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Computing extreme storm surges in Europe using neural networks
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Abstract. Because of the computational costs of comput-
ing storm surges with hydrodynamic models, projections of
changes in extreme storm surges are often based on small en-
sembles of climate model simulations. This may be resolved
by using data-driven storm-surge models instead, which are
computationally much cheaper to apply than hydrodynamic
models. However, the potential performance of data-driven
models at predicting extreme storm surges, which are un-
derrepresented in observations, is unclear because previous
studies did not train their models to specifically predict the
extremes. Here, we investigate the performance of neural net-
works at predicting extreme storm surges at 9 tide-gauge sta-
tions in Europe when trained with a cost-sensitive learning
approach based on the density of the observed storm surges.
We find that density-based weighting improves both the er-
ror and timing of predictions of exceedances of the 99th per-
centile made with Long-Short-Term-Memory (LSTM) mod-
els, with the optimal degree of weighting depending on the
location. At most locations, the performance of the neural
networks also improves by exploiting spatiotemporal pat-
terns in the input data with a convolutional LSTM (ConvL-
STM) layer. The neural networks generally outperform an
existing multi-linear regression model, and at the majority
of locations, the performance of especially the ConvLSTM
models approximates that of the hydrodynamic Global Tide
and Surge Model. While the neural networks still predom-
inantly underestimate the highest extreme storm surges, we

conclude that addressing the imbalance in the training data
through density-based weighting helps to improve the per-
formance of neural networks at predicting the extremes and
forms a step forward towards their use for climate projec-
tions.

1 Introduction

Through strong winds and low atmospheric pressure, storms
can cause abnormally high coastal water levels called storm
surges. In Europe and elsewhere, storm surges have led to
numerous coastal floods, some resulting in many casualties
and substantial socioeconomic losses (Paprotny et al., 2018).
Due to climate change, the frequency and height of extreme
sea levels are expected to increase globally, primarily due
to sea-level rise (Hermans et al., 2023; Jevrejeva et al., 2023;
Vousdoukas et al., 2018). Although likely to a smaller extent,
extreme sea levels may also change due to changes in atmo-
spheric conditions driving storm surges (Vousdoukas et al.,
2018; Muis et al., 2020, 2023; Shimura et al., 2022). How-
ever, projections of atmospherically driven changes in ex-
treme storm surges are typically based on small ensembles
of climate model simulations. Consequently, the uncertain-
ties of these projections due to differences between climate
models and internal climate variability are large (Muis et al.,
2023; Hermans et al., 2024)
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An important reason why projections of extreme storm
surges are often based on only a few climate model simu-
lations is that global climate models do not simulate storm
surges reliably, if at all. Instead, the atmospheric changes
simulated by climate models need to be translated to changes
in storm surges with another model. Typically, computation-
ally expensive, high-resolution hydrodynamic models are
used for this (e.g. Vousdoukas et al., 2018; Muis et al.,
2020, 2023; Shimura et al., 2022). However, data-driven
storm-surge models based on regression, gradient boosting,
neural networks and other machine learning techniques are
emerging (see Qin et al., 2023, for a review) that, once
trained, may be used as computationally cheaper alternatives
to hydrodynamic models to translate climate model simula-
tions to changes in storm surges.

So far, data-driven storm-surge models have primarily
been used to predict short time series of local water levels
or peak heights during specific events, using the character-
istics of tropical cyclones traveling over the region as pre-
dictors (Ayyad et al., 2022; Lockwood et al., 2022; Ramos-
Valle et al., 2021; Ian et al., 2023; Sun and Pan, 2023; Naeini
and Snaiki, 2024, among others). Other studies have applied
data-driven models to gridded atmospheric reanalysis data to
reconstruct continuous time series of storm surges (Tausia
et al., 2023; Cid et al., 2017, 2018; Tiggeloven et al., 2021;
Bruneau et al., 2020; Tadesse et al., 2020; Tadesse and Wahl,
2021; Harter et al., 2024). In principle, these reconstructions
can then be used for extreme-value analysis (Cid et al., 2018;
Tiggeloven et al., 2021). However, previous studies did not
specifically train their models to predict the extremes.

Compared to moderate storm surges, extreme storm surges
are underrepresented in the training data. Without addressing
this data imbalance during training, data-driven models may
be biased toward more common events (Krawczyk, 2016).
This could explain why existing data-driven models typi-
cally underestimate extreme storm surges (e.g. Tadesse et al.,
2020; Tiggeloven et al., 2021; Harter et al., 2024), although
limitations of the input data and the selection of predictor
variables also play a role (Harter et al., 2024). Therefore,
the potential performance of data-driven models at predicting
extreme storm surges is still unclear. Furthermore, how neu-
ral networks compare to state-of-the-art hydrodynamic mod-
els in this regard also remains unclear, because most previ-
ous studies either did not specifically evaluate the extremes
or considered extremes exceeding relatively low thresholds
(e.g. Bruneau et al., 2020; Tadesse et al., 2020; Tiggeloven
etal., 2021).

A second hurdle toward using data-driven models to
project changes in extreme storm surges is their application
to climate model simulations, which are typically provided
at a lower resolution than the atmospheric reanalyses used
by previous studies. For instance, the climate-model sim-
ulations from the High Resolution Model Intercomparison
Project (Haarsma et al., 2016) that were used by Muis et al.
(2023) to force their Global Tide and Surge Model (GTSM)
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have a spatial resolution comparable to the ERAS atmo-
spheric reanalysis (Hersbach et al., 2020), but are provided at
a temporal frequency of 3 h at best. The simulations of other
models participating in the Coupled Model Intercomparison
Project 6 (Eyring et al., 2016) are typically also provided at a
relatively low temporal resolution. Optimal model architec-
tures and hyperparameter combinations that were found us-
ing hourly or more frequent observational training data may
therefore not apply in the context of projecting changes in
extreme storm surges.

In this study, we investigate how well neural networks
can compute extreme storm surges based on atmospheric re-
analysis data when the imbalance of moderate vs. extreme
storm surges is addressed during model training. To address
the imbalance, we use the cost-sensitive learning approach
DenseLoss (Steininger et al., 2021) that weights the contribu-
tion of prediction errors to the training loss according to the
rarity of their target observations, derived with kernel density
estimation. Additionally, we trained the neural networks with
3-hourly observational data because of the underlying aim to
eventually apply them to climate model simulations.

We analyzed 9 tide-gauge locations in western Europe,
which are all subject to mainly extratropical cyclones, but
vary in their oceanographic setting. We show how the per-
formance of the neural networks at predicting extreme storm
surges at these locations depends on how much additional
weight rare data points are given, and whether the neural
networks are designed to exploit only temporal or also spa-
tiotemporal patterns in the input data. Additionally, we com-
pare the performance of neural networks trained with and
without density-based weighting to that of the multi-linear
regression (MLR) model of Tadesse et al. (2020) and the hy-
drodynamic model GTSM (Muis et al., 2020, 2023).

2 Methodology
2.1 Data preparation

We trained neural networks to predict storm surges at mul-
tiple tide-gauge locations in western Europe, selected based
on data availability and geographical coverage (see Fig. 1).
Due to computational constraints, we limited our experi-
ments to 9 tide gauges. While these may not be representa-
tive of all European coasts, they allow us to compare results
across locations that are diverse in terms of shoreline orien-
tation, dynamics, tidal regime and the magnitude and distri-
bution of extremes. We limited our analysis to 1979-2017
because for that period, GTSM simulations are available for
comparison (Muis et al., 2020). As predictands, we used
hourly, quality-controlled tide-gauge observations from the
GESLA3 database (Haigh et al., 2021). To derive non-tidal
residuals (hereon referred to as storm surges) from the tide-
gauge observations, we first subtracted annual means and
then tides predicted through harmonic analysis performed
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Figure 1. Data availability (percentage of 3-hourly time steps with processable observations during 1979-2017) at European tide gauges
with at least 20 years of observations, the 9 selected tide-gauge locations, and an example of the prediction of a non-tidal residual (referred
to as storm surge) at an arbitrary time step ¢ at location 5 (Den Helder, NL). The abbreviations #10, v10, and w10 stand for zonal, meridional
and absolute wind speed at 10 m above the surface, respectively, and ps/ for the atmospheric pressure at sea level. The different shades of

grey indicate how the full time series of storm surges is divided up into splits, and Pgsght denotes the 99th percentile of all observed storm

surges in a given split.

with the T-Tide MATLAB package (Pawlowicz et al., 2002).
Following Tadesse et al. (2020), we used 67 tidal constituents
for the harmonic analysis, including only years of observa-
tions with at least 75 % data availability. While we verified
the tidal amplitudes and phases that we estimated by com-
paring them with the estimates of Piccioni et al. (2019), the
tide predictions are not perfect and residual tidal signals may
remain despite our correction (Tiggeloven et al., 2021). How-
ever, to avoid smoothing out high-frequency surge variabil-
ity, we did not attempt to remove potential residual tidal sig-
nals further by low-pass filtering.

As predictors, we used hourly data from the atmospheric
reanalysis ERA5 (Hersbach et al., 2020). The explanatory
variables we used are zonal, meridional and absolute wind
speed at 10 m above the surface and atmospheric pressure at
sea level. Absolute wind speed was included based on pre-
vious research that showed that including derived but physi-
cally meaningful predictor variables can provide added value
(Tiggeloven et al., 2021). Our sensitivity tests at the tide
gauge in Esbjerg, however, suggest only a minor influence
(see Appendix A). To improve model efficiency, future work
could therefore investigate whether absolute wind speed
could be left out without substantially impacting model per-
formance at other locations as well.

The predictor data was used in a box of 5° by 5° (20 by 20
grid cells) around each tide gauge (Fig. 1). This domain size
was chosen as a compromise between computational costs
and the approximate spatial scales at which we expect re-
mote winds and sea-level pressure to be relevant. The pre-
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dictor data includes grid cells over land, which do not di-
rectly affect water levels, but, as part of a certain weather
pattern over a location, may contain features relevant for pre-
dicting storm surges. Furthermore, as shown by Fig. 1, the
storm surge at time ¢ was predicted using predictors at time
t and up to 24 h prior, which was based on the assumption
of a typical storm surge duration of approximately 48 h. Be-
cause of the look-back window, the predictor data used for
predictions at consecutive 3-hourly time steps partially over-
lap. Sensitivity tests at Esbjerg suggest that these parameter
choices are generally appropriate (see Appendix A), although
we acknowledge that the optimal configuration of the predic-
tor data may vary by location. As shown in Appendix A, us-
ing a look-back window, which several previous studies did
not do (Bruneau et al., 2020; Tiggeloven et al., 2021; Harter
et al., 2024), clearly provides added value.

Before training and evaluating the neural networks, we
subtracted the annual means and mean seasonal cycle from
both the predictand and predictor variables at each time step
to avoid these signals from dominating what the models will
learn. Additionally, we subsampled the hourly predictand
and predictor data every 3h to mimic the highest temporal
frequency at which climate model simulations are typically
provided (see Sect. 1). The time series were then split into
non-overlapping train, validation and test portions containing
60 %, 20 % and 20 % of the available data, respectively (see
Fig. 1). We used the train split to train the models, the vali-
dation split to evaluate training convergence and tune the hy-
perparameters of the models (further explained in Sect. 2.3),
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and the test split to evaluate model generalization to unseen
data.

Because we observed that at some locations, chronological
splitting led to a particularly uneven distribution of extreme
storm surges over the different splits, we applied a simple
stratified sampling scheme. This involved splitting the time-
series into years from July to June, stratifying the years based
on the magnitude of the 99th percentile of storm surges (Pog)
in each year, and randomly assigning years from each stra-
tum to the splits according to the aforementioned split-size
ratios. Due to differences in tide-gauge data coverage be-
tween splits, the true split-size ratios can deviate from the
nominal ones by up to a few percent (see Table B1). The
randomness of the stratification was controlled with a seed.
Finally, both the predictand and predictor data in each split
were standardized by subtracting the mean and dividing by
the standard deviation of the data in the train split. The pre-
dictions obtained with the standardized predictor data were
back-transformed accordingly before evaluation.

2.2 LSTM and ConvLSTM models

For each location, we tested two neural network architec-
tures: one with a long short-term memory (LSTM) layer and
one with a convolutional LSTM (ConvLSTM) layer, both fol-
lowed by three densely connected layers (see Fig. C1). An
LSTM layer is a type of recurrent neural network that can
capture temporal dependencies in sequential data (Hochreiter
and Schmidhuber, 1997). A ConvLSTM layer is an LSTM
layer in which internal operations are convolutional (Shi
et al., 2015), and can therefore also capture spatiotempo-
ral dependencies. These models are therefore well suited for
the data described in Sect. 2.1. Our choice for these mod-
els is additionally motivated by the results of Tiggeloven
et al. (2021), who found that LSTM models generally predict
storm surges better than basic artificial neural networks, con-
volutional neural networks and ConvLSTM models. Since
Tiggeloven et al. (2021) used predictors in a region of only
1.25 by 1.25° around each tide gauge, we additionally used
the ConvLSTM model to test whether an LSTM model also
outperforms a ConvLSTM model when using predictors in a
5 by 5° region. To develop the models, we largely followed
the designs of Tiggeloven et al. (2021) but made a few tweaks
that we found were beneficial for either model performance
or efficiency. Both models were developed with the python-
package TensorFlow (TensorFlow Developers, 2024). The
software that we developed to train and evaluate the mod-
els is publicly available (Hermans, 2025b). Further details
and flowcharts of the model architectures are provided in Ap-
pendix C.

2.3 Model training and hyperparameter tuning

Following previous studies (e.g. Bruneau et al.,, 2020;
Tiggeloven et al., 2021), we trained our models separately
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at each tide gauge, with the commonly used mean square
error (MSE) loss function. The MSE loss minimizes the
mean of the squared differences between all predictions and
observations, and while it therefore penalizes larger errors
more than smaller errors, it does not directly address the
underrepresentation of extremes in the training data. There-
fore, we implemented the cost-sensitive learning approach
DenseLoss (Steininger et al., 2021), which is an algorithm-
level method that reweights the loss function based on
the rarity of target values. In contrast to resampling meth-
ods such as Synthetic Minority Oversampling with Gaus-
sian Noise (SMOGN; Branco et al., 2017), DenseLoss does
not alter the training data through synthetic oversampling,
and therefore retains the physical consistency of the high-
dimensional training data that we use. Furthermore, with
DenseLoss, the additional emphasis placed on rare samples
can be controlled through a single interpretable hyperparam-
eter and does not require an a-priori relevance definition. The
DenseLoss scheme was implemented by multiplying each
squared error between a prediction and an observation by a
weight inversely proportional to the density of the observa-
tion obtained through kernel density estimation. The density-
based weights are given by fy:

max(1 —ap(y),€)
AN max(1—ap(y).€)

Jwla,y) = (D

in which y is the observation, p(y) is the normalized density
function of the observations, € is a positive, real-valued con-
stant (107°) that clips the weights of observations with the
highest densities to a non-zero value, and « is a hyperparam-
eter controlling the strength of the density-based weighting
(the higher «, the stronger the weighting). Here, we test «
values of 0 (no weighting), 1, 3, and 5. Figure D1 shows an
example of the corresponding density-based weights of stan-
dardized observations in the train split at Den Helder (NL).
We refer to (Steininger et al., 2021) for further details of the
DenseLoss method and their benchmark of its performance
against SMOGN.

Like Bruneau et al. (2020), Tiggeloven et al. (2021), and
Harter et al. (2024), we trained our models using Adam op-
timization (Kingma and Ba, 2017). We used a maximum of
100 training epochs and stopped training if the loss of the
validation split did not further decrease during 10 consecu-
tive epochs. The maximum number of epochs was reached
for only 5 %—6 % of all LSTM and ConvLSTM models, and
based on the small decrements in the validation loss near the
end of the training of these models, we do not expect that
using a maximum of more than 100 training epochs would
substantially improve our results. The network weights cor-
responding to the epoch with the lowest validation loss were
stored. Based on preliminary tests, we used a batch size of
128 time steps (16 d).

Due to the dimensions of the training data, extensive tun-
ing of all hyperparameters was too computationally costly,
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especially for the ConvLSTM model. Therefore, we kept
most hyperparameters of the model architectures defined in
Appendix C constant except for the learning and dropout
rates, which influenced the evolution of the training and val-
idation loss the most. We varied the learning rate between
le=>, 5¢7>, and 1e~* and the dropout rate between 0.1 and
0.2. As a dropout rate of 0.2 did not lead to a structurally bet-
ter generalization of the models to the independent test split
than a dropout rate of 0.1, we did not increase the dropout
rate beyond 0.2. Combined with the 4 different values of
o, this resulted in 24 unique sets of hyperparameters. To
save computation time, we trained the LSTM models with
all 24 settings, but the ConvLSTM model only with o =5,
informed by the results for the LSTM models (see Sect. 3.1).
Additionally, to account for variance in the results due to
randomness in the initialization and optimization of model
weights, we trained the models 5 times with each set of hy-
perparameters.

2.4 Performance evaluation

As discussed in Sect. 2.1, we evaluated the LSTM and Con-
vLSTM models using their predictions in the validation and
test splits. For each split, we computed the root mean square
error (RMSE) between the predictions and observations, con-
sidering only the time steps in that split at which the observed
storm surges are extreme. We defined extremes using the

99th percentile in each split (P;ght) as a threshold (see Ta-
ble B1 for their magnitudes). Additionally, we only included
exceedances of these thresholds if they were part of an event
consisting of at least two exceedances within a time span of
12 h. This was done to avoid including exceedances poten-
tially primarily arising from dominant semi-diurnal tidal sig-
nals that may not have been fully removed with the harmonic
analysis explained in Sect. 2.1. We treated remaining thresh-
old exceedances independently regardless of whether they
occurred during the same event, because this allows the neu-
ral networks to learn about the temporal evolution of storm
surges, and uniquely capturing storm surges through declus-
tering would reduce the available sample size unless more
moderate events would be considered. The numbers of fil-
tered exceedances in each split are shown in Table B1. We

refer to the resulting root mean square error as RMSES},%I;.

The RMSEi?g; conveys the error of predictions of ob-
served extremes in a split regardless of whether the predic-
tions are extreme. As falsely predicted extremes would also
be included in an extreme-value analysis of the predictions,
we additionally evaluated whether extremes are predicted at
the right time. To do so, we used P;ght as a threshold to count
the number of false positive (#FPs), false negative (#FNs),
true positive (#TPs), and true negative (#TNs) predictions in
each split. We then computed the corresponding F'1 score,
which ranges from O to 1, by taking the harmonic mean of

s #TPs #TPs .
the precision (= grp,_zrp;) and recall (= grp g ):
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To place the performance of the neural networks in per-
spective, we also computed the error metrics introduced
above for the predictions of the MLR model of Tadesse et al.
(2020), which uses empirical orthogonal functions (EOFs)
of gridded sea-level pressure and zonal and meridional near-
surface winds as predictors. We trained the MLR model with
the same ERAS data used to train the neural networks ex-
cept that we had to reduce the size of the predictor data from
5 by 5 to 4.5 by 4.5° around each tide gauge to manage the
dimension constraints of the principal-component analysis
of SciPy. This may lead to a moderately lower performance
(Tadesse and Wahl, 2021).

Additionally, we compared the performance of the data-
driven models to that of GTSMv3.0 (Muis et al., 2020, 2023),
which is a global, state-of-the-art hydrodynamic model that
was also foced with sea-level pressure and surface winds
from ERAS. We derived the error metrics for GTSM from
the separately provided surge component of its simulations.
We used the simulations of Muis et al. (2020) instead of Muis
et al. (2023) because these consistently agreed better with the
observations. A limitation of the comparison with GTSM is
that we trained the data-driven models with 3-hourly ERAS
data (see Sect. 2.1), but simulations of GTSM are only avail-
able forced with hourly instead of 3-hourly ERAS data. As
atmospheric forcing with a lower temporal resolution re-
duces the accuracy of storm surge models (Agulles et al.,
2024), our comparison is biased towards GTSM in this re-
gard. We will consider this for the interpretation of our re-
sults in the following sections.

3 Performance of the neural networks
3.1 Effect of density-based weighting on LSTM models

Figure 2 shows the RMSE of the predictions of extreme ob-
servations vs. the F'1 score in the validation split (RMSE‘;E‘ég
vs. F l‘ﬁ‘ég), for each tide-gauge location. Each circle de-
notes these error metrics for an individual LSTM model. The
RMSE‘I’,"‘é9 is displayed relative to the magnitude of the 99th
percentile (P9V9al) at each location so that it can directly be
compared between locations. Depending on the location, the
minimum RMSE%9 among the LSTM models trained with-
out density-based weighting (o = 0, dark blue) ranges from
0.29 to 0.62 times nggal. Immingham stands out as a location
at which the LSTM models have a relatively high RMSE}%Q.
Density-based weighting clearly reduces the RMSE‘}f‘ég of
the LSTM models at all locations (Fig. 2). Furthermore,
LSTM models trained with a higher o value (higher degree
of weighting) tend to have a lower RMSE‘?&,Q, as seen by the
gradient of dark blue circles (¢ = 0) on the right to red circles

(o« =5) on the left of each plot.
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Figure 2. Scatter plots of the root mean square error of predictions of the extreme storm surges observed in the validation split, relative to
the 99th percentile of all observations in the validation split (ﬁ X RMSE}ﬁ‘ég) [-], vs. the F'1 score of predictions in the validation split
99

evaluated using P9V9al (F l}f‘ég) [], for each tide-gauge location. Each

circle denotes these error metrics for an individual LSTM model. The

colors indicate the different values of « (0, 1, 3 or 5) used to train each LSTM model (30 LSTM models per « per location, as explained in
Sect. 2.3). The bars on the bottom and left sides of each panel denote the minimum, median and maximum relative RMSE‘I’J%9 and F l‘ﬁl$9 of

the LSTM models for each «, respectively. The value of P9V9al is shown in the upper right corners.

While among all tested values, @ =5 leads to the low-
est RMSEYD‘%9 at each location, the improvement obtained
through density-based weighting differs between locations
(e.g. compare Stavanger to Den Helder). On average, increas-
ing « from O to 5 reduces the minimum RMSE‘I’J%9 by 29 %.
The minimum RMSE;,%9 for o = 5 ranges from 0.22 to 0.34
times P9V5‘l at all locations except Immingham, where the
minimum RMSE;;1 equals 0.49 times nggl. As seen by the
bars at the bottom of each panel in Fig. 2, the spread in the
RMSE‘}%9 among LSTM models with the same « is typically
between 0.07-0.15 times Pg"gl, depending on the location and
ona.

Density-based weighting also influences the F 1}%9 score
of the LSTMs models. The maximum F 1‘;%9 score of models
trained without density-based weighting (o = 0) ranges from
0.29 at Alicante to 0.70 at Den Helder (Fig. 2). Increasing
o from O (dark blue) to 1 (light blue) improves the median
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F 17;‘59 at all locations and the maximum F l}"‘ég somewhat

at most locations. However, increasing « further has a mixed
effect. For instance, at Esbjerg and Alicante, training with
o =5 leads to the highest F 1‘}’%9, while at other locations,
a = 1 or 3 leads to the highest F 1} (Fig. 2).

In general, the effect of density-based weighting on F 1‘,’3&,9
is moderate: on average, the maximum F 1%9 score of
LSTM models trained with density-based weighting (« =1,
3 or 5) is 9 % higher than the maximum F 1%9 score ob-
tained without density-based weighting (o« = 0). The effect
of o on the F1 score results from the partial compensa-
tion between the precision and the recall of the LSTM mod-
els, which depend on « oppositely (see Fig. D2). Namely,
increasing the density-based weights generally leads to a
higher recall but a lower precision (i.e. fewer false negatives
but more false positives), similar to the forecaster’s dilemma

(Lerch et al., 2017). While Fig. 2 suggests that increasing «
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beyond 5 may reduce the RMSE}%9 even further, this will
therefore likely lead to less precise predictions of extreme
storm surges, which may negatively influence subsequent
extreme-value analyses.

In conclusion, density-based weighting improves the per-
formance of the LSTM models at predicting extremes at all
locations, at least with an « value of 1. Our finding that us-
ing DenseLoss can improve both RMSE%9 and F 1‘1’%9 sug-
gests that reweighting the loss function does not simply re-
duce prediction errors of a few specific outliers but improves
to the models’ overall representation of extremes. However,
the optimal « value depends on both the location and the
metric to optimize, and therefore needs to be tuned. Finally,
we note that while density-based weighting may improve the
performance of the LSTM models at predicting extremes, it
reduces their performance at predicting moderate observa-
tions by construction. Depending on the intended application
of the neural networks, this may also need to be considered.

3.2 Comparison between models

Next, we compare the performance of the LSTM models
with that of (1) the ConvLSTM model, (2) the MLR model
of Tadesse et al. (2020), and (3) the hydrodynamic model
GTSM (Muis et al., 2020). To this end, Fig. 3 shows the same
error metrics as Fig. 2, but only for the best LSTM mod-
els for each o (colored circles). These were selected based
on the highest sum of the model’s rankings for RMSE}E%9
and F 1%9, separately for each location. The best ConvL-
STM models were selected in the same way (trained only
with o = 5; black-edged red squares).

First, we find that the selected LSTM models have a higher
RMSE}[,“;9 than the selected ConvLSTM models at all lo-
cations except at Vigo and Alicante (Fig. 3a), and a lower
F 1}%9 at all locations (Fig. 3b), at least for « = 5. Using a
ConvLSTM layer instead of an LSTM layer leads to an av-
erage improvement in the RMSE‘I’;“é9 and F 1}3‘59 of 5% and
12 %, respectively. The finding that the ConvLSTM model
outperforms the LSTM model at most locations indicates that
exploiting spatiotemporal patterns in the input data is gener-
ally beneficial for predicting extreme storm surges.

Second, Fig. 3a shows that at all locations, the LSTM
models trained with density-based weights have a lower
RMSEYD%9 than the MLR model of Tadesse et al. (2020)
(white triangles). The LSTM models trained without density-
based weights (¢ =0; dark blue circles) also have an
RMSE%9 similar to or lower than the MLR model, except
at Vigo. Furthermore, the F 1}2‘59 score of the LSTM models
is higher than that of the MLR model at all locations, regard-
less of o (Fig. 3b). These results suggest that the non-linear
relations between extreme storm surges and atmospheric pre-
dictors that the LSTM models capture, but the MLR model
cannot, are important to consider. The difference in the per-
formance between the LSTM- and MLR models may par-
tially be reduced by using wind stress instead of wind speed
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as a predictor because wind stress is related to surge more
linearly (Harter et al., 2024). Like for the LSTM models, the
performance of the MLR model may also be improved by in-
corporating density-based weighting in its optimization, but
we did not test this.

Third, the selected LSTM models have a higher RMSE‘;E‘$9
than the hydrodynamic model GTSM (white diamonds) at
all locations except Wick, Vigo and Alicante, and a lower
F 1‘1’;%9 at all locations except Brest and Vigo, regardless of
a (Fig. 3a and b). On average, GTSM has an approximately
9 % lower RMSE‘}Q‘%9 than the minimum RMSE‘I’f‘é9 anda9 %
higher F 1%9 than the maximum F 1}5‘(},9 of the LSTM mod-
els. Hence, we conclude that at the majority of locations,
a state-of-the-art numerical model like GTSM outperforms
relatively simple neural networks like the LSTM models, al-
though the hourly instead of 3-hourly atmospheric forcing
that was used to drive GTSM (see Sect. 2.4) may also help.
Especially at Immingham, GTSM performs relatively well
while the LSTM models perform relatively poorly (Fig. 3),
indicating that the LSTM models have poorly learned the
existing relationship between the predictors and the extreme
storm surges at that location.

Finally, since the ConvLSTM models outperformed the
LSTM models at most locations, we find that the ConvLSTM
models perform more similarly to GTSM than the LSTM
models (Fig. 3). Except at Stavanger and Immingham, the
performance of the ConvLSTM models trained with o =5
closely approaches or even exceeds that of GTSM. The aver-
age relative differences in the RMSE‘;f‘ég and F'1 VPaé9 between
the best ConvLSTM models and GTSM at these 7 locations
are marginal. Hence, based on these evaluation metrics, the
ConvLSTM model may be a viable alternative to state-of-
the-art hydrodynamic models.

3.3 Model generalization

So far, we only considered how well the different models per-
form in the validation split. In this section, we also evaluate
how well the models generalize. To do so, we compare the er-
ror metrics in the validation and test splits (Fig. 4), the latter
of which was completely held back during model training.
Figure 4a shows that the relative RMSE}%, and RMSE'Ssy
of the LSTM- and ConvLSTM models (colored circles and
squares, respectively) lie close to the 1 : 1 line at all locations
except Alicante (lightblue). This suggests that except at Al-
icante, the neural networks apply to unseen data relatively
well in terms of their error, which is further corroborated
by high correlations between the RMSE}%, and RMSE'Ssy
across models at individual locations. Additionally, we find
that increasing « leads to a lower RMSE pgg in both the vali-
dation and test splits (Fig. D3). The MLR model and GTSM
show similar behavior, as shown by the colored triangles and
diamonds in Fig. 4a, respectively.

The F1%4, and F1'5 scores of all models also lie rel-
atively close to the 1:1 line at most locations (Fig. 4b),
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and the hydrodynamic model GTSM (Muis et al., 2020) (white diamonds), at every tide-gauge location.
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again suggesting that the models generalize reasonably well.
However, the spread in the F'1 scores is larger (as also seen
in Fig. 2) and the correlation between F1j and F1'%55
across the neural networks at each location is, although still
visible and significant, lower than between RMSE‘;fég and
RMSEBS%B. With a few exceptions, increasing « has an ap-
proximately similar effect on F1'55 as it has on F1}¥,

(Fig. D3).
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To some extent, differences between RMSE‘I’;’(},9 and
RMSE}g,, and F 1‘;?&,9 and F153,, are expected because
these error metrics depend on a relatively small number of
extreme events (see Table B1) that are not identically dis-
tributed in the relatively short validation and test splits (<
8 years each). For optimal model generalization, we there-
fore recommend tuning o« alongside other important (hy-

per)parameters using k fold cross-validation. The differences
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between the splits also affect how the performances of the
different models compare. For instance, at Fishguard (pink)
and Brest (grey), the minimum RMSE‘IQE‘;9 of the ConvLSTM
models is slightly higher than that of GTSM, while the min-
imum RMSER3, is slightly lower (Fig. 4a). However, the
discrepancy between RMSEYi, and RMSE'SS)) is exception-
ally large at Alicante. Strikingly, this is the case for both the
data-driven models and GTSM (Fig. 4a). Given that the same
atmospheric forcing was used for all models, this suggests
that at Alicante, the extent to which the observed extremes
can be explained by wind- and pressure-driven surges differs
substantially between the validation and test splits. Potential
reasons for this will be discussed in Sect. 4.

3.4 Underestimation of the highest extremes in the test
split

To further investigate the performance of the neural networks
at predicting extremes in the test split, we zoom in on the
6 locations at which the RMSE‘;?;9 and F 1‘1’5‘;9 of the Con-
vLSTM models and GTSM are comparable (Sect. 3.2) and
the models generalize well (Sect. 3.3): Wick, Esbjerg, Den
Helder, Fishguard, Brest and Vigo. We find that overall, like
in the validation split, the ConvLSTM models (orange) and
GTSM (grey) have similar errors in the test split (average dif-
ference of 0.01 in the RMSESy, relative to P§5™), whereas
the LSTM models (blue) consistently have a higher error
(Fig. 5a). However, despite their similar RMSE'3g,, the Con-
vLSTM models and GTSM have a different error distribu-
tion. Namely, the ConvLSTM models predominantly under-
estimate the observed extremes at all locations, while GTSM
overestimates more than half of the observed extremes at
Wick, Fishguard and Brest (Fig. 5b).

The predictions from which the error distributions in
Fig. 5b were derived are shown in Fig. D4. Because Fig. D4
shows that the underestimation of extreme storm surges by
the neural networks is more pronounced higher up the tail
of the distributions of observed storm surges, we also com-
puted the RMSE of predictions of exceedances of a higher
threshold, namely Pg5% (Fig. 5¢). Whereas the RMSE(g,
of the ConvLSTM models and GTSM are comparable, the
RMSESY, o of GTSM is lower than that of the ConvLSTM
models at all locations (average difference of 0.08 in the
RMSE, o relative to Pg’). Comparing the error distribu-
tions in Figs. 5b and d, we indeed find that the underestima-
tion of extremes by the ConvLSTM models is more severe
when using Pgtg% as a threshold. This contributes to a larger
error compared to that of GTSM, which has predictions er-
rors centered closer to 0 (Fig. 5d). Nevertheless, the improve-
ment by the ConvLSTM models relative to the LSTM mod-
els is still significant. Although these results are sensitive be-
cause the RMSEES%B.9 is based on only a small number of ex-
tremes (see Table B1), they suggest that the performance of
the neural networks falls off in comparison to GTSM when
considering extremes above very high percentiles.
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4 Discussion

We found that training LSTM models with the density-based
weighting devised by Steininger et al. (2021) improves both
the error and timing of predicting extreme storm surge at 9
diverse tide-gauge locations in Europe. This suggests that ex-
isting data-driven storm-surge models used for similar appli-
cations (e.g. Bruneau et al., 2020; Tiggeloven et al., 2021;
Harter et al., 2024; Tadesse et al., 2020) could also be im-
proved by addressing the underrepresentation of extremes in
the training data in this way. How much additional weight
more extreme events should be given through the hyperpa-
rameter « depends on the location and the evaluation metrics
to optimize (see Sects. 3.1 and 3.3), and therefore needs to
be tuned in relation to the problem context. For instance, a
higher o value may be better for applications in which recall
is more important than precision (see Fig. D2).

The optimal « value for reweighting the loss function
value varies by location likely because the distribution of the
training data also varies by location. To apply the DenseLoss
method to a larger number of locations in the future, the
location-dependent tuning of « could be automated (e.g.
Feurer and Hutter, 2019) or informed by the distributional
features of the training data, such as target skewness and
tail heaviness. More practically, o could be tuned for a lim-
ited number of clusters of locations with similar characteris-
tics and distributions (e.g. Calafat and Marcos, 2020; Morim
et al., 2025), either by training cluster-specific models or
by training a single model incorporating cluster-specific at-
tributes and weights (e.g. Kratzert et al., 2019). Our results
suggest that even for a diverse set of locations, a common
value for @ > 0 can be found that improves the performance
of the data-driven models at predicting extremes at all loca-
tions, even though it may not lead to the most optimal per-
formance at every location individually.

Additionally, we found that at most locations, using a
ConvLSTM- instead of an LSTM model improves the predic-
tions of the extreme storm surges. This conflicts with the re-
sults of Tiggeloven et al. (2021), who found that ConvLSTM
models generally do not outperform LSTM models in Eu-
rope, nor globally. Most likely, the reason is that Tiggeloven
et al. (2021) used atmospheric predictors in a region of
1.25 by 1.25° instead of 5 by 5° around each tide-gauge lo-
cation as a default. Given that extratropical cyclones occur at
scales of hundreds of kilometers (Catto, 2016), more mean-
ingful spatiotemporal features can likely be extracted from
the predictor data when using a larger region. This is sup-
ported by our sensitivity tests at Esbjerg (see Appendix A),
which indicate that the LSTM- and ConvLSTM models in-
deed perform more similarly when trained with predictor
data in a smaller region, as well as by sensitivity tests of
Tiggeloven et al. (2021) with larger predictor regions.

Especially the ConvLSTM models perform relatively well
at predicting extreme storm surges exceeding the 99th per-
centile, and their performance approximates that of the high-
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Figure 5. (a) RMSEtﬁsgt9 relative to P;f;g, and (b) box plots of the distribution of the relative errors of the predictions of storm surges in

the test split exceeding P;)egst9’ at Wick (UK), Esbjerg (DK), Den Helder (NL), Fishguard (UK), Brest (FR), and Vigo (PT). (¢) and (d) show
the same, but using P;,e;tg‘g as a threshold for evaluating the prediction of observed extremes. Blue and orange colors are used to denote
these metrics and distributions for the LSTM- and ConvLSTM models selected in Sect. 3.2 for « = 5, respectively, and grey colors for the

hydrodynamic model GTSM.

resolution, hydrodynamic model GTSM at the majority of lo- vious studies have also reported a lower performance of both
cations (see Figs. 3 and 5). This is promising, especially since data-driven and hydrodynamic models in southern Europe
GTSM was forced with ERAS data at a higher frequency than (e.g. Muis et al., 2020, 2023; Tadesse et al., 2020; Bruneau
the neural networks (see Sect. 2.1) and we did not tune hy- et al., 2020; Tiggeloven et al., 2021). A complicating factor is
perparameters other than the learning rate, the dropout rate, that storm surges in this area are small and the effect of other
and « (see Sect. 2.3). Furthermore, depending on the appli- processes such as ocean dynamic sea-level variability, fresh-
cation, a somewhat lower performance may be acceptable in water forcing and waves are therefore relatively more impor-
exchange for the much lower computational cost of applying tant. Adding other predictors like temperature, precipitation,
the neural networks once trained. Follow-up research could river discharge or waves, may help to represent these pro-
therefore investigate the application of our neural networks cesses (Tadesse et al., 2020; Tiggeloven et al., 2021; Bruneau
to climate model simulations. This will introduce additional et al., 2020; Harter et al., 2024), but not all of these predictors
complexity because simulated distributions of predictor vari- are directly available from climate models.

ables may differ from observed ones used for training due We trained and evaluated the models using tide-gauge ob-
to climate-model biases and potential non-stationarity due to servations outside the harbor of Alicante because they are
future changes (Lockwood et al., 2022). In this context, hy- more complete, but tide-gauge observations inside the harbor

drodynamic model simulations forced with the same climate are also available (Marcos et al., 2021; Haigh et al., 2021).
model simulations (e.g. Muis et al., 2023) could serve as a Upon comparison, we found that the two tide-gauge records
valuable benchmark. have large differences in their extremes especially in the test

At one location (Alicante), both the neural networks split, and that both the predictions of the neural networks
and GTSM performed reasonably in the validation split and the simulations of GTSM agree better with the observa-
but poorly in the test split (Sect. 3.3), suggesting that the tions inside the harbor. This signals the importance of waves,
observed extremes in the test split can be explained by which affect the tide gauge inside the harbor less and are not
atmospherically-driven surges less well (see Sect. 3.3). Pre- (well) captured by the models. Another reason for the differ-
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ence could be observational errors. To train the neural net-
works with less noisy data, hydrodynamic simulations could
be used as the predictand instead of tide-gauge observations.
The downside, however, is that the neural networks will then
inherit the biases of the hydrodynamic model and will not
learn any indirect dependencies of observed extreme water
levels on surface winds and sea-level pressure.

At two locations (Stavanger and Immingham), GTSM per-
formed significantly better than the neural networks (Fig. 3).
Given that the models are forced by the same atmospheric
variables, this suggests that the neural networks at especially
Stavanger and Immingham may be improved by further op-
timizing the neural networks. Like «, the optimal hyperpa-
rameters of neural networks appear to be location-dependent
(Tiggeloven et al., 2021). Therefore, more extensive hyper-
parameter tuning than we did here may help to reduce both
the performance differences between locations and between
the neural networks and GTSM, including at predicting the
highest extremes. This could also involve optimizing the
variables, domain size and look-back window of the predic-
tor data used at each tide-gauge location (see Appendix A).

Similarly to Harter et al. (2024), we find that the neural
networks predominantly underestimate exceedances of very
high percentiles (e.g. the 99.9th). While this indicates that by
density-based weighting, the neural networks are not over-
compensating by forcing good scores on only a few high-
weighted outliers, the models do perform worse than GTSM
in this regard (Sect. 3.4). Agulles et al. (2024) found that
by using daily instead of hourly atmospheric forcing, their
hydrodynamic model underestimated the 99.9th percentile
of non-tidal residuals by approximately 30 %—-50 %. While
the underestimation with 3-hourly instead of hourly forcing
would likely be less severe, their results suggest that the dif-
ference in the temporal frequency of the forcing of the neu-
ral networks and GTSM explains the differences in their tail
behaviour at least partially. Future work could investigate
this further by running a hydrodynamic model with 3-hourly
forcing.

Another reason for the predominant underestimation of
exceedances of the 99.9th percentile could be the limited
ability of the neural networks to extrapolate to the highest
extremes, despite our use of DenseLoss. Smaller errors may
be obtained by increasing the density-based weights beyond
the values that we tested, but likely at the cost of reduced pre-
cision (Sect. 3.1). We therefore suggest several other avenues
that follow-up research could explore to reduce the underesti-
mation. First, to reduce the degree of extrapolation required,
it could be helpful to train the models with more data. This
could be obtained from the backward extension of ERAS to
1950 (Bell et al., 2021), depending on the length of the tide-
gauge records. In the same spirit, the added value of com-
plementing density-based weighting with synthetic oversam-
pling of the extremes (e.g. Branco et al., 2017), and transfer
learning across both different storm-surge datasets and dif-
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ferent locations (e.g. Xu et al., 2023), would be useful to ex-
plore.

Second, while we chose to use LSTMs and ConvLSTMs
(see Sect. 2.2), follow-up research could investigate whether
the predictions of the extreme storm surges can be improved
with other, emerging model architectures. For instance, graph
neural networks, hierarchical deep neural networks and gaus-
sian process models have been found beneficial for short-
term forecasting (Kyprioti et al., 2023; Jiang et al., 2024;
Naeini et al., 2025), and may also be in our context. Graph
neural networks in particular could help to predict storm
surges at multiple related locations, capturing spatial depen-
dencies by representing different locations as nodes of a
graph. Furthermore, path signatures, which encode features
from time series through tensors of iterated path integrals,
have shown promise as feature maps in machine learning
tasks concerning irregular time series and the detections of
extreme events (Riess et al., 2024; Lyons and McLeod, 2024,
Akyildirim et al., 2022; Arrubarrena et al., 2024). Addition-
ally, implementing self-attention mechanisms could help the
neural networks to dynamically focus on those features of the
input data that are most relevant to the extremes (Ian et al.,
2023; Wang et al., 2022). Finally, accuracy may be improved
by incorporating the shallow-water equations into the mod-
els, using so-called physics-informed neural networks (e.g.
Zhu et al., 2025; Donnelly et al., 2024).

5 Conclusions

We conclude that through density-based weighting, the cost-
sensitive learning approach DenseLoss (Steininger et al.,
2021) improves the performance of neural networks at pre-
dicting extreme storm surges at all 9 selected tide-gauge lo-
cations in Europe. Furthermore, at most locations, exploiting
spatiotemporal dependencies using a ConvLSTM- instead of
LSTM layer also improves the performance, if a sufficiently
large region of atmospheric predictor data is used. At 7 out
of the 9 tide-gauge locations that we used, the performance
of especially the ConvLSTM models closely approximates
that of the state-of-the-art, hydrodynamic Global Tide and
Surge Model (GTSM), based on performance metrics eval-
uated using the 99th percentile as a threshold for extremes.
This is a positive sign for the potential application of neural
networks to climate model simulations to project changes in
extreme storm surges, especially since we trained the neural
networks with 3-hourly data (the highest frequency at which
climate model simulations are typically provided) whereas
GTSM was forced with hourly data. However, the neural net-
works still predominantly underestimate the highest extreme
storm surges (those exceeding the 99.9th percentile). Follow-
up research may improve this by further optimizing the neu-
ral networks and the data used to train them.
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Appendix A: Sensitivity to predictor data parameters

To test the sensitivity of the performance of the neural net-
works to the configuration of the predictor data, we per-
formed several additional tests at the tide gauge in Esbjerg
(Denmark). For these tests, we separately varied the predic-
tor variables, the domain size and the length of the look-back
window for a combination of LSTM and ConvLSTM mod-
els (see Fig. Al). The models were trained 10 times each to
account for random variance, using a fixed dropout and learn-
ing rate (0.1 and 5e >, respectively), and « values of 0, 1, 3,
and 5. Figure Al shows the average error metrics (relative
RMSEpg9 and F1pgg) for each sensitivity test, in both the
validation and test splits.

Based on these tests, we find that using the zonal and
meridional wind components in addition to sea-level pres-
sure clearly improves the performance of the LSTM mod-
els, especially with regard to their generalization to the test
split (see Fig. Al, top row). Additionally using the absolute
wind speed does not substantially affect model performance.
Therefore, the absolute wind speed could potentially be left
out as a predictor variable in the future to increase training
efficiency.

Second, the LSTM models trained with a predictor region
of 3 by 3 or 5 by 5° tend to outperform LSTM models trained
with a domain size of 1 by 1° (see Fig. Al, second row), but
not by much. Comparatively, the ConvLSTM models bene-
fit from a larger domain size more (see Fig. Al, third row).
As a consequence, the ConvLSTM models outperform the
LSTM models when using a predictor region of 3 by 3 and
5 by 5°, but not (clearly) when using a predictor region of
only 1 by 1°.

Third, we find that using a look-back window for the pre-
dictor data is clearly better for the performance of the LSTM
models than using no look-back window (see Fig. A1, bottom
row). A look-back window of 24 h, which we use in the main
manuscript, seems to be approximately optimal. Namely, in-
creasing the look-back window from 24 to 36 h did not fur-
ther improve the performance of the models.

Finally, while the results in Fig. Al provide useful in-
sights into the sensitivity of the neural networks to the predic-
tor variables, region size and look-back window, we varied
these parameters separately and did not test different com-
binations. Additionally, the optimal configuration of the pre-
dictor data may vary by location. Follow-up research could
further investigate fine-tuning the predictor data at specific
locations.
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Figure A1. Sensitivity of the average RMSE pgg relative to Pog [-] and F1 pgg [-] of the LSTM and ConvLSTM models at Esbjerg (DK) to
the predictor variables (mean sea-level pressure msl, zonal and meridional wind #10 and v10, and absolute wind speed w10), domain size
of the predictor data (1 by 1, 3 by 3 or 5 by 5°), and the length of the look-back window (0, 12, 24 or 36 h), for different values of ««. The
error metrics are shown for both the validation (1st and 3rd columns) and the test splits (2nd and 4th columns). The bold text on the left of
the figure indicates the default settings used for the results in the main manuscript.

Appendix B: Training and evaluation samples

Table B1. Number of samples, the magnitude of the 99th and 99.9th percentiles (Pgg and Pgg 9) [m], and the number of filtered (see Sect. 2.4)
extremes exceeding Pgg and Pgg g, per split and per tide gauge.

| Samples [#] | PO [m] > phit | PO [m] = PPt 1]
Tide gauge ‘ Train Val Test ‘ Train  Val  Test ‘ Train  Val  Test ‘ Train  Val  Test ‘ Train  Val  Test
1 Stavanger 65094 23178 21697 | 035 035 035 | 586 199 190 | 0.53 0.51 0.5 66 24 22
2 Wick 57832 21538 16200 | 043 043 041 | 516 192 138 | 0.63 0.63 0.61 59 22 16
3 Esbjerg 62889 20249 21364 | 1.07 1.09 1.10 | 572 187 192 | 1.85 1.69 1.72 63 21 22
4 Immingham | 52939 20280 20164 | 0.56 057 0.56 | 403 153 159 | 1.01 093 1.00 51 20 20
5Den Helder | 66485 23368 23376 | 0.81 0.80 0.80 [ 593 206 200 | 140 126 1.39 67 24 24
6 Fishguard 57995 18361 19284 | 038 039 039 | 475 153 156 | 0.59 0.64 0.65 55 19 18
7 Brest 67810 21748 23304 | 035 035 036 | 577 168 195 | 0.55 0.53 0.59 65 19 23
8 Vigo 59772 22775 22663 | 029 0.29 030 | 487 168 207 | 045 042 045 53 16 23
9 Alicante 53578 16692 19681 | 020 0.20 020 | 493 154 182 | 029 0.28 031 56 16 19
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Appendix C: Neural network architectures

The LSTM model consists of an LSTM layer followed by
3 densely connected layers (Fig. C1). For the LSTM layer,
we specified 32 units and otherwise used the default Tensor-
Flow options. The first two densely connected layers have 32
neurons, the commonly used rectified linear unit (ReLu) acti-
vation and L2 regularization (/, = 0.02), and are followed by
a dropout layer with a dropout rate that we lightly tuned (see
Sect. 2.3). Regularization and dropout help to avoid over-
fitting the model to the training data. The last dense layer
has 1 neuron and a linear activation to predict a single storm
surge at each time step. The ConvLSTM model consists of a
ConvLSTM instead of regular LSTM layer, with 32 kernels
of 3 by 3 grid cells, even padding and also a ReLu activa-
tion. The ConvLSTM layer is followed by batch normaliza-
tion and a max-pooling layer that reduces the spatial dimen-
sions of identified features. The remainder of the ConvLSTM
model is the same as in the LSTM model.

For each prediction, predictors at time steps up to 24 h
prior were used (see Sect. 2.1), resulting in a total of nine
3-hourly time steps per prediction. The predictor data at each
of the 20 by 20 grid cells and for each of the 4 predictor
variables shown in Fig. 1 were stacked for the LSTM model,
resulting in input data with the shape (nqpg, 9, 1600). Here,
nobs refers to the number of observations. For the ConvL-
STM model, the grid cells were not stacked and the 4 predic-
tor variables were inputted as channels. The input to the Con-
vLSTM model therefore has the shape (nops, 9, 20, 20, 4).

LSTM Model
(Nobs,32) (Nops,32) (Nobs,32)

(Nobs, 1)
Predictors Predictions
(nob5v9x1600) (Nobs)
Dense (1)

LSTM (32) Dense (32) Dropout Dense (32) Dropout

tanh, sigmoid RelLu, 0.02 rq RelLu, 0.02 rg

linear

ConvLSTM Model
(Nobs,20,20,32) (Nobs,10,10,32)

(Nobs,32)

(Nobs,32)

(Nobs, 1)
Predictors Predictions
(Nobs,9,20,20,4) ™ > (Nobs)
Dense (1)

ConvLSTM2D (32) Batch  MaxPool2D Dense (32) Dropout Dense (32) Dropout linear
RelLu, 3x3,  Normalization  2x2 RelLu, 0.02 ra RelLu, 0.02 rg

even padding

Figure C1. Flowchart of the architectures of the LSTM- and ConvLSTM models used. The blue rectangles represent the LSTM and Con-
vLSTM layers, the orange rectangles the densely connected layers, the white rectangles the dropout layers and the grey layers the batch
normalization and max-pooling layers. The labels above the rectangles show how the shape of the data after passing through that layer. ryq

refers to the tunable dropout rate.
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Appendix D: Supplementary results
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Figure D1. Density-based weights [-] of standardized observations [standard deviation (s.d.)] at Den Helder (NL) for « values of 0, 1, 3, and
5. Weights lower than le=0 were clipped to le 0 (see Sect. 2.3).
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