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Abstract. Given the importance of groundwater for fresh-
water provision and groundwater-dependent ecosystems, un-
derstanding climate effects on groundwater changes at a re-
gional scale is essential. In this paper, we propose a new way
of applying dimensionality reduction for such purpose, not
over the collected data, nor over any calibrated models, but
over the misfits between the modeled and observed ground-
water levels. This methodology highlights local differences
in climate-groundwater relations and can be used to identify
regions with different vulnerabilities in a data-driven way.

The approach takes gridded groundwater level data and
gridded precipitation and evapotranspiration data as input.
Linear water balance models are set up for each grid cell in
an independent way. The misfits between the water balance
model simulations and groundwater levels are used for the
dimensionality reduction-based regionalization, with which
areas of different groundwater behavior are identified.

We demonstrate the potential of our methodology in the
Berlin-Brandenburg region, Germany, where groundwater is
a major freshwater source at risk. We show that groundwa-
ter level changes are linearly related to climatic variations
at a monthly scale, even in areas with strong anthropogenic
influences. The dimensionality reduction further reveals an
approximate regionalization of groundwater behavior, which
can be used as a basis for more detailed investigations.

Key points.

– The climate-groundwater relations in the lowland area of
Berlin-Brandenburg can be estimated with linear models.

– Dimensionality reduction methods can identify regions with
temporal discrepancies in the expected groundwater dynamics.

1 Introduction

Groundwater levels are increasingly an issue of cli-
mate change impacts and sustainable resource management
(Ashraf et al., 2017; Chávez García Silva et al., 2024; Taylor
et al., 2013; Wu et al., 2020). Groundwater resources are es-
sential for freshwater supply to human settlements, food pro-
duction, and many industrial activities. Shallow aquifers can
further be related to lakes, rivers, and wetlands, thus support-
ing critical ecological functions (Kløve et al., 2011). Acute
or imminent shortage of groundwater (real or perceived), e.g.
during a phase of drought, can therefore trigger a wide range
of cascading impacts, and has already been a source of con-
flicts, even in countries like Germany (Sodoge et al., 2024).

As groundwater systems are changing, different areas
experience different transitions: decreasing and increasing
groundwater levels could happen in different parts of the
same region, driven by changes in natural or anthropogenic
forcings, or a combination thereof, at different spatiotempo-
ral scales. Therefore, groundwater needs to be managed dif-
ferently in different parts of the same groundwater system,
which leaves us with the scientific task of disentangling the
complexity of overlapping processes in a region.
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We can address this issue via regionalization, i.e. the iden-
tification of areas where the groundwater dynamics act in a
similar way. In hydrology, regionalization methods are tra-
ditionally used to approach ungauged or scarcely-gauged
catchments, by transferring knowledge from similarly behav-
ing catchments (Guo et al., 2021). The accurate modeling
of surface-runoff requires a lot of data from hydrology and
weather stations. As most catchments in the world are with-
out such infrastructure, regionalization methods make it pos-
sible to apply hydrological models in such catchments that
were calibrated in similar catchments with stations available.
Our study takes inspiration from this approach but with some
major modifications.

In the spatial context of Central Europe, and the German
state of Brandenburg in particular, data scarcity is less of
a problem. We would rather call our context knowledge-
scarce, where the parameters behind the investigated hydro-
logical processes are not well known (Somogyvári et al.,
2024). The goal of our regionalization is not to transfer
knowledge from one investigated area to another, but rather
to conduct an intercomparison between multiple areas to
identify the ones with anomalous hydrological behavior. We
apply this approach to a regional-scale groundwater context,
focusing mainly on the climate-groundwater dynamics, in-
stead of the typical application to surface-runoff modeling.

Traditional groundwater modeling approaches either fo-
cus on global/continental scale water systems (Condon et al.,
2021), or on specific sites or aquifers with practical research
questions (Galsa et al., 2022; Jasechko et al., 2024; Tóth et
al., 2023).

The groundwater dynamics at a regional/mesoscale level
is still relatively understudied (cf. Chávez García Silva et al.,
2024). This usually requires good understanding of intercon-
nections between deep and shallow aquifers, while water au-
thorities, who are responsible for characterizing and monitor-
ing catchment hydrology, only focus on surface waters and
“productive” part of the hydrogeological system, i.e. fresh-
water aquifers, in isolation (Flügel, 1997).

We refer to “regional scale” as an analysis covering sev-
eral hundred square kilometers, which implies that multiple
groundwater catchments, multiple levels of administration,
and spatial planning are included. At this spatial scale, data
collection and processing are typically divided among dif-
ferent agencies and derived information is not yet dissemi-
nated in a consistent manner (Matherne and Megdal, 2023).
Country- or nationwide activities that affect the water cy-
cle – such as inter-basin water transfers, new industrial sites,
discontinuation of mining activities, or rewetting of drained
peatlands – require a consistent picture at this scale, however.
For the case at hand, local experts stated that potential so-
lutions to water-related problems, amplified by regional cli-
mate change, are often designed too small in scale, and suffer
from a lack of cooperation between political planning units
(Arndt and Heiland, 2024; Uhlmann et al., 2023).

From the perspective of data availability, recent progress
is promising: weather data products are becoming more and
more accessible at a few kilometer grid scales, while a suf-
ficient number of monitoring wells allows the interpolation
of aquifer water tables over the same grid with minimal un-
certainties (Arkoc, 2022). Investigating groundwater changes
first at a regional scale is also in line with the downward
model development approach (Sivapalan et al., 2003), i.e.
starting with coarse simple models and further refining them
and increasing their complexity along the identified issues.

One of the early solutions to approaching regional-scale
groundwater systems was the use of process-based flow mod-
els. The unit basin concept of gravity-driven flow systems
(Tóth, 1963) has explicitly dealt with issues of scales and
showed how a nested groundwater flow system can describe
groundwater behavior at a regional (basin) scale. Today, nu-
merical flow models can operate at this basin scale to under-
stand complex flow system dynamics (Tóth et al., 2023).

Process-based groundwater models have been widely used
coupled together with catchment or regional scale hydro-
logical models to simulate groundwater dynamics (Dams et
al., 2012; Seidenfaden et al., 2022). For example, Jing et al.
(2018) coupled the mesoscale hydrological model (mHM),
with an OpenGeoSys 3-D parameterized flow model. The
same approach was used to infer the effects of climate change
on groundwater levels by Jing et al. (2020). Pujades et al.
(2023) compared this approach against global models, show-
ing how mesoscale models outperform their global counter-
parts. In the review of Refsgaard et al. (2022), which focused
on catchment scale models, those studies including a ground-
water component all used process-based models (Epting et
al., 2018; Markstrom et al., 2008).

Regional-scale groundwater studies are also mostly based
on process-based simulations (Zhou and Li, 2011). Hellwig
et al. (2020), for example, used MODFLOW to investigate
drought propagation over Germany and Tsypin et al. (2024)
developed a thermal-hydraulic model in GOLEM for the re-
gion of Berlin-Brandenburg. Amanambu et al. (2020) in a
review in the context of climate change effects on groundwa-
ter called for models of higher complexity, to represent better
the relevant flow processes. Jing et al. (2018) arrived at sim-
ilar conclusions; in their opinion, simple water-balance type
models cannot represent groundwater heads, especially in
low-flow situations, so to properly focus on near-surface flow
dynamics a 3-D process-based model is needed. They also
argued that, while 3-D models work better at larger scales,
data uncertainties and knowledge limitations are becoming
increasingly prominent at those scales.

In contrast, data-driven and simple water balance method-
ologies do not aim at resolving small-scale physics and hence
do not face the issue of limited data on the relevant processes.
Instead, they rely on statistical relationships between the dif-
ferent data at the scale of observation, though with model
structures informed by theory. Water balance and data-driven
models quantify the different fluxes of the flow system and
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use mass conservation principles (water balance) or statis-
tical relationships (data-driven models). These models rely
less on geological and environmental knowledge, but more
on data quality and quantity. This is advantageous in a re-
gional setting, where there is usually more data available than
system understanding. The latter is usually inferred via the
interpretation of data – e.g. the hydrostratigraphy is charac-
terized after interpretation of the drilling profile of a moni-
toring well.

Data-driven methods are very popular for surface runoff
modeling where techniques such as water balance modeling
(Mason et al., 1994), multilinear regression (Clarke, 1973),
and machine learning methods (Nevo et al., 2022) have been
widely explored. On the downside, these methods are prone
to exhibiting a black-box behavior, meaning they work well
for simulation and forecasting purposes but are not necessar-
ily designed to infer the properties of the modeled system. In
a recent paper (Ebeling et al., 2025) used the random forest
technique, a machine learning approach, to predict character-
istic spatial control features of groundwater drought dynam-
ics from individual wells in Germany. Their study showcases
data-driven methods as an ideal tool for analyzing large sam-
ple datasets, as they were able to analyze and cluster more
than 6000 multidecade groundwater well time series system-
atically.

Dimensionality reduction techniques are also widely used
for hydrological regionalization, for example, principal com-
ponent analysis by Gottschalk (1985), or multidimensional
scaling by Solans and Mellado-Díaz (2015). Giese et al.
(2020) classified groundwater level dynamics within moni-
toring wells similarly, applying the classification to the time
series directly (Haddad and Rahman, 2023) analyzed the re-
lationships between the frequencies of flooding and different
potential predictors by clustering multiple data-driven multi-
linear regression and generalized additive models.

In this paper, we are proposing a novel methodology to un-
derstand the spatial variability of groundwater dynamics us-
ing data-driven modeling. We focus on climate-groundwater
relations at a regional scale, using coarse simple models
as the initial step of a downward model development pro-
cess. Inspired by the concept of hydrological regionalization,
we show how dimensionality reduction methods can be ap-
plied in the context of climate-groundwater dynamics. Our
main objective is to delineate regions with different climate-
groundwater interactions, providing a further basis for more
focused modeling studies.

Our hypothesis is that in basins with temperate climate
and periglacial geomorphology, groundwater response dy-
namics to weather forcings can be modeled using linear ap-
proaches (such as water balances). Local anomalies would
then be reflected in deviations from these linear relations and
can be used to identify areas of strong anthropogenic influ-
ence, or special environmental/geological conditions with a
different climate-groundwater relation. Hence, instead of ap-
plying dimensionality reduction to the observed data directly,

or to any model parameters, we propose using such tech-
niques over the model misfits, to infer areas that behave in
an anomalous way compared to the groundwater response to
weather forcing represented by the model fit.

In the following, we will demonstrate how water bal-
ance modeling with gridded weather and groundwater data
can reveal local anomalies of climate-groundwater dynamics.
By delineating these anomalies, subsequent more focused
studies could better define a region of interest, with similar
groundwater dynamics. Due to the sheer size of the gridded
water balance results, the model evaluation is aided by re-
gionalization techniques. Hence, there is no need to look at
the results cell by cell, but the delineated areas can be treated
as similar. Overall, the regional scale modeling provides in-
sight to the general groundwater dynamics of Brandenburg
in a data-driven way.

2 Study area and data

We have developed our methodology in the Berlin-
Brandenburg region of Germany, where groundwater is a top-
ical issue (Kuhlemann et al., 2020; Tsypin et al., 2024; Ziel-
hofer et al., 2022).

2.1 Brandenburg overview

Our exact study area is defined by the administrative bound-
ary of the federal states of Brandenburg and Berlin, plus an
additional 30 km wide buffer zone to include more measure-
ment stations and avoid edge effects around the state border
where possible (Fig. 1). Note that the boundary of the study
area is not a natural boundary of any catchment or aquifer.
The boundary is due to the data availability, as in Germany
environmental data is collected at the federal state level. We
will show later, that the methodology does not rely on any
natural environmental boundaries, which could be advanta-
geous in the research context of understudied regions.

The shallow hydrogeology of the Berlin-Brandenburg re-
gion is characterized by a series of stacked fluvioglacial
and alluvial Quaternary-Tertiary aquifers of differing sand-
gravel-mud proportion. In the lowlands and river valleys
these porous aquifers are highly productive, while on the ele-
vated areas the presence of glacial till and terminal moraines
leads to highly variable groundwater storage conditions
(Fig. 1c). According to Limberg and Thierbach (2002), five
separate aquifers can be identified, numbered AQ1–AQ5 (or
GWL1–GWL5 in the German literature) from top to bottom.
These aquifers are not completely separated by impermeable
layers; glacial erosion has formed several highly permeable
channels between them filled with sand-dominated deposits.
These connections have been the focus of hydrogeological
studies in the last decades, as they can lead to saltwater con-
tamination from the Rupelian AQ5 to the main aquifer of
drinking water production (AQ2).
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Figure 1. Berlin-Brandenburg study area: (a) topography [source: OpenDEM] and locations of used groundwater monitoring wells [sources:
Wasserportal Berlin (SenUVK, 2023), Auskunftsplattform Wasser Brandenburg (Landesamt für Umwelt Brandenburg, 2023)], (b) Land
cover [source: Pflugmacher et al. (2018)]. Black lines correspond to administrative subdivisions, (c) Aquifer properties and major mining
areas in the region [source: IHME1500].
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Our study focuses on the top unconfined aquifer AQ1,
which is most exposed to climatic impacts. These impacts
can further propagate to the deeper aquifers due to the in-
terlinkages. The AQ1 was formed by glacial valley deposits,
larger meltwater runoff paths, and sand end moraines (Lim-
berg and Thierbach, 2002). The aquifer has a variable thick-
ness between 5 and 40 m, and hydraulic conductivity values
between 2–6× 10−4 m s−1. The depth to groundwater is 1–
5 m in lowland areas and can reach up to 80 m at higher ele-
vations (Landesamt für Umwelt Brandenburg, 2023).

The regional scale groundwater flow system is controlled
by the surface elevation and the topography of the underly-
ing Rupelian aquitard (Frick et al., 2019). Recharge areas of
the flow system are in the north part of Brandenburg, in the
higher elevation areas east of Berlin, and in the south part
of Brandenburg. Discharge areas are located in the western
part of Brandenburg, where the main Havel River leaves the
state. It is important to note that in mining areas, such as the
Lausitz region in the south-east of Brandenburg and neigh-
boring states, the natural groundwater system is under ex-
treme anthropogenic influence.

2.2 Weather forcing data

Climatic data for the study region is taken from the CER v2
dataset (Jänicke et al., 2017). This open dataset provides dy-
namically downscaled climate model data over a 2× 2 km
spatial grid at multiple timescales. The dataset was prepared
specifically for the Berlin-Brandenburg region and was vali-
dated against 211 weather stations in the region. Data include
monthly precipitation and monthly actual evapotranspiration,
which are used here.

In a previous study (Somogyvári et al., 2024), we have
successfully used this dataset to simulate surface water dy-
namics of a lake near the city of Berlin. Our experience
showed the advantage of a dynamically downscaled grid-
ded dataset compared to weather data interpolated by simpler
means, as the latter could not account for the high spatial
variability of precipitation, which is becoming increasingly
prominent during extreme events.

2.3 Groundwater data

Open-access groundwater data were used. In the city federal
state of Berlin, groundwater data are collected by the Berliner
Senatsverwaltung für Umwelt, Mobilität, Verbraucher- und
Klimaschutz (SenUMVK). In the federal state of Branden-
burg, these data are collected by the Ministerium für Land-
wirtschaft, Umwelt und Klimaschutz (MLUK). The ground-
water data were downloaded at a monthly resolution. We fo-
cus on wells that have complete/near-complete monthly time
series for the period 1990–2023. Our analysis only focuses
on the actual water table, as defined by the hydraulic heads
in the top groundwater body (AQ1), but it would be appli-
cable in other selected aquifers as well given enough data

is available. To remove timeseries from other groundwater
bodies, the well data are further filtered, keeping only the
wells that are screened at the top aquifer layer. Because this
information was not available or correct everywhere, for ad-
ditional control the well data are validated against the offi-
cial distance-to-groundwater dataset of Brandenburg, keep-
ing only those data where the measured groundwater lev-
els and the distance-to-groundwater values are within 2 m.
This method could also filter out wells with outlier behav-
ior, for example with strong local anthropogenic influence or
wells that are part of some isolated groundwater body with
an anomalous pressure regime. With these criteria, the final
number of wells used in the analysis got reduced to 504 (from
more than 2000 originally), with locations shown in Fig. 1a.

3 Methodology

In this section, we present our workflow for analyzing the
groundwater dynamics. First, we give an overview (Fig. 2),
then we show in detail the different steps and methods.

The workflow starts with water balance modeling, where
independent water balance models are set up for each grid
cell in the investigation area. Subsequently, the focus is not
on the water balance model itself, but on its misfits. The mis-
fits of each grid cell are analyzed together using dimension-
ality reduction techniques: principal component analysis or
multidimensional scaling. These methods generate a point
cloud representation of the misfit relations, which can then
be used to label all the grid cells of the area to map out the
different groundwater dynamics patterns. The water balance
model is a simple choice of representation that will be eval-
uated in this paper. In principle, the workflow can involve a
more complex modeling step.

3.1 Data interpolation

While the climate forcing data (CER v2) is in a gridded
format, the water table is estimated from the well data via
kriging interpolation separately for each month within the
timeframe. The kriging grid matches the underlying grid of
the CER v2 dataset, with pixels of 2 km× 2 km. The univer-
sal kriging algorithm is used here, with a spherical variance
model (parameters: Sill= 686.97 m, Range= 1.97 km), im-
plemented in the PyKrige Python package (Murphy, 2014).
The kriging parametrization was selected after a grid search
on possible kriging models, and we have chosen the one with
the best fit with the original data. The groundwater table of
each month is interpolated independently, meaning that the
chosen variogram is always fitted on the data it is being used
with. The interpolation was done over a rectangular area,
which was then cropped down to the study area of Branden-
burg plus a 30 km buffer zone (Fig. 1).

https://doi.org/10.5194/nhess-25-4613-2025 Nat. Hazards Earth Syst. Sci., 25, 4613–4628, 2025



4618 M. Somogyvári et al.: Regional-scale groundwater analysis with dimensionality reduction

Figure 2. Workflow for analyzing groundwater dynamics via model misfits and dimensionality reduction.

3.2 Subsurface water balance

In this study, we apply the water balance modeling approach
over a regional scale grid. We handle every grid cell inde-
pendently without considering any explicit cell-to-cell flows
(these flows are handled implicitly). This independence will
be important in the latter parts of the analysis.

The water balance for a grid cell can be formulated as:

1S = (WA+1F)× b′, (1)

where:

WA= P −ET, (2)

is water availability (sometimes also referred to as climatic
water balance) (in mm per month), P and ET are precipita-
tion and actual evapotranspiration, respectively (both in mm
per month). 1S is the monthly change in storage within the
pixel (in m3 per month). The conversion factor b′ accounts
for the change in units between the terms.

The term 1F represents all additional water flow to and
out of the investigated grid cell. In most locations of the
study domain, this is the net subsurface (i.e. groundwater) in-
flow, but in pixels with relevant surface water in or outflows,
that flow is also considered in this term. Assuming that the
changes in the ground- and surface water flow system are
negligible over the investigation timescale, the 1F term can
be assumed to be constant. The water balance can then be
closed by estimating this value.

The change in storage can be linked to the change in
groundwater level by modifying the conversion factor:

1z= (WA+1F)× b, (3)

Here, b takes care of the scaling which is needed to convert
the storage change in a pixel to groundwater level change.

If the unit of 1z is taken the same as WA and 1F , then b

is unitless. The water balance equation can be rearranged to
the shape of a linear function between the groundwater level
change and the water availability:

1z= b×WA+ a, (4)

This notation introduces parameter a as the intercept of the
linear model. In this paper, we use this notation exchange-
ability freely, hence whenever we refer to linearity, we also
mean that the water balance holds up. As mentioned above,
the water balance can be closed by calibrating the value of
1F to make the right side of Eq. (3) fit the observed 1z

within a pixel. We have shown that this is equivalent to the
linear formula of Eq. (4). In practice, the latter was used with
the Python implementation of linear regression in the scikit-
learn Python package (Pedregosa et al., 2011).

3.3 Time lag estimation

The groundwater does not respond to the weather forcing im-
mediately, there is a time lag. This lag depends on multiple
factors, such as the thickness of the unsaturated zone, the
type of land cover and the soil moisture content. The iden-
tification of this lag is essential to set up the water balance
model properly. For this reason, initially we run the water
balance model with multiple time lag scenarios. In each grid
cell, we chose the lag which provided the best fit with the
observed data.

3.4 Dimensionality reduction

To further analyze the modeling results, the water balance
misfits are regionalized using dimensionality reduction. A
calibrated water balance model simulates the groundwater
response to the dynamic climatic factors. If there are any
other dynamic changes in the groundwater system not con-
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sidered in the model, these would appear as anomalies in the
modeled groundwater levels. A simple example of a missing
term would be a change in water abstraction rates. A more
complex example would be a change in land cover over time
which could change the groundwater recharge. Analyzing the
misfits indicates where these non-climatic factors play an im-
portant role. Because all pixels were handled independently
by the water balance modeling, the correlations revealed by
the dimensionality reduction will not be biased by the mod-
eling procedure.

The misfits can be defined as:

misfit(x,y, t)= zGW (x,y, t)−
∑

t

1z(x,y, t) , (5)

Note that the second term is a cumulative sum, that is used
to convert the simulated water balance to actual groundwater
levels. The obtained misfit is also a time series, not just a
scalar value. Two examples are shown in Fig. 3.

Due to the sheer number of grid cells, it is difficult to in-
terpret or analyze all of the misfits directly. Dimensionality
reduction can reduce the size of this dataset while maintain-
ing its main features, and the patterns within. Dimensionality
reduction is widely used on high-dimensional, or very large
datasets to reduce the computational load of the applied anal-
ysis method, and to avoid overfitting, and it is often applied
for visualization purposes (Van Der Maaten et al., 2009).

Here, the role of dimensionality reduction is to reduce the
misfit array to a point cloud, where each point represents a
pixel of the investigation area. The reduction happens along
the temporal axis while retaining the dominant features of the
misfit time series. We show two different algorithms for di-
mensionality reduction: multidimensional scaling and princi-
pal component analysis. With these two examples, we would
like to emphasize that dimensionality reduction can be im-
plemented into the methodology in a flexible way, using dif-
ferent algorithms.

3.4.1 Multidimensional scaling

The first step of multidimensional scaling (MDS) is to cre-
ate a so-called dissimilarity matrix (also known as distance
matrix), a matrix where the value in cell i,j represents the
difference between the misfit time series of the ith and j th
grid cell on the map.

D[i,j ] =misfit [i]−misfit[j ], (6)

The dissimilarity matrix is a symmetric matrix, with zero di-
agonal values. Multidimensional scaling projects the dissim-
ilarity matrix into a Euclidian n-dimensional space, in the
form of a point cloud, while keeping the distances between
the individual points as close to the distance matrix as pos-
sible. The point cloud can then be visualized in 2-D or 3-D
form.

Multiple types of MDS exist. In this study, we used the
metric MDS implemented in the scikit-learn Python package

(Pedregosa et al., 2011). Metric MDS uses nonlinear trans-
formations to project the point cloud via minimizing the cost
function:

C=
∑
i<j

(
D
[
i,j
]
− ri,j

)2
, (7)

where ri,j is the projected Euclidian distance of the ith and
j th point within the projected point cloud.

3.4.2 Principal Component Analysis

Principal component analysis (PCA) is a linear dimension-
ality reduction method, that uses linear combinations of the
original variables, to transform the data into a new coordinate
system. Principal components are constructed in a way that
best represents the variance of the original data.

PCA eliminates the correlation between the variables by
constructing new independent variables, the orthogonal prin-
cipal components (PCs). The first PC represents the greatest
portion of the variance of the original dataset, the second PC
the second greatest variance while being uncorrelated with
the first PC, and so on until the entire variance of the original
data is explained by new independent variables, with the bulk
of the variance consolidated in the first few PCs.

We apply PCA on the flattened version of the misfit array:

M[ij ] =misfit(xi tj ), (8)

where xi is a one-dimensional running index for all the grid
cells. Hence array M has rows equal to the total number of
grid cells and columns equal to the length of the investigated
timeframe (t). To apply PCA to this array, first, it is trans-
formed into the sample covariance matrix, where each ele-
ment represents the covariance between the samples:

S=
MTM
n− 1

, (9)

where n is the total number of grid cells. The final coeffi-
cient matrix of the PCA is then calculated via singular value
decomposition of the covariance matrix (A). This ensures
the orthogonality among the principal components. PCA per-
forms a linear transformation of matrix M using the coeffi-
cient matrix A:

Z=MA, (10)

Which results in a transformed Z matrix, where each column
represents an independent principal component. For dimen-
sionality reduction, matrix Z gets truncated, in the case of
our study keeping only the first three columns (ZT). The fi-
nal truncated ZT matrix can be plotted as a 3-D point cloud.
In our analysis, we used the scikit-learn implementation of
the PCA algorithm (Pedregosa et al., 2011).
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Figure 3. Example differences between observed and modelled groundwater levels at two different locations.

3.5 Coloring/labeling/clustering

Dimensionality reduction methods create point-cloud repre-
sentations of the data, in which each point represents a cell of
the original spatial grid. The point cloud dimensions can be
used directly to define a linear color scale to plot on the map.
For PCA this could result in a separate map for each principal
component. Taking three dimensions of the point clouds can
also be used to define an orthogonal RGB color space. This
color space can be used to map out the point cloud on a sin-
gle map, each pixel having an RGB value based on the point
location within the point cloud. The point cloud can also be
clustered in a subsequent step, to identify similar types of ar-
eas. In this study, we use a Gaussian mixture model from the
scikit-learn Python package (Pedregosa et al., 2011) to clus-
ter the point clouds. Gaussian mixtures were preferred over
the other methods such as k-means because it works better
with high-density point clouds with no distinct boundaries
between them.

4 Results & Discussion

4.1 Model fit and performance

The water balance model was set up using a one-month
time lag, meaning the precipitation and actual evapotranspi-
ration of one month is used to calculate the groundwater level
change for the next month. This time lag was selected after
testing multiple possible time-lags, choosing the one with the
best overall fit using the r2 score metric (see Fig. S1 in the
Supplement). The estimated net water outflow values (−1F )
are mapped out for the research area as shown in Fig. 4a.

Although an independent water balance model was set up
for each grid cell, the resultant map shows a spatially coher-
ent result. Large areas with similar net water outflow values
dominate the region, only with some occasional single-pixel
outliers.

4.2 Spatiotemporal patterns of modeled groundwater
dynamics

At a regional scale, some correlation of net water outflow can
be seen with topography (compare Fig. 1a). This is in line
with what we expect from a gravity-driven groundwater sys-
tem. For example, the area west of Berlin shows high water
inflows. This is a lowland discharge area of the groundwater
system. In contrast, the region east of Berlin is an area with
hills and higher elevations, which acts as a recharge zone. A
similar recharge area can be seen in the north.

This coherence does not hold in the southeast part of Bran-
denburg. The topography would suggest a recharge zone
here, but the mapped values show a strong water deficit. This
is a former open pit mining region, where the groundwater
levels are rebounding after more than a hundred years of arti-
ficial pumping. Groundwater levels here are steadily increas-
ing, many meters over some decades. This rebound process
requires a significant amount of extra water inflow which is
shown in the model.

The coherence does not hold up either in urban areas,
where we see very high outflow values (compare Fig. 1b).
This is due to actual evapotranspiration values being higher
than the estimates in the input dataset. The city of Berlin
is the most prominent example of this behavior, but smaller
cities like Brandenburg an der Havel and Cottbus are also
recognizable on the map. Cities have a lot of sealed sur-
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Figure 4. (a) Estimated net water outflow from the water balance model. Blue color marks areas with water flowing in (water deficit,
discharge areas), orange colors mark areas with water flowing out (water surplus, recharge areas), (b) RMSE misfits of the calibrated water
balance model, (c) r2score of the calibrated water balance model.

faces (Fig. 1b), hence most of the water surplus in these areas
leaves in the form of surface flow, and only a small portion
can recharge groundwater. Hence, we cannot interpret the net
water outflow term here as recharge or subsurface flow. Still,
the result is relevant for the general picture of the water cycle
in the region, and very well shows how cities were tradition-
ally built in a way that channels the rainwater out as quickly
as possible (for a critique, see Jia et al., 2017).

Another very high-outflow area is the southwest edge of
the map. This area is part of the Flaeming Heath, a topo-
graphically elevated area acting as a the watershed divide
between the Elbe and the Havel. The area is poor in flow-
ing waters, with many dry valleys called locally “Rummel”
(Pieper et al., 2017).

Other extreme values beyond the boundaries of Branden-
burg can be attributed to the lack of groundwater data, for
example in the northernmost parts. Note that these are not
boundary effects of the model, as the method treats each pixel
independently and no interactions between them are simu-

lated, but an effect of extrapolation of the groundwater data.
The model uncertainty in the production of the gridded in-
put datasets obviously poses a limitation of this study. We
acknowledge that the parametrization of the kriging interpo-
lation is a critical step in this respect. While we followed
a clearly defined procedure – optimizing parameters over a
grid search with respect to a performance metric in cross-
validation – there is still necessarily an element of subjec-
tivity in such approaches, e.g. in the choice of performance
metric, the density of the parameter search grid, or the ra-
tio of training-test-split. We did not account for anisotropy,
which might potentially improve the results in some subre-
gions. This being said, we believe that the uncertainty from
the varying density of wells is more relevant than the uncer-
tainty from the parametrization, and caution is thus advised
when interpreting spatial patterns far off the measurement lo-
cations.

The spatial map of the RMSE (Fig. 4b) confirms the plau-
sibility of the presented simple linear water balance model
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over the whole timeframe. In most of Brandenburg, the
RMSE values are low: the water balance approach holds up
as the groundwater levels are linearly related to the climate
forcing.

The results, again, are very coherent in space, with similar
RMSE values in nearby pixels. This is no surprise, as both
input data types were coherent themselves: the CER data as
a result of a spatially distributed numerical model, and the
groundwater data as a result of a spatial interpolation.

The coefficient of determination (r2 score) between the
modeled and observed groundwater dynamics shows a little
bit different picture (Fig. 4c). While the RMSE has a more
averaging behavior over time, the r2 score is more sensitive
to the fit of the short-term dynamics. Here, urban areas show
a very low score indicating that the dynamic groundwater be-
havior is not captured well, and the groundwater response to
climate is less linear.

Most high-RMSE and low-r2 score areas can be explained
by the lack of groundwater observations (Fig. 1a). Some cor-
relation is also visible with topographic elevation, especially
in the north of the domain. Increasing elevation is normally
accompanied with thickening of the vadose zone. Thus the
observed correlation is in line with Lischeid et al. (2021)
who showed the importance of vadose zone thickness for the
climate-groundwater dynamics using data from multiple sites
overlapping with this region. Ebeling et al. (2025) also indi-
cated distance to groundwater as the most important factor
when classifying groundwater dynamics in Germany.

4.3 Dimensionality reduction

Standard model metrics, such as RMSE and r2 scores, offer a
good overall assessment of the fit of the groundwater model.
To gain a more detailed understanding of the model’s behav-
ior, we applied dimensionality reduction methods to analyze
the misfit time series.

To demonstrate this methodology, two specific methods
are presented here: multidimensional scaling (MDS) and
principal component analysis (PCA). In Fig. 5, panels a and
c present the point clouds created by these methods respec-
tively. In these 3-D visualizations, each point represents a
pixel from the map, and the distance between the points is
representative of the differences between these two points’
misfit behaviors. The colors of the points are created by as-
signing RGB color models to their x,y,z coordinates. The
colored data points are presented as maps in Fig. 5b and d.

The point clouds can be plotted over different dimensions,
here for the sake of simplicity, we have chosen 3-D pro-
jections. For the MDS point cloud in Fig. 5a, the axes of
the plots are virtual dimensions (sometimes called feature
dimensions). These dimensions cannot be tied to anything
physically (or mathematically) meaningful, their sole pur-
pose is to define a Euclidean space where the data points can
be projected – maintaining the pre-defined distances between
them.

In contrast, the axes of the PCA plot in Fig. 5c, are the
principle components, axes along the data where it varies the
most. The two-point clouds show a lot of similarities. This
is expected, due to the similar nature of the two techniques:
PCA is a specific case of MDS where a linear projection is
used to create the point cloud.

The point clouds are elongated along the first dimension,
with multiple elongated umbilical arms, spreading away
from the dense parts of the cloud. This suggests a strongly
different model behavior at these points from the rest. The
most significant of such features is the pixels of the Lausitz
region, which are the points located in the right arms of both
point clouds. Smaller internal structures are visible as well,
representing strong correlations within the data.

By transferring the RGB coloring of the point clouds to the
map we see spatially coherent areas as patches of the same
color. This is expected, due to the interpolated groundwater
table, and the small variability of input weather data. The
shape of some of the patches resembles the river network
of the region, for example, an elongated pale green shape
southeast of Berlin follows the river Spree, and other light
green areas are shown by sections of the Oder and Elbe.

The outer areas of the point cloud can be linked with
other environmental factors. Dark blue and dark green pixels
outline the Lausitz area, with strong anthropogenic impacts.
Individual wells with differences in groundwater dynamics
stand out on these maps very will, e.g. the red spot near the
east side of the map, within the city of Frankfurt an der Oder,
or the light blue spot northwest from it, which is a well in the
city of Munchenberg. The wells exhibit different behaviors
due to anthropogenic impacts at the first site and the higher
elevation and larger distance-to-groundwater at the second
site.

The Flaeming Heath stands out on this map again with a
red color, and the same can be said about green areas in the
north. The results are coherent locally, but not throughout
the whole region. We cannot say that the dark blue color on
this map means just open pit mining, this is only true in the
context of the southeast area. Instead, we can say that the
response style relative to the forcing is non-unique. This is
an important limitation of this methodology, which requires
further analysis before making definite conclusions about the
whole water system.

The visualizations in Fig. 5b and d, could be difficult to
interpret, due to the specificalities of the RGB visualization.
Hence in the next sections we provide further solutions to
visualize and analyze the dimensionality reduction results.

4.4 Principal Components

In this section we take a closer look to the three PCA compo-
nents, which are shown in Fig. 6. In PCA, the point cloud di-
mensions have a specific meaning in relation to the variance
of the data. For this dataset, the first three principal com-
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Figure 5. Dimensionality reduction: (a) multidimensional scaling point cloud, (b) multidimensional scaling map, (c) principal component
analysis point cloud, (d) principal component analysis map. Rivers are shown in light-blue on the maps.

ponents explain 85 % of the variance (42 %, 25 %, and 8 %
respectively).

The first principal component highlights the main anthro-
pogenic influences on the groundwater table. The Lausitz re-
gion in the south is very visible on this map as a negative
anomaly and similar behavior (although in much smaller ex-
tent) can be seen in the city of Berlin.

Another strong anomaly is visible on the northwest, this
however cannot be linked to the same cause – demonstrating
that non-anthropogenic effects could create similar patterns
in the data. It is important to reiterate, that this is a data-
driven approach, and the inferred principal components are
related to data patterns, while linking these to physical pro-
cesses requires interpretation.

At some locations, very small local anomalies are visi-
ble. These are caused by differences in single-well behav-
ior. As the groundwater tables were calculated via interpola-
tion, anomalous areas that are not sampled by enough wells

are shown as such local features. A good example of this is
the area east-southeast from Berlin, where only a handful of
wells were used. This type of anomaly, is also visible across
all principal components.

The map of the second principal component shows a lot
of similarities with the topography of the region (see Fig. 1).
Smaller values are visible in lowlands, like the alluvial plain
of the river Oder in the east, or the valley of the Havel in the
west while large values are at highlands line in the north or
in the southwest.

The map of the third principal component cannot be cor-
related directly with environmental factors. It rather shows
some similarities with the used error metric maps of RMSE
and r2score. Some of the anomalies visible here highlight
areas of smaller well density, for example along the region
borders. The explained variance of this component is signifi-
cantly less than even the second component; hence we would
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Figure 6. Results of the principal component analysis (a) 1st PC, (b) 2nd PC, (c) 3rd PC.

interpret it as the residual information remaining within the
misfit dataset.

Looking at the three principal components together, we
can see that in the majority of Brandenburg, the water bal-
ance misfit behavior is similar. What does this mean ex-
actly? Together with the model error metrics, we can say
that the climate-groundwater relation is mostly linear in the
region and can be sufficiently modeled via water balance
models. The study of Ebeling et al. (2025) reached simi-
lar conclusions when identifying the factors underlying the
groundwater dynamics in Germany. They identified meteo-
rological forcings as the main cause, a factor that we im-
plicitly consider in our modeling approach. Anthropologi-
cal impacts and the distance-to-groundwater were the other
two major factors, but the authors also noted the importance
of other local factors, such as surface waters and land use
types. Anthropological impacts can be seen here as well, as
the anomalous urban and mining areas, and the distance-to-
groundwater as the anomalies related to topography.

4.5 Implications for the Berlin-Brandenburg region

For further investigation, we look into some selected subre-
gions in more detail (Fig. 7). First, to better delineate areas
with different misfit behavior, we clustered the PCA point
cloud (see Fig. S2), and mapped out the obtained class labels
(Fig. 7a). On this map, patches of the same color represent
areas with similar model misfits.

By plotting some exemplary local water balance model
misfit curves, we can look into the temporality behind the
groundwater regionalization obtained by the dimensionality
reduction. We chose the example regions from the anomalies
identified previously, with the additional criteria of having
proper coverage of groundwater monitoring wells.

Three plots are selected from the catchments of the three
main rivers, the Spree, the Havel, and the Oder. These al-
luvial plains compose the majority of the lowland areas in
Brandenburg, and they show similar model fit behavior.

The observed and modeled groundwater levels show a
good fit, with some very short outlier periods. These outliers

are relatively minor when compared to the overall magnitude
of the groundwater levels, while the increasing and decreas-
ing trends are accurately modeled. This result again confirms
that for most of Brandenburg, a linear model can capture the
groundwater dynamics well and shows that the main driver
behind the groundwater dynamics is the climate.

One interesting behavior across all plots is the system-
atic overestimation of groundwater levels during the last 10
years of the timeframe. This is the period where all locations
show a decreasing trend. The systematic model overestima-
tion suggests a change in the groundwater response to the
climatic drivers. A similar behavior was seen by Somogyvári
et al. (2024) for the decreasing levels of one groundwater-fed
lake near Berlin, where the overestimation of a water balance
model was explained by changing hydrological processes.

In Berlin, the quality of the fit is worse – which is ex-
pected as the recharge processes are very different in an ur-
ban area in a way not represented by the model and input data
– but the general trends and dynamics are still captured by
the model. Water use in the city is also dynamically chang-
ing, with water use generally declining in the last decades,
but larger building and infrastructure constructions causing
temporary increases in water abstraction.

The plot from the post-mining Lausitz area shows a dra-
matically different picture from any other area. Here, a huge
impact of the former open pit mining is reflected in a ground-
water level increase of 4 m. Interestingly, this anthropogenic
impact still can be modeled by the water balance approach,
and the resulting model fit is not significantly worse. This
shows that the high-frequency dynamics of the groundwa-
ter are still controlled by the weather patterns and that the
discontinuation of the open pit mining and, therefore, pump-
ing can be approximated reasonably well as a constant flux
within our timeframe of investigation (1990–2022), even if
the actual dynamics follow a concave trajectory.

One of the most interesting areas, that stood out at many
points of our analysis was the region of the Flaeming Heath.
The plot for Flaeming provides an example of a topograph-
ically elevated area, with a much thicker unsaturated zone
(20 m <) than other parts of Brandenburg. The dynamics here
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Figure 7. Different groundwater dynamics within the Berlin-Brandenburg region: (a) map projection of the clustered PCA point cloud,
labeled with example locations, (b) observed groundwater levels (blue), modeled groundwater levels (orange) and misfit time series (green)
from the example locations.

are not captured very well, the model only reconstructs the
decreasing trends and the yearly dynamics, but none of the
dynamics with multiyear periodicity. Lischeid et al. (2021)
suggested that areas with thick vadose zones are more prone
to climate change induced groundwater level drop and that
this phenomenon may be explained by altered recharge pro-
cesses. The lack of any surface water could be another expla-
nation, the presence of the region-specific dry valleys (“Rum-
meln”) is an indication of different hydrological processes
than other areas with similar topography. However, to give
an exact explanation for this anomalous behavior a more fo-
cused study for this subregion would be needed.

5 Conclusions

In this study, we have presented a new groundwater assess-
ment framework, that uses data-driven models in combi-
nation with dimensionality reduction-based regionalization
methods to identify areas or groundwater catchments with
different characteristic behavior.

The methodology uses gridded weather and groundwater
data as input, to set up independent water balance models
for all grid cells of the investigation area. Dimensionality-
reduction is applied over the model misfits at the pixel level
to regionalize the model fit behavior.

We have shown that the presented methodology is well ap-
plicable to regions with peri-glacial morphology under tem-
perate (or humid continental) climate, and that it performs
the best in cases of shallow-lying water table in lowlands
and river valleys where groundwater is in good communi-
cation with the atmosphere. The approach does not require
any detailed geological/hydrological knowledge, but rather
depends on data coverage instead. The methodology can
safely use data defined by administrative boundaries, with-
out the need to exactly know any environmental borders or
boundary conditions. This is advantageous for initial inves-
tigations, especially as data are becoming more and more
accessible. Due to the non-unique responses, however, the
method poses some limitations for interpretation and instead
motivates questions for further process-based investigation.
Therefore, this methodology fits well into the downward
model development concept of Sivapalan et al. (2003), as an
initial step before increasing model complexity.

For the Berlin-Brandenburg region, we have found that
the groundwater dynamics are linearly related to the driv-
ing climate factors. Dimensionality reduction over the model
misfits helped us to regionalize areas with different char-
acteristic behaviors. Principal component analysis showed
that anthropogenic influences had the strongest impact on
the non-climate-driven behavior, showing anomalies in ur-
ban and industrialized areas. The thickness of the unsaturated
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zone had the second strongest impact on the misfits where
soil moisture effects and non-linear water transport would
require more sophisticated modeling approaches. These find-
ings show that linear models are valuable in the region for
evaluating the groundwater impacts of different climate sce-
narios and could even be used within forecast applications.
The detailed misfit analysis with dimensionality reduction
gives an approximate regionalization of groundwater behav-
ior for the region that can be used as a basis of more detailed
investigations. Keeping the underlying models linear, the ob-
served anomalies and misfits can be linked to non-linearities
in the recharge processes. The presented methodology is fur-
ther extendable using non-linear modeling methods, such as
machine learning techniques. Beven (2024) recommended to
focus on model misfits of such models for knowledge pro-
duction, as such models are difficult to interpret on their own.
Dimensionality reduction provides a promising addition to
such an analysis in a regional setting.
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