Articles | Volume 25, issue 11
https://doi.org/10.5194/nhess-25-4593-2025
https://doi.org/10.5194/nhess-25-4593-2025
Research article
 | 
21 Nov 2025
Research article |  | 21 Nov 2025

Computing extreme storm surges in Europe using neural networks

Tim H. J. Hermans, Chiheb Ben Hammouda, Simon Treu, Timothy Tiggeloven, Anaïs Couasnon, Julius J. M. Busecke, and Roderik S. W. van de Wal

Related authors

Sea Level Rise in Europe: Observations and projections
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024,https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
The Framework for Assessing Changes To Sea-level (FACTS) v1.0: a platform for characterizing parametric and structural uncertainty in future global, relative, and extreme sea-level change
Robert E. Kopp, Gregory G. Garner, Tim H. J. Hermans, Shantenu Jha, Praveen Kumar, Alexander Reedy, Aimée B. A. Slangen, Matteo Turilli, Tamsin L. Edwards, Jonathan M. Gregory, George Koubbe, Anders Levermann, Andre Merzky, Sophie Nowicki, Matthew D. Palmer, and Chris Smith
Geosci. Model Dev., 16, 7461–7489, https://doi.org/10.5194/gmd-16-7461-2023,https://doi.org/10.5194/gmd-16-7461-2023, 2023
Short summary
Improving statistical projections of ocean dynamic sea-level change using pattern recognition techniques
Víctor Malagón-Santos, Aimée B. A. Slangen, Tim H. J. Hermans, Sönke Dangendorf, Marta Marcos, and Nicola Maher
Ocean Sci., 19, 499–515, https://doi.org/10.5194/os-19-499-2023,https://doi.org/10.5194/os-19-499-2023, 2023
Short summary
Regionalizing the sea-level budget with machine learning techniques
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, Eike M. Schütt, Marta Marcos, Ismael Hernandez-Carrasco, and Aimée B. A. Slangen
Ocean Sci., 19, 17–41, https://doi.org/10.5194/os-19-17-2023,https://doi.org/10.5194/os-19-17-2023, 2023
Short summary
Trends and uncertainties of mass-driven sea-level change in the satellite altimetry era
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, and Aimée B. A. Slangen
Earth Syst. Dynam., 13, 1351–1375, https://doi.org/10.5194/esd-13-1351-2022,https://doi.org/10.5194/esd-13-1351-2022, 2022
Short summary

Cited articles

Agulles, M., Marcos, M., Amores, A., and Toomey, T.: Storm surge modelling along European coastlines: the effect of the spatio-temporal resolution of the atmospheric forcing, Ocean Model., 192, https://doi.org/10.1016/j.ocemod.2024.102432, 2024. a, b
Akyildirim, E., Gambara, M., Teichmann, J., and Zhou, S.: Applications of Signature Methods to Market Anomaly Detection, arXiv [preprint], https://doi.org/10.48550/arXiv.2201.02441, 2022. a
Arrubarrena, P., Lemercier, M., Nikolic, B., Lyons, T., and Cass, T.: Novelty Detection on Radio Astronomy Data using Signatures, arXiv [preprint], https://doi.org/10.48550/arXiv.2402.14892, 2024. a
Ayyad, M., Hajj, M. R., and Marsooli, R.: Machine learning-based assessment of storm surge in the New York metropolitan area, Sci. Rep.-UK, 12, https://doi.org/10.1038/s41598-022-23627-6, 2022. a
Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Radu, R., Schepers, D., Soci, C., Villaume, S., Bidlot, J. R., Haimberger, L., Woollen, J., Buontempo, C., and Thépaut, J. N.: The ERA5 global reanalysis: preliminary extension to 1950, Q. J. Roy. Meteor. Soc., 147, 4186–4227, https://doi.org/10.1002/qj.4174, 2021. a
Download
Short summary
We studied the performance of different types of neural networks at predicting extreme storm surges. We found that that performance improves when during model training, storm surges that are rarer are given a higher weight than moderate storm surges. Additionally, we found that the performance of some of the neural networks approaches that of a state-of-the-art hydrodynamic model. This is promising for the future application of neural networks to climate model simulations.
Share
Altmetrics
Final-revised paper
Preprint