Articles | Volume 25, issue 11
https://doi.org/10.5194/nhess-25-4613-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-4613-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Regional-scale groundwater analysis with dimensionality reduction
Márk Somogyvári
CORRESPONDING AUTHOR
Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Humboldt-Universität zu Berlin, Berlin, Germany
Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany
Fabio Brill
Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany
Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Humboldt-Universität zu Berlin, Berlin, Germany
Mikhail Tsypin
GFZ German Research Centre for Geosciences, Geosystems Department, Section 4.5 Subsurface Process Modeling, Potsdam, Germany
Institute of Applied Geosciences, Technische Universität Berlin, Berlin, Germany
Lisa Rihm
Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Humboldt-Universität zu Berlin, Berlin, Germany
Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany
Tobias Krueger
Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Humboldt-Universität zu Berlin, Berlin, Germany
Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany
Related authors
Pedro Henrique Lima Alencar, Saskia Arndt, Kei Namba, Márk Somogyvári, Frederik Bart, Fabio Brill, Juan F. Dueñas, Peter Feindt, Daniel Johnson, Nariman Mahmoodi, Christoph Merz, Subham Mukherjee, Katrin Nissen, Eva Nora Paton, Tobias Sauter, Dörthe Tetzlaff, Franziska Tügel, Thomas Vogelpohl, Stenka Valentinova Vulova, Behnam Zamani, and Hui Hui Zhang
Nat. Hazards Earth Syst. Sci., 25, 4043–4051, https://doi.org/10.5194/nhess-25-4043-2025, https://doi.org/10.5194/nhess-25-4043-2025, 2025
Short summary
Short summary
As climate change escalates, the Berlin-Brandenburg region faces new challenges. Climate change-induced extreme events are expected to cause new conflicts to emerge and aggravate existing ones. To guide future research, we co-develop a list of key questions on climate and water challenges in the region. Our findings highlight the need for new research approaches. We expect this list to provide a roadmap for actionable knowledge production to address climate and water challenges in the region.
Polina Franke, Aryan Goswami, and Márk Somogyvári
EGUsphere, https://doi.org/10.5194/egusphere-2025-471, https://doi.org/10.5194/egusphere-2025-471, 2025
Short summary
Short summary
Droughts are intensifying due to climate change, impacting water systems and vegetation. This study analyzed drought effects in the Tegeler Fließ catchment from 2008 to 2021. Groundwater faced severe, prolonged droughts, while surface water recovered faster. Vegetation remained resilient, showing no significant stress. Each site revealed unique drought impacts, emphasizing the need for tailored water management and improved vegetation monitoring.
Márk Somogyvári, Dieter Scherer, Frederik Bart, Ute Fehrenbach, Akpona Okujeni, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4331–4348, https://doi.org/10.5194/hess-28-4331-2024, https://doi.org/10.5194/hess-28-4331-2024, 2024
Short summary
Short summary
We study the drivers behind the changes in lake levels, creating a series of models from least to most complex. In this study, we have shown that the decreasing levels of Groß Glienicker Lake in Germany are not simply the result of changes in climate but are affected by other processes. In our example, reduced inflow from a growing forest, regionally sinking groundwater levels and the modifications in the local rainwater infrastructure together resulted in an increasing lake level loss.
Pedro Henrique Lima Alencar, Saskia Arndt, Kei Namba, Márk Somogyvári, Frederik Bart, Fabio Brill, Juan F. Dueñas, Peter Feindt, Daniel Johnson, Nariman Mahmoodi, Christoph Merz, Subham Mukherjee, Katrin Nissen, Eva Nora Paton, Tobias Sauter, Dörthe Tetzlaff, Franziska Tügel, Thomas Vogelpohl, Stenka Valentinova Vulova, Behnam Zamani, and Hui Hui Zhang
Nat. Hazards Earth Syst. Sci., 25, 4043–4051, https://doi.org/10.5194/nhess-25-4043-2025, https://doi.org/10.5194/nhess-25-4043-2025, 2025
Short summary
Short summary
As climate change escalates, the Berlin-Brandenburg region faces new challenges. Climate change-induced extreme events are expected to cause new conflicts to emerge and aggravate existing ones. To guide future research, we co-develop a list of key questions on climate and water challenges in the region. Our findings highlight the need for new research approaches. We expect this list to provide a roadmap for actionable knowledge production to address climate and water challenges in the region.
Polina Franke, Aryan Goswami, and Márk Somogyvári
EGUsphere, https://doi.org/10.5194/egusphere-2025-471, https://doi.org/10.5194/egusphere-2025-471, 2025
Short summary
Short summary
Droughts are intensifying due to climate change, impacting water systems and vegetation. This study analyzed drought effects in the Tegeler Fließ catchment from 2008 to 2021. Groundwater faced severe, prolonged droughts, while surface water recovered faster. Vegetation remained resilient, showing no significant stress. Each site revealed unique drought impacts, emphasizing the need for tailored water management and improved vegetation monitoring.
Fabio Brill, Pedro Henrique Lima Alencar, Huihui Zhang, Friedrich Boeing, Silke Hüttel, and Tobia Lakes
Nat. Hazards Earth Syst. Sci., 24, 4237–4265, https://doi.org/10.5194/nhess-24-4237-2024, https://doi.org/10.5194/nhess-24-4237-2024, 2024
Short summary
Short summary
Droughts are a threat to agricultural crops, but different factors influence how much damage occurs. This is important to know to create meaningful risk maps and to evaluate adaptation options. We investigate the years 2013–2022 in Brandenburg, Germany, and find in particular the soil quality and meteorological drought in June to be statistically related to the observed damage. Measurement of crop health from satellites is also related to soil quality and not necessarily to anomalous yields.
Sophie Wagner, Fabian Stenzel, Tobias Krueger, and Jana de Wiljes
Hydrol. Earth Syst. Sci., 28, 5049–5068, https://doi.org/10.5194/hess-28-5049-2024, https://doi.org/10.5194/hess-28-5049-2024, 2024
Short summary
Short summary
Statistical models that explain global irrigation rely on location-referenced data. Traditionally, a system based on longitude and latitude lines is chosen. However, this introduces bias to the analysis due to the Earth's curvature. We propose using a system based on hexagonal grid cells that allows for distortion-free representation of the data. We show that this increases the model's accuracy by 28 % and identify biophysical and socioeconomic drivers of historical global irrigation expansion.
Márk Somogyvári, Dieter Scherer, Frederik Bart, Ute Fehrenbach, Akpona Okujeni, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4331–4348, https://doi.org/10.5194/hess-28-4331-2024, https://doi.org/10.5194/hess-28-4331-2024, 2024
Short summary
Short summary
We study the drivers behind the changes in lake levels, creating a series of models from least to most complex. In this study, we have shown that the decreasing levels of Groß Glienicker Lake in Germany are not simply the result of changes in climate but are affected by other processes. In our example, reduced inflow from a growing forest, regionally sinking groundwater levels and the modifications in the local rainwater infrastructure together resulted in an increasing lake level loss.
Rozemarijn ter Horst, Rossella Alba, Jeroen Vos, Maria Rusca, Jonatan Godinez-Madrigal, Lucie V. Babel, Gert Jan Veldwisch, Jean-Philippe Venot, Bruno Bonté, David W. Walker, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4157–4186, https://doi.org/10.5194/hess-28-4157-2024, https://doi.org/10.5194/hess-28-4157-2024, 2024
Short summary
Short summary
The exact power of models often remains hidden, especially when neutrality is claimed. Our review of 61 scientific articles shows that in the scientific literature little attention is given to the power of water models to influence development processes and outcomes. However, there is a lot to learn from those who are openly reflexive. Based on lessons from the review, we call for power-sensitive modelling, which means that people are critical about how models are made and with what effects.
Cited articles
Amanambu, A. C., Obarein, O. A., Mossa, J., Li, L., Ayeni, S. S., Balogun, O., Oyebamiji, A., and Ochege, F. U.: Groundwater system and climate change: Present status and future considerations, J. Hydrol., 589, 125163, https://doi.org/10.1016/j.jhydrol.2020.125163, 2020.
Arkoc, O.: Modeling of spatiotemporal variations of groundwater levels using different interpolation methods with the aid of GIS, case study from Ergene Basin, Turkey, Model. Earth Syst. Environ., 8, 967–976, https://doi.org/10.1007/s40808-021-01083-x, 2022.
Arndt, S. and Heiland, S.: Current status of water-related planning for climate change adaptation in the Spree river basin, Germany, Nat. Hazards Earth Syst. Sci., 24, 4369–4383, https://doi.org/10.5194/nhess-24-4369-2024, 2024.
Ashraf, B., AghaKouchak, A., Alizadeh, A., Mousavi Baygi, M., R. Moftakhari, H., Mirchi, A., Anjileli, H., and Madani, K.: Quantifying Anthropogenic Stress on Groundwater Resources, Sci. Rep., 7, 12910, https://doi.org/10.1038/s41598-017-12877-4, 2017.
Bart, F., Schmidt, B., Wang, X., Holtmann, A., Meier, F., Otto, M., and Scherer, D.: The Central Europe Refined analysis version 2 (CER v2): evaluating three decades of high-resolution precipitation data for the Berlin-Brandenburg metropolitan region, Meteorol. Z., 33, 339–363, https://doi.org/10.1127/metz/2024/1233, 2025.
Beven, K.: A brief history of information and disinformation in hydrological data and the impact on the evaluation of hydrological models, Hydrol. Sci. J., 69, 519–527, https://doi.org/10.1080/02626667.2024.2332616, 2024.
Chávez García Silva, R., Reinecke, R., Copty, N. K., Barry, D. A., Heggy, E., Labat, D., Roggero, P. P., Borchardt, D., Rode, M., Gómez-Hernández, J. J., and Jomaa, S.: Multi-decadal groundwater observations reveal surprisingly stable levels in southwestern Europe, Commun. Earth Environ., 5, 387, https://doi.org/10.1038/s43247-024-01554-w, 2024.
Clarke, R. T.: A review of some mathematical models used in hydrology, with observations on their calibration and use, J. Hydrol., 19, 1–20, https://doi.org/10.1016/0022-1694(73)90089-9, 1973.
Condon, L. E., Kollet, S., Bierkens, M. F. P., Fogg, G. E., Maxwell, R. M., Hill, M. C., Fransen, H. H., Verhoef, A., Van Loon, A. F., Sulis, M., and Abesser, C.: Global Groundwater Modeling and Monitoring: Opportunities and Challenges, Water Resour. Res., 57, e2020WR029500, https://doi.org/10.1029/2020WR029500, 2021.
Dams, J., Salvadore, E., Van Daele, T., Ntegeka, V., Willems, P., and Batelaan, O.: Spatio-temporal impact of climate change on the groundwater system, Hydrol. Earth Syst. Sci., 16, 1517–1531, https://doi.org/10.5194/hess-16-1517-2012, 2012.
Ebeling, P., Musolff, A., Kumar, R., Hartmann, A., and Fleckenstein, J. H.: Groundwater head responses to droughts across Germany, Hydrol. Earth Syst. Sci., 29, 2925–2950, https://doi.org/10.5194/hess-29-2925-2025, 2025.
Epting, J., Huggenberger, P., Radny, D., Hammes, F., Hollender, J., Page, R. M., Weber, S., Bänninger, D., and Auckenthaler, A.: Spatiotemporal scales of river-groundwater interaction – The role of local interaction processes and regional groundwater regimes, Sci. Total Environ., 618, 1224–1243, https://doi.org/10.1016/j.scitotenv.2017.09.219, 2018.
Flügel, W.-A.: Combining GIS with regional hydrological modelling using hydrological response units (HRUs): An application from Germany, Math. Comput. Simul., 43, 297–304, https://doi.org/10.1016/S0378-4754(97)00013-X, 1997.
Frick, M., Scheck-Wenderoth, M., Schneider, M., and Cacace, M.: Surface to Groundwater Interactions beneath the City of Berlin: Results from 3D Models, Geofluids, 2019, 1–22, https://doi.org/10.1155/2019/4129016, 2019.
Galsa, A., Tóth, Á., Szijártó, M., Pedretti, D., and Mádl-Szőnyi, J.: Interaction of basin-scale topography- and salinity-driven groundwater flow in synthetic and real hydrogeological systems, J. Hydrol., 609, 127695, https://doi.org/10.1016/j.jhydrol.2022.127695, 2022.
Giese, M., Haaf, E., Heudorfer, B., and Barthel, R.: Comparative hydrogeology – reference analysis of groundwater dynamics from neighbouring observation wells, Hydrol. Sci. J., 65, 1685–1706, https://doi.org/10.1080/02626667.2020.1762888, 2020.
Gottschalk, L.: Hydrological regionalization of Sweden, Hydrol. Sci. J., 30, 65–83, https://doi.org/10.1080/02626668509490972, 1985.
Guo, Y., Zhang, Y., Zhang, L., and Wang, Z.: Regionalization of hydrological modeling for predicting streamflow in ungauged catchments: A comprehensive review, WIREs Water, 8, e1487, https://doi.org/10.1002/wat2.1487, 2021.
Haddad, K. and Rahman, A.: Dimensionality reduction for regional flood frequency analysis: Linear versus nonlinear methods, Hydrol. Process., 37, e14864, https://doi.org/10.1002/hyp.14864, 2023.
Hellwig, J., De Graaf, I. E. M., Weiler, M., and Stahl, K.: Large-Scale Assessment of Delayed Groundwater Responses to Drought, Water Resour. Res., 56, e2019WR025441, https://doi.org/10.1029/2019WR025441, 2020.
Jänicke, B., Meier, F., Fenner, D., Fehrenbach, U., Holtmann, A., and Scherer, D.: Urban–rural differences in near-surface air temperature as resolved by the Central Europe Refined analysis (CER): sensitivity to planetary boundary layer schemes and urban canopy models, Int. J. Climatol., 37, 2063–2079, https://doi.org/10.1002/joc.4835, 2017.
Jasechko, S., Seybold, H., Perrone, D., Fan, Y., Shamsudduha, M., Taylor, R. G., Fallatah, O., and Kirchner, J. W.: Rapid groundwater decline and some cases of recovery in aquifers globally, Nature, 625, 715–721, https://doi.org/10.1038/s41586-023-06879-8, 2024.
Jia, H., Wang, Z., Zhen, X., Clar, M., and Yu, S. L.: China's sponge city construction: A discussion on technical approaches, Front. Environ. Sci. Eng., 11, 18, https://doi.org/10.1007/s11783-017-0984-9, 2017.
Jing, M., Heße, F., Kumar, R., Wang, W., Fischer, T., Walther, M., Zink, M., Zech, A., Samaniego, L., Kolditz, O., and Attinger, S.: Improved regional-scale groundwater representation by the coupling of the mesoscale Hydrologic Model (mHM v5.7) to the groundwater model OpenGeoSys (OGS), Geosci. Model Dev., 11, 1989–2007, https://doi.org/10.5194/gmd-11-1989-2018, 2018.
Jing, M., Kumar, R., Heße, F., Thober, S., Rakovec, O., Samaniego, L., and Attinger, S.: Assessing the response of groundwater quantity and travel time distribution to 1.5, 2, and 3 °C global warming in a mesoscale central German basin, Hydrol. Earth Syst. Sci., 24, 1511–1526, https://doi.org/10.5194/hess-24-1511-2020, 2020.
Kløve, B., Ala-aho, P., Bertrand, G., Boukalova, Z., Ertürk, A., Goldscheider, N., Ilmonen, J., Karakaya, N., Kupfersberger, H., Kvœrner, J., Lundberg, A., Mileusnić, M., Moszczynska, A., Muotka, T., Preda, E., Rossi, P., Siergieiev, D., Šimek, J., Wachniew, P., Angheluta, V., and Widerlund, A.: Groundwater dependent ecosystems. Part I: Hydroecological status and trends, Environ. Sci. Policy, 14, 770–781, https://doi.org/10.1016/j.envsci.2011.04.002, 2011.
Kuhlemann, L., Tetzlaff, D., and Soulsby, C.: Urban water systems under climate stress: An isotopic perspective from Berlin, Germany, Hydrol. Process., 34, 3758–3776, https://doi.org/10.1002/hyp.13850, 2020.
Landesamt für Umwelt Brandenburg: Auskunftsplattform Wasser, Landesamt für Umwelt Brandenburg [data set], https://apw.brandenburg.de (last access: 31 August 2025), 2023.
Limberg, A. and Thierbach, J.: Hydrostratigrafie von Berlin-Korrelation mit dem Norddeutschen Gliederungsschema, Brand. Geowiss Beitr, 9, 2, ISSN 0947-1995, 2002.
Lischeid, G., Dannowski, R., Kaiser, K., Nützmann, G., Steidl, J., and Stüve, P.: Inconsistent hydrological trends do not necessarily imply spatially heterogeneous drivers, J. Hydrol., 596, 126096, https://doi.org/10.1016/j.jhydrol.2021.126096, 2021.
Markstrom, S. L., Niswonger, R. G., Regan, R. S., Prudic, D. E., and Barlow, P. M.: GSFLOW-Coupled Ground-water and Surface-water FLOW model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005), US Geol. Surv. Tech. Methods, 6, 240, https://pubs.usgs.gov/tm/tm6d1/ (last access: 20 November 2025), 2008.
Mason, I. M., Guzkowska, M. A. J., Rapley, C. G., and Street-Perrott, F. A.: The response of lake levels and areas to climatic change, Clim. Change, 27, 161–197, https://doi.org/10.1007/BF01093590, 1994.
Matherne, A.-M. and Megdal, S. B.: Advances in Transboundary Aquifer Assessment, Water, 15, 1208, https://doi.org/10.3390/w15061208, 2023.
Murphy, B. S.: PyKrige: Development of a Kriging Toolkit for Python, AGU Fall Meeting, San Francisco, 15–19 December 2014, H51K-0753, https://agu.confex.com/agu/fm14/webprogram/Paper25691.html (last access: 20 November 2025), 2014.
Nevo, S., Morin, E., Gerzi Rosenthal, A., Metzger, A., Barshai, C., Weitzner, D., Voloshin, D., Kratzert, F., Elidan, G., Dror, G., Begelman, G., Nearing, G., Shalev, G., Noga, H., Shavitt, I., Yuklea, L., Royz, M., Giladi, N., Peled Levi, N., Reich, O., Gilon, O., Maor, R., Timnat, S., Shechter, T., Anisimov, V., Gigi, Y., Levin, Y., Moshe, Z., Ben-Haim, Z., Hassidim, A., and Matias, Y.: Flood forecasting with machine learning models in an operational framework, Hydrol. Earth Syst. Sci., 26, 4013–4032, https://doi.org/10.5194/hess-26-4013-2022, 2022.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.
Pflugmacher, D., Rabe, A., Peters, M., and Hostert, P.: Pan-European land cover map of 2015 based on Landsat and LUCAS data, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.896282, 2018.
Pieper, B., Appelhans, P., Horstick, A., Köster, U., Liesen, J., Losem, B., Porzelt, M., Pieper, E., and Verband Deutscher Naturparke (Eds.): Paradiese vor der Haustür: Deutschlands Naturparke, 3., vollständig aktualisierte Auflage., DuMont Reiseverlag GmbH & Co. KG, Ostfildern, 256 pp., ISBN 9783770189410, 2017.
Pujades, E., Kumar, R., Houben, T., Jing, M., Rakovec, O., Kalbacher, T., and Attinger, S.: Towards the construction of representative regional hydro(geo)logical numerical models: Modelling the upper Danube basin as a starting point, Front. Earth Sci., 11, 1061420, https://doi.org/10.3389/feart.2023.1061420, 2023.
Refsgaard, J. C., Stisen, S., and Koch, J.: Hydrological process knowledge in catchment modelling – Lessons and perspectives from 60 years development, Hydrol. Process., 36, e14463, https://doi.org/10.1002/hyp.14463, 2022.
Seidenfaden, I. K., Sonnenborg, T. O., Stisen, S., and Kidmose, J.: Quantification of climate change sensitivity of shallow and deep groundwater in Denmark, J. Hydrol. Reg. Stud., 41, 101100, https://doi.org/10.1016/j.ejrh.2022.101100, 2022.
SenUVK: Wasserportal Berlin, SenUVK Berlin [data set], https://wasserportal.berlin.de/start.php (last access: 31 August 2025), 2023.
Sivapalan, M., Blöschl, G., Zhang, L., and Vertessy, R.: Downward approach to hydrological prediction, Hydrol. Process., 17, 2101–2111, https://doi.org/10.1002/hyp.1425, 2003.
Sodoge, J., Di Baldassarre, G., Kuhlicke, C., and Madruga de Brito, M.: Emergent vulnerabilities: exploring the role of drought for increasingly diverse groundwater conflicts in Germany, EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024, EGU24-1695, https://doi.org/10.5194/egusphere-egu24-1695, 2024.
Solans, M. A. and Mellado-Díaz, A.: A Landscape-Based Regionalization of Natural Flow Regimes in the Ebro River Basin and Its Biological Validation, River Res. Appl., 31, 457–469, https://doi.org/10.1002/rra.2860, 2015.
Somogyvári, M., Scherer, D., Bart, F., Fehrenbach, U., Okujeni, A., and Krueger, T.: A hybrid data-driven approach to analyze the drivers of lake level dynamics, Hydrol. Earth Syst. Sci., 28, 4331–4348, https://doi.org/10.5194/hess-28-4331-2024, 2024.
Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., MacDonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., Allen, D. M., Shamsudduha, M., Hiscock, K., Yeh, P. J.-F., Holman, I., and Treidel, H.: Ground water and climate change, Nat. Clim. Change, 3, 322–329, https://doi.org/10.1038/nclimate1744, 2013.
Tóth, Á., Baják, P., Szijártó, M., Tiljander, M., Korkka-Niemi, K., Hendriksson, N., and Mádl-Szőnyi, J.: Multimethodological Revisit of the Surface Water and Groundwater Interaction in the Balaton Highland Region – Implications for the Overlooked Groundwater Component of Lake Balaton, Hungary, Water, 15, 1006, https://doi.org/10.3390/w15061006, 2023.
Tóth, J.: A theoretical analysis of groundwater flow in small drainage basins, J. Geophys. Res., 68, 4795–4812, https://doi.org/10.1029/JZ068i016p04795, 1963.
Tsypin, M., Cacace, M., Guse, B., Güntner, A., and Scheck-Wenderoth, M.: Modeling the influence of climate on groundwater flow and heat regime in Brandenburg (Germany), Front. Water, 6, 1353394, https://doi.org/10.3389/frwa.2024.1353394, 2024.
Uhlmann, W., Zimmermann, K., Kaltofen, M., Gerstgraser, C., Grosser, F., and Schützel, C.: Wasserwirtschaftliche Folgen des Braunkohleausstiegs in der Lausitz, Umweltbundesamt (UBA), Dessau-Roßlau, Germany, 266 pp., ISSN 1862-4804, 2023.
Van Der Maaten, L. J. P., Postma, E. O., and Van Den Herik, H. J.: Dimensionality reduction: A comparative review, Technical Report, Tilburg University, Tilburg, the Netherlands, TiCC-TR 2009-005, https://lvdmaaten.github.io/publications/papers/TR_Dimensionality_Reduction_Review_2009.pdf (last access: 20 November 2025), 2009.
Wu, W.-Y., Lo, M.-H., Wada, Y., Famiglietti, J. S., Reager, J. T., Yeh, P. J.-F., Ducharne, A., and Yang, Z.-L.: Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers, Nat. Commun., 11, 3710, https://doi.org/10.1038/s41467-020-17581-y, 2020.
Zhou, Y. and Li, W.: A review of regional groundwater flow modeling, Geosci. Front., 2, 205–214, https://doi.org/10.1016/j.gsf.2011.03.003, 2011.
Zielhofer, C., Schmidt, J., Reiche, N., Tautenhahn, M., Ballasus, H., Burkart, M., Linstädter, A., Dietze, E., Kaiser, K., and Mehler, N.: The Lower Havel River Region (Brandenburg, Germany): A 230-Year-Long Historical Map Record Indicates a Decrease in Surface Water Areas and Groundwater Levels, Water, 14, 480, https://doi.org/10.3390/w14030480, 2022.
Short summary
In this study, we examined regional differences in groundwater behavior in Berlin-Brandenburg. We have developed a novel approach, combining standard groundwater modelling tools such with special data analysis techniques. The presented methodology can help to separate areas with different groundwater behavior from each other, which could be used as a starting point for further analysis.
In this study, we examined regional differences in groundwater behavior in Berlin-Brandenburg....
Altmetrics
Final-revised paper
Preprint