Articles | Volume 26, issue 1
https://doi.org/10.5194/nhess-26-551-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-26-551-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Land subsidence dynamics and their interplay with spatial and temporal land-use transitions in the Douala coastland, Cameroon
Gergino Chounna Yemele
CORRESPONDING AUTHOR
Department of Civil, Environmental, and Architectural Engineering, University of Padova, Padova, 35131, Italy
Philip S. J. Minderhoud
Wageningen University and Research, Wageningen, the Netherlands
Department of Civil, Environmental, and Architectural Engineering, University of Padova, Padova, 35131, Italy
Deltares Research Institute, Wageningen, the Netherlands
Leonard Osadebamwen Ohenhen
University of California, Irvine, Irvine, CA, USA
Katharina Seeger
Institute of Geography, University of Cologne, Cologne, Germany
Wageningen University and Research, Wageningen, the Netherlands
Manoochehr Shirzaei
Virginia Tech, Department of Geosciences, Blacksburg, VA, USA
United Nations University, Institute for Water, Environment and Health, Richmond Hill, ON, Canada
Pietro Teatini
Department of Civil, Environmental, and Architectural Engineering, University of Padova, Padova, 35131, Italy
Related authors
No articles found.
Susanna Werth, Manoochehr Shirzaei, Grace Carlson, and Roland Bürgmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4023, https://doi.org/10.5194/egusphere-2024-4023, 2025
Preprint archived
Short summary
Short summary
We report large sets of geodetic remote sensing observations directly linking Sierra Nevada’s snowmelt to Central Valley's deep aquifer system recharge. We investigate annual changes in the datasets and compare them with hydrological records. Our results highlight the importance of high mountain groundwater systems for recharging valley aquifers. We suggest that in-depth modeling studies are needed to quantify their contribution accurately and to support groundwater management.
Martin Kehl, Katharina Seeger, Stephan Pötter, Philipp Schulte, Nicole Klasen, Mirijam Zickel, Andreas Pastoors, and Erich Claßen
E&G Quaternary Sci. J., 73, 41–67, https://doi.org/10.5194/egqsj-73-41-2024, https://doi.org/10.5194/egqsj-73-41-2024, 2024
Short summary
Short summary
The loess–palaeosol sequence (LPS) at Rheindahlen provides a detailed sedimentary archive of past climate change. Furthermore, it contains Palaeolithic find horizons indicating repeated occupations by Neanderthals. The age of loess layers and the timing of human occupation are a matter of strong scientific debate. We present new data to shed light on formation processes and deposition ages. Previous chronostratigraphic estimates are revised providing a reliable chronostratigraphic framework .
Katharina Seeger, Philip S. J. Minderhoud, Andreas Peffeköver, Anissa Vogel, Helmut Brückner, Frauke Kraas, Nay Win Oo, and Dominik Brill
Hydrol. Earth Syst. Sci., 27, 2257–2281, https://doi.org/10.5194/hess-27-2257-2023, https://doi.org/10.5194/hess-27-2257-2023, 2023
Short summary
Short summary
Accurate elevation data is essential for flood risk assessment. We assess land elevation to local mean sea level of the Ayeyarwady Delta with a new, local DEM based on geodetic data and evaluate the performance of 10 global DEMs in an SLR impact assessment. Our study reveals major differences in performance between global DEMs and consequentially introduced uncertainty in SLR impact assessments, indicating potential similar uncertainties for other data-poor coastal lowlands around the world.
Stephan Pötter, Katharina Seeger, Christiane Richter, Dominik Brill, Mathias Knaak, Frank Lehmkuhl, and Philipp Schulte
E&G Quaternary Sci. J., 72, 77–94, https://doi.org/10.5194/egqsj-72-77-2023, https://doi.org/10.5194/egqsj-72-77-2023, 2023
Short summary
Short summary
We reconstructed a wetland environment for a late Middle to Upper Pleniglacial (approx. 30–20 ka) loess sequence in western Germany. Typically, these sequences reveal terrestrial conditions with soil formation processes during this time frame. The here-investigated section, however, was influenced by periodical flooding, leading to marshy conditions and a stressed ecosystem. Our results show that the landscape of the study area was much more fragmented during this time than previously thought.
Huijun Li, Lin Zhu, Gaoxuan Guo, Yan Zhang, Zhenxue Dai, Xiaojuan Li, Linzhen Chang, and Pietro Teatini
Nat. Hazards Earth Syst. Sci., 21, 823–835, https://doi.org/10.5194/nhess-21-823-2021, https://doi.org/10.5194/nhess-21-823-2021, 2021
Short summary
Short summary
We propose a method that integrates fuzzy set theory and a weighted Bayesian model to evaluate the hazard probability of land subsidence based on Interferometric Synthetic Aperture Radar technology. The proposed model can represent the uncertainty and ambiguity in the evaluation process, and results can be compared to traditional qualitative methods.
Cited articles
Avornyo Y. S., Addo, A. K., Teatini, P., Minderhoud, S. J. P., Woillez, M., Jayson-Quashigah, p., and Mahu, E.: A scoping review of coastal vulnerability, subsidence, and sea-level rise in Ghana: Assessments, knowledge gaps, and management implications, Quaternary Science Advances, 12, 100108, https://doi.org/10.1016/j.qsa.2023.100108, 2023.
Blackwell, E., Shirzaei, M., Ojha, C., and Werth, S.: Tracking California's sinking coast from space: Implications for relative sea-level rise, Science Advances, 6, 1–10, https://doi.org/10.1126/sciadv.aba4551, 2020.
Brempong, E. K., Almar, R., Angnuureng, D. B., Mattah, P. A. D., Avornyo, S. Y., Jayson-Quashigah, P. N., Appeaning Addo, K., Minderhoud, P., and Teatini, P.: Future fooding of the Volta Delta caused by sea-level rise and land subsidence, J. Coast. Conserv., 27, https://doi.org/10.1007/s11852-023-00952-0, 2023.
Candela, B. T. and Koster, K.: The many faces of anthropogenic subsidence, Science, 376, 1381–1382, https://doi.org/10.1126/science.abn3676, 2022.
Cao, A., Esteban, M., Valenzuela, V. P. B., Onuki, M., Takagi, H., Thao, N. D., and Tsuchiya, N.: Future of Asian Deltaic Megacities under sea-level rise and land subsidence: Current adaptation pathways for Tokyo, Jakarta, Manila, and Ho Chi Minh City, Curr. Opin. Env. Sust., 50, 87–97, https://doi.org/10.1016/j.jog.2023.101987, 2021.
Cian, F., Blasco, J. M. D., and Carrera, L.: Sentinel-1 for monitoring land subsidence of coastal cities in Africa using PSInSAR: A methodology based on the integration of SNAP and StaMPS, Geosciences, 9, 124, https://doi.org/10.3390/geosciences9030124, 2019.
Cigna, F., Paranunzio, R., Bonì, R., and Teatini, P.: Present-day land subsidence risk in the metropolitan cities of Italy, Scientific Reports, 15, 34999, https://doi.org/10.1038/s41598-025-18941-8, 2025.
Cisse, C. O. T., Brempong, E. K., Almar, R., Angnuureng, B. D., and Sy, B. A.: The potential impact of rising sea levels and subsidence on coastal flooding along the northern coast of Saint-Louis, Senegal, Preprints, 2024031468, https://doi.org/10.20944/preprints202403.1468.v1, 25 March 2024.
Costantini, M.: A novel phase unwrapping method based on network programming, IEEE T. Geosci. Remote, 36, 813–821, https://doi.org/10.1109/36.673674, 1998.
Costantini, M. and Rosen, P. A.: A generalized phase unwrapping approach for sparse data, in: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS'99 (Cat. No.99CH36293), Hamburg, Germany, 1, 267–269, https://doi.org/10.1109/IGARSS.1999.773467, 1999.
Da Lio, C. and Tosi, L.: Land subsidence in the Friuli Venezia Giulia coastal plain, Italy: 1992–2010 results from SAR-based interferometry, Sci. Total Environ., 633, 752–764, https://doi.org/10.1016/j.scitotenv.2018.03.244, 2018.
Dada, O., Almar, R., Morand, P., Bergsma, E. W. J., Angnuureng. B. D., and Minderhoud, S. J. P.: Future socioeconomic development along the West African coast forms a larger hazard than sea-level rise, Nature Communications Earth & Environment, 4, 1–12, https://doi.org/10.1038/s43247-023-00807-4, 2023.
Dada, O., Almar, R., and Morand, P.: Coastal vulnerability assessment of the West African coast to fooding and erosion, Scientific Reports, 14, 890, https://doi.org/10.1038/s41598-023-48612-5, 2024.
Davydzenka, T., Tahmasebi, P., and Shokri, N.: Unveiling the global extent of land subsidence: The sinking crisis, Geophys. Res. Lett., 51, e2023GL104497, https://doi.org/10.1029/2023GL104497, 2024.
De Wit, K., Lexmond, B. R., Stouthamer, E., Neussner, O., Dörr, N., Schenk, A., and Minderhoud, P. S. J.: Identifying causes of urban differential subsidence in the Vietnamese Mekong Delta by combining InSAR and field observations, Remote Sensing, 13, 189, https://doi.org/10.3390/rs13020189, 2021.
Dinar, A., Esteban, E., Calvo, E., Herrera, G., Teatini, P., Tomas, R., Li, Y., Ezquerro, P., and Albiac, J.: We lose ground: global assessment of land subsidence impact extent, Sci. Total Environ., 786, 147415, https://doi.org/10.1016/j.scitotenv.2021.147415, 2021.
Ellison, C. E. and Zouh, I.: Vulnerability to climate change of mangroves: assessment from Cameroon, Central Africa, Biology, 1, 617–638, https://doi.org/10.3390/biology1030617, 2012.
Editor, A. M.: Addressing Flood Risk and Social Justice in Accra: Insights from Urban Expansion and Climate Change, African Researchers Magazine, ISSN: 2714-2787, https://www.africanresearchers.org/addressing-flood-risk-and- social-justice-in-accra-insights-from-urban-expansion-and-climate-change/ (last access: 20 January 2026), 5 February 2024.
ESA Land Cover CCI Project Team, and Defourny, P.: ESA Land Cover Climate Change Initiative (Land_Cover_cci): Global Land Cover Maps, Version 2.0.7, 18 October 2023, Centre for Environmental Data Analysis, https://catalogue.ceda.ac.uk/uuid/b382ebe6679d44b8b0e68ea4ef4b701c (last access: 30 November 2024), 2019.
European Commission (EC): GHSL Data Package 2023, Publications Office of the European Union, Luxembourg, JRC133256, https://doi.org/10.2760/098587, 2023.
Farr, G. T., Paul A. Rosen, A. P., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle radar topography mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Ferretti, A., Prati, C., and Rocca, F.: Permanent scatterers in SAR interferometry, IEEE T. Geosci. Remote, 39, 8–20, https://doi.org/10.1109/36.898661, 2001.
Fossi, F. Y., Brenon, I., Pouvreau, N., Ferret, Y., Latapy, A., Onguene, R., Jombe, D., and Etame, J.: Exploring tidal dynamics in the Wouri estuary, Cameroon, Cont. Shelf Res., 259, 104982, https://doi.org/10.1016/j.csr.2023.104982, 2023.
Fossi, F. Y., Pouvreau, N., Brenon, I., Onguene, R., and Etame, J.: Temporal (1948–2012) and Dynamic Evolution of the Wouri Estuary Coastline within the Gulf of Guinea, J. Mar. Sci. Eng., 7, 343, https://doi.org/10.3390/jmse7100343, 2019.
Franceschetti, G., Lanari, R., Franceschetti, G., and Lanari, R.: Synthetic Aperture Radar Processing, 1st edn., CRC Press, https://doi.org/10.1201/9780203737484, 1999.
Freire, S., MacManus, K., Pesaresi, M., Doxsey-Whitfield, E., and Mills, J.: Development of new open and free multi-temporal global population grids at 250 m resolution, Geospatial data in a changing world, Association of Geographic Information Laboratories in Europe (AGILE), JRC100523, 2016.
Galloway, D. L. and Burbey, T. J.: Review: Regional land subsidence accompanying groundwater extraction, Hydrogeol. J., 19, 1459–1486, https://doi.org/10.1007/s10040-011-0775-5, 2011.
Gambolati, G. and Teatini, P.: Geomechanics of subsurface water withdrawal and injection, Water Resour. Res., 51, 3922–3955, https://doi.org/10.1002/2014WR016841, 2015.
Gambolati, G. and Teatini, P.: Land subsidence and its mitigation, The Groundwater Project, Publ., Guelph, Ontario, Canada, https://doi.org/10.21083/978-1-77470-001-3, 2021.
Hammond, W. C., Blewitt, G., Kreemer, C., and Nerem, R. S.: GPS imaging of global vertical land motion for studies of sea level rise, J. Geophys. Res.-Sol. Ea., 126, e2021JB022355, https://doi.org/10.1029/2021JB022355, 2021.
Hanssen, R. F.: Radar interferometry: Data interpretation and error analysis, Springer, Dordrecht, https://doi.org/10.1007/0-306-47633-9, 2001.
Hauser, L., Boni, R., Minderhoud, P.-S.-J., Teatini, P., Woillez, M.-N., Almar, R., Avornyo, S.-Y., and Appeaning Addo, K.: A scoping study on coastal vulnerability to relative sea-level rise in the Gulf of Guinea, Éditions AFD, 42 pp., https://shs.cairn.info/journal-afd-research-papers-2023-283-page-1?lang=en (last access: 20 Janaury 2026), 2023.
Herrera-García, G., Ezquerro, P., Tomas, R., Béjar-Pizarro, M., López-Vinielles, J., Rossi, M., Mateos, R. M., CarreónFreyre, D., Lambert, J., Teatini, P., Cabral-Cano, E., Erkens, G., Galloway, D., Hung, W. C., Kakar, N., Sneed, M., Tosi, L., Wang, H., and Ye, S.: Mapping the global threat of land subsidence, Science, 371, 34–36, https://doi.org/10.1126/science.abb8549, 2021.
Huning, L. S., Love, C. A., Anjileli, H., Vahedifard, F., Zhao, Y., Chaffe, P. L. B., Cooper, K., Alborzi, A., Pleitez, E., Martinez, A., Ashraf, S., Mallakpour, I., Moftakhari, H., and AghaKouchak, A.: Global land subsidence: Impact of climate extremes and humanactivities, Rev. Geophys., 62, e2023RG000817, https://doi.org/10.1029/2023RG000817, 2024.
Ideki, O. and Peace, N.: Analysis of Shoreline and Erosion Changes along the West African Coast from 1980 to 2020, Journal of Marine Science Research and Oceanography, 7, 1–8, https://doi.org/10.33140/JMSRO.07.01.02, 2024.
Ikuemonisan, F.-E., Ozebo, V.-C., Minderhoud, P.-S.-J., Teatini, P., and Woillez, M.-N.: A scoping review of the vulnerability of Nigeria's coastland to sea-level rise and the contribution of land subsidence, Éditions AFD, 34 pp., https://shs.cairn.info/journal-afd-research-papers-2023-284-page-1?lang=en (last access: 20 Janaury 2026), 2023.
Kemgang G. E., Nyberg B., Raj P. R., Bonaduce A., Abiodun J, B., and Johannessen M. O.: Sea level rise and coastal flooding risks in the Gulf of Guinea, Scientific Reports, 14, 29551, https://doi.org/10.1038/s41598-024-80748-w, 2024.
Kenneth A. C.: Monitoring wetlands deterioration in the Cameroon coastal lowlands: implications for management, Proc. Earth Plan. Sc., 1, 1010–1015, 2009.
Koster, K., Stafleu, J., and Stouthamer, E.: Differential subsidence in the urbanised coastal-deltaic plain of the Netherlands, Neth. J. Geosci., 97, 215–227, https://doi.org/10.1017/njg.2018.11, 2018.
Lee, J.-C., and Shirzaei, M.: Novel algorithms for pair and pixel selection and atmospheric error correction in multi-temporal InSAR, Remote Sens. Environ., 286, https://doi.org/10.1016/j.rse.2022.113447, 2023.
Mantovani, J., Alcantara, E., Lima, T. A., and Simoes, S.: An assessment of ground subsidence from rock salt mining in Maceió (Northeast Brazil) from 2019 to 2023 using remotely sensed data, Environmental Challenges, 16, 100983, https://doi.org/10.1016/j.envc.2024.100983, 2024.
Maoret, V., Candela, T., Van Dinther Y., Koster, K., Teatini, P., Van Wees, J. D., and Zoccarato, C.: Sinking cities: Towards prediction of subsidence-induced building damage, in: AGU Fall Meeting, 9–13 December 2024, https://ui.adsabs.harvard.edu/abs/2024AGUFMEP43A1276M/abstract (last access: 20 January 2026), 2024.
Mikhail, E. M. and Ackermann, F. E.: Observations and Least Squares method IEP, University Press of America, ISBN: 0-8191-2397-8, 1982.
Miller, M. M. and Shirzaei, M.: Spatiotemporal characterization of land subsidence and uplift in Phoenix using InSAR time series and wavelet transforms, J. Geophys. Res.-Sol. Ea., 120, 5822–5842, https://doi.org/10.1002/2015JB012017, 2015.
Miller, M. M. and Shirzaei, M.: Land subsidence in Houston correlated with flooding from Hurricane Harvey, Remote Sens. Environ., 225, 368–378, https://doi.org/10.1016/j.rse.2019.03.022, 2019.
Minderhoud, P., Shirzaei, M., and Teatini, P.: [Perspective] Combatting Relative Sea-Level Rise at a Global Scale: Presenting the International Panel on Land Subsidence (IPLS), Qeios, https://doi.org/10.32388/R5JEG2, 2024.
Minderhoud, P. S. J., Erkens, G., Pham, V. H., Bui, V. T., Erban, L., Kooi, H., and Stouthamer, E.: Impacts of 25 years of groundwater extraction on subsidence in the Mekong Delta, Vietnam, Environ. Res. Lett., 12, 064006, https://doi.org/10.1088/1748-9326/aa7146, 2017.
Minderhoud, P. S. J., Coumou, L., Erban, L. E., Middelkoop, H., Stouthamer, E., and Addink, E. A.: The relation between land use and subsidence in the Vietnamese Mekong delta, Sci. Total Environ., 634, 715–726, 2018.
Minderhoud, P. S. J., Hlavacova, I., Kolomaznik, J., and Neussner, O.: Towards unraveling total subsidence of a mega-delta – the potential of new PS InSAR data for the Mekong delta, Proc. IAHS, 382, 327–332, https://doi.org/10.5194/piahs-382-327-2020, 2020.
Minderhoud, P. S. J., Shirzaei, M., and Teatini, P.: From InSAR-derived subsidence to relative sea-level rise – A call for rigor, Earth's Future, 13, e2024EF005539, https://doi.org/10.1029/2024EF005539, 2025.
NASA JPL: NASADEM Merged DEM Global 1 arc second V001, Open Topography [data set], https://doi.org/10.5069/G93T9FD9, 2021.
Nfotabong-Atheull, A., Din, N., and Dahdouh-Guebas, F.: Qualitative and Quantitative Characterization of Mangrove Vegetation Structure and Dynamics in a Peri-urban Setting of Douala (Cameroon): An Approach Using Air-Borne Imagery, Estuar. Coast., 36, 1181–1192, https://doi.org/10.1007/s12237-013-9638-8, 2013.
Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T., Meyssignac, B., Hanson, E. S., Merkens, J., and Fang, J.: A global analysis of subsidence, relative sea-level change, and coastal flood exposure, Nat. Clim. Change, 11, 338–342, https://doi.org/10.1038/s41558-021-01064-z, 2021.
Ohenhen, L., Shirzaei, M., Ojha, C., Sherpa, S. F., and Nicholls, R. J.: Disappearing cities on US coasts, Nature, 627, https://doi.org/10.1038/s41586-024-07038-3, 2024.
Ohenhen, L. O. and Shirzaei, M.: Land subsidence hazard and building collapse risk in the coastal cities of Lagos, West Africa, Earth's Future, 10, https://doi.org/10.1029/2022EF003219, 2022.
Ohenhen, L. O., Shirzaei, M., Ojha, C., and Kirwan, M. L.: Hidden vulnerability of US Atlantic coast to sea-level rise due to vertical land motion, Nat. Commun., 14, 2038, https://doi.org/10.1038/s41467-023-37853-7, 2023.
Ondoa, G. A., Onguéné, R., Eyango, M. T., Duhaut, T., Mama, C., Angnuureng, D. B., and Almar, R.: Assessment of the Evolution of Cameroon Coastline: An Overview from 1986 to 2015, J. Coastal Res., Special Issue 81, 122–129, https://www.jstor.org/stable/26552360 (last access: 20 January 2026), 2018.
Parsons, T., Wu, P.-C., (Matt) Wei, M., and D'Hondt, S.: The weight of New York City: Possible contributions to subsidence from anthropogenic sources, Earth's Future, 11, e2022EF003465, https://doi.org/10.1029/2022EF003465, 2023.
Pesaresi, M. and Politis, P.: GHS-BUILT-C R2023A – GHS Settlement Characteristics, derived from Sentinel2 composite (2018) and other GHS R2023A data. European Commission, Joint Research Centre (JRC) [data set], https://doi.org/10.2905/3C60DDF6-0586-4190-854B-F6AA0EDC2A30, 2023a.
Pesaresi, M. and Politis, P.: GHS-BUILT-H R2023A – GHS building height derived from AW3D30, SRTM30, and Sentinel2 composite (2018), European Commission, Joint Research Centre (JRC), https://doi.org/10.2905/85005901-3A49-48DD-9D19-6261354F56FE, 2023b.
Pesaresi, M. and Politis, P.: GHS-BUILT-S R2023A – GHS built-up surface grid derived from Sentinel2 composite and Landsat, multi-temporal (1975–2030), European Commission, Joint Research Centre (JRC), https://doi.org/10.2905/9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EA, 2023c.
Pesaresi, M. and Politis, P.: GHS-BUILT-V R2023A – GHS built-up volume grids derived from joint assessment of Sentinel2, Landsat, and global DEM data, multi-temporal (1975–2030), European Commission, Joint Research Centre (JRC), https://doi.org/10.2905/AB2F107A-03CD-47A3-85E5-139D8EC63283, 2023d.
Pesaresi, M., Corbane, C., Ren, C., and Edward, N.: Generalized vertical components of built-up areas from global Digital Elevation Models by multi-scale linear regression modelling, PLOS ONE, 16, e0244478, https://doi.org/10.1371/journal.pone.0244478, 2021.
Schiavina, M., Freire, S., Carioli, A., and MacManus, K.: GHS-POP R2023A – GHS population grid multi-temporal (1975–2030), European Commission, Joint Research Centre (JRC), https://doi.org/10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE, 2023.
Shirzaei, M.: A wavelet-based multi-temporal DInSAR algorithm for monitoring ground surface motion, IEEE Geosci. Remote S., 10, 456–460, https://doi.org/10.1109/LGRS.2012.2208935, 2013.
Shirzaei, M. and Bürgmann, R.: Topography-correlated atmospheric delay correction in radar interferometry using wavelet transforms, Geophys. Res. Lett., 39, 1–6, https://doi.org/10.1029/2011GL049971, 2012.
Shirzaei, M. and Walter, T. R.: Estimating the effect of satellite orbital error using wavelet-based robust regression applied to InSAR deformation data, IEEE T. Geosci. Remote, 49, 4600–4605, https://doi.org/10.1109/TGRS.2011.2143419, 2011.
Shirzaei, M., Freymueller, J., Törnqvist, T. E., Galloway, D. L., Dura, T., and Minderhoud, P. S. J.: Measuring, modelling and projecting coastal land subsidence, Nature Reviews Earth & Environment, 2, 40–58, https://doi.org/10.1038/s43017-020-00115-x, 2021.
Sikem, B.: In Cameroon, building inclusive climate change responses with technology, WeRobotics, https://werobotics.org/ blog/in-cameroon-building-inclusive-clima te-change-responses-with-technology (last access: 20 January 2026), 2021.
Taftazani, R., Kazama, S., and Takizawa, S.: Spatial Analysis of Groundwater Abstraction and Land Subsidence for Planning the Piped Water Supply in Jakarta, Indonesia, Water, 14, 3197, https://doi.org/10.3390/w14203197, 2022.
Tchamba, C. J. and Bikoko, L. J. T. G.: Failure and Collapse of Building Structures in the Cities of Yaoundé and Douala, Cameroon from 2010 to 2014, Modern Applied Science, 10, https://doi.org/10.5539/mas.v10n1p23, 2016.
Teatini, P., Tosi, L., Strozzi, T., Carbognin, L., Wegmüller, U., and Rizzetto, F.: Mapping regional land displacements in the Venice coastland by an integrated monitoring system, Remote Sens. Environ., 98, 403–413, https://doi.org/10.1016/j.rse.2005.08.002, 2005.
Thienen-Visser, K. V. and Fokker, A. P.: The future of subsidence modelling: compaction and subsidence due to gas depletion of the Groningen gas field in the Netherlands, Neth. J. Geosci., 96, s105–s116, https://doi.org/10.1017/njg.2017.10, 2017.
Tosi, L., Teatini, P., Strozzi, T., Carbognin, L., Brancolini, G., and Rizzetto, F.: Ground surface dynamics in the northern Adriatic coastland over the last two decades, Rend. Fis. Acc. Lincei, 21 (Suppl 1), S115–S129, https://doi.org/10.1007/s12210-010-0084-2, 2010.
Tzampoglou, P., Ilia, I., Karalis, K., Tsangaratos, P., Zhao, X., and Chen, W.: Selected Worldwide Cases of Land Subsidence Due to Groundwater Withdrawal, Water, 15, 1094, https://doi.org/10.3390/w15061094, 2023.
UN-Habitat: Urban Planning and Infrastructure in Migration Contexts: Douala, Cameroon – Spatial Profile, UN Human Settlements Programme, Kenya, COI: 20.500.12592/srtsv8, https://coilink.org/20.500.12592/srtsv8 (last access: 20 January 2026), 2022.
Venter, Z. S., Barton, D. N., Chakraborty, T., Simensen, T., and Singh, G.: Global 10 m Land Use Land Cover Datasets: A Comparison of Dynamic World, World Cover and Esri Land Cover, Remote Sensing, 14, 4101, https://doi.org/10.3390/rs14164101, 2022.
Verberne, M., Koster, K., Lourens, A., Gunnink, J., Candela, T., and Fokker, P. A.: Disentangling shallow subsidence sources by data assimilation in a reclaimed urbanized coastal plain, South Flevoland polder, the Netherlands, J. Geophys. Res.-Earth, 128, e2022JF007031, https://doi.org/10.1029/2022JF007031, 2023.
Verberne, M., Teatini, P., Koster, K., Fokker, P., and Zoccarato, C.: An integral approach using InSAR and data assimilation to disentangle and quantify multi-depth driven subsidence causes in the Ravenna coastland, Northern Italy, Geomechanics for Energy and the Environment, 43, 100710, https://doi.org/10.1016/j.gete.2025.100710, 2025.
Wantim, M. N. and Ngeh Ngeh, H.: Impact of sea encroachment and tidal floods in coastal communities: case of Idabato subdivision, Bakassi Peninsula, Cameroon, J. Coast. Conserv., 29, 28, https://doi.org/10.1007/s11852-025-01113-1, 2025.
Wantim, M. N., Mokosa, W. A., Jitiz, L., and Ayonghe, S. N.: The utilisation of satellite imagery and community perceptions to assess the impacts of sea encroachment in the West Coast of Cameroon at Limbe, Journal of the Cameroon Academy of Sciences, 16, 211234, https://doi.org/10.4314/jcas.v16i3.3, 2021.
Werner, C., Wegmüller, U., Strozzi, T., and Wiesmann, A.: Gamma SAR and interferometric processing software, in: Proceedings of the ERS – Envisat Symposium, Gothenburg, Sweden, https://api.semanticscholar.org/CorpusID:28598270 (last access: 20 January 2026), 2000.
Wright, T. J., Parsons, B. E., and Lu, Z.: Towards mapping surface deformation in three dimensions using InSAR, Geophys. Res. Lett., 31, L01607, https://doi.org/10.1029/2003GL018827, 2004.
Wu, P.-C., Wei, M. (M.), and D'Hondt, S.: Subsidence in coastal cities throughout the world observed by InSAR, Geophys. Res. Lett., 49, e2022GL098477, https://doi.org/10.1029/2022GL098477, 2022.
Zhou, C., Gong, H., Chen, B., Li, X., Li, J., Wang, X., Gao, M., Si, Y., Guo, L., Shi, M., and Duan, G.: Quantifying the contribution of multiple factors to land subsidence in the Beijing Plain, China with machine learning technology, Geomorphology, 335, 48–61, https://doi.org/10.1016/j.geomorph.2019.03.017, 2019.
Zhou, C., Gong, H., Chen, B., Gao, M., Cao, Q., Cao, J., Duan, L., Zuo, J., and Shi, M.: Land subsidence response to different land use types and water resource utilization in Beijing-Tianjin-Hebei, China, Remote Sensing, 12, 457, https://doi.org/10.3390/rs12030457, 2020.
Zhu, L., Gong, H. L., Li, X. J., Wang, R., Chen, B. B., Dai, Z. X., and Teatini, P.: Land subsidence due to groundwater withdrawal in northern Beijing Plain, China, Eng. Geol., 193, 243–255, https://doi.org/10.1016/j.enggeo.2015.04.020, 2015.
Zoccarato, C., Minderhoud, P. S. J., and Teatini, P.: The role of sedimentation and natural compaction in a prograding delta: insights from the mega Mekong delta, Vietnam, Science Report, 8, https://doi.org/10.1038/s41598-018-29734-7, 2018.
Short summary
This study examines coastal land subsidence in Douala, Cameroon, revealing rates between −17.6 and 3.8 mm yr-1. Subsidence patterns correlate with natural and anthropogenic processes, including land-use changes and urbanisation. Recently urbanised areas show higher subsidence rates than older urban zones. The findings highlight the need for further investigation, ongoing monitoring, and adaptation measures to address this environmental challenge effectively.
This study examines coastal land subsidence in Douala, Cameroon, revealing rates between −17.6...
Altmetrics
Final-revised paper
Preprint