-heatmap, last access: 12 November 2024.
Taylor, C., Robinson, T. R., Dunning, S., Rachel Carr, J., and Westoby, M.: Glacial lake outburst floods threaten millions globally, Nat. Commun., 14, https://doi.org/10.1038/s41467-023-36033-x, 2023.
UNESCAP: Urbanization and resource trends in Kyrgyzstan, https://www.unescap.org/about/member-states (last access: 19 December 2024), 2020.
Wang, W., Zhang, T., Yao, T., and An, B.: Monitoring and early warning system of Cirenmaco glacial lake in the central Himalayas, International Journal of Disaster Risk Reduction, 73, https://doi.org/10.1016/j.ijdrr.2022.102914, 2022.
WB and UN: Natural hazards, unnatural disasters. The economics of effective prevention, Washington DC, https://doi.org/10.1596/978-0-8213-8050-5, 2010.
Willenbockel, D.: A Cost-Benefit Analysis of Practical Action's Livelihood-Centred Disaster Risk Reduction Project in Nepal, https://www.dpnet.org.np/public/uploads/files/Flagship%204%20LDRMP%20analysis%2028%20March2013%202021-09-29%2007-50-27.pdf (last access: 3 February 2026), 2011.
World Bank: Population growth (annual %) – Kyrgyz Republic, https://data.worldbank.org/indicator/SP.POP.GROW?locations=KG, last access: 19 December 2024.
Zaginaev, V.: Calculation of a zone of debris-flow defeat on the example of the Aksay-Tone valley (northern slope of the Terskey Alatau), International Research Journal, 8, 59–62, https://doi.org/10.18454/IRJ.2016.50.207, 2016.
Zaginaev, V., Ballesteros-Cánovas, J. A., Erokhin, S., Matov, E., Petrakov, D., and Stoffel, M.: Reconstruction of glacial lake outburst floods in northern Tien Shan: Implications for hazard assessment, Geomorphology, 269, 75–84, https://doi.org/10.1016/j.geomorph.2016.06.028, 2016.
Zaginaev, V., Falatkova, K., Jansky, B., Sobr, M., and Erokhin, S.: Development of a potentially hazardous pro-glacial lake in Aksay Valley, Kyrgyz Range, Northern Tien Shan, Hydrology, 6, https://doi.org/10.3390/hydrology6010003, 2019a.
Zaginaev, V., Petrakov, D., Erokhin, S., Meleshko, A., Stoffel, M., and Ballesteros-Cánovas, J. A.: Geomorphic control on regional glacier lake outburst flood and debris flow activity over northern Tien Shan, Glob. Planet. Change, 176, 50–59, https://doi.org/10.1016/j.gloplacha.2019.03.003, 2019b.
Zaginaev, V. V., Sakyev, D. J., Nazarkulov, K. B., Amanova, M. T., Isaev, E. K., and Erokhin, S. A.: Monitoring the Development of Potential Hazardous Mountain Lakes Using Remote Sensing in the Kyrgyz Republic, International Journal of Geoinformatics, 20, 36–48, https://doi.org/10.52939/ijg.v20i12.3771, 2024.
Zhang, G., Carrivick, J. L., Emmer, A., Shugar, D. H., Veh, G., Wang, X., Labedz, C., Mergili, M., Mölg, N., Huss, M., Allen, S., Sugiyama, S., and Lützow, N.: Characteristics and changes of glacial lakes and outburst floods, Nature Reviews Earth & Environment, https://doi.org/10.1038/s43017-024-00554-w, 2024a.
Zhang, T., Wang, W., and An, B.: A massive lateral moraine collapse triggered the 2023 South Lhonak Lake outburst flood, Sikkim Himalayas, Landslides, https://doi.org/10.1007/s10346-024-02358-x, 2024b.
Zheng, G., Allen, S., Bao, A., Ballesteros-Cánovas, J. A., Huss, M., Zhang, G., Li, J., Yuan, Y., Jiang, L., Yu, T., Chen, W., and Stoffel, M.: Supplementary material. Increasing risk of glacial lake outburst floods from future Third Pole deglaciation, Nat. Clim. Chang., 11, 411–417, https://doi.org/10.1038/s41558-021-01028-3, 2021.
Short summary
Glacial lake outburst floods (GLOF) pose significant risks to communities and infrastructure. Our study explores how effective different measures are in reducing such risks. Using numerical modelling, we evaluate three strategies: lowering lake levels, building a deflection dam, and creating a retention basin. We compared their hazard and exposure reduction and their costs and benefits. This offers insights that can improve GLOF risk management worldwide and support better decision-making.
Glacial lake outburst floods (GLOF) pose significant risks to communities and infrastructure....
Altmetrics
Final-revised paper
Preprint