Articles | Volume 25, issue 11
https://doi.org/10.5194/nhess-25-4405-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-4405-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Shaping shallow landslide susceptibility as a function of rainfall events
Micol Fumagalli
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 4, 20126 Milano, Italy
Alberto Previati
Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 4, 20126 Milano, Italy
Paolo Frattini
Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 4, 20126 Milano, Italy
Giovanni B. Crosta
Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 4, 20126 Milano, Italy
Related authors
No articles found.
Francesca Noemi Bonometti, Giuseppe Dattola, Paolo Frattini, and Giovanni Battista Crosta
EGUsphere, https://doi.org/10.5194/egusphere-2024-4122, https://doi.org/10.5194/egusphere-2024-4122, 2025
Short summary
Short summary
Alpine areas are undergoing the highest change temperature and rainfall intensity that are main rockfall triggering factors. This article proposes a new approach based on the frequency of meteorological variables to comprehend implication between climatic scenarios and rockfall events in the Dolomites. Several climate variables were considered and the outcomes reveal warming rates, reduction in icing and freeze-thaw cycles and anticipation of both starting of summer and of the winter ending.
Camilla Lanfranconi, Paolo Frattini, Gianluca Sala, Giuseppe Dattola, Davide Bertolo, Juanjuan Sun, and Giovanni Battista Crosta
Nat. Hazards Earth Syst. Sci., 23, 2349–2363, https://doi.org/10.5194/nhess-23-2349-2023, https://doi.org/10.5194/nhess-23-2349-2023, 2023
Short summary
Short summary
This paper presents a study on rockfall dynamics and hazard, examining the impact of the presence of trees along slope and block fragmentation. We compared rockfall simulations that explicitly model the presence of trees and fragmentation with a classical approach that accounts for these phenomena in model parameters (both the hazard and the kinetic energy change). We also used a non-parametric probabilistic rockfall hazard analysis method for hazard mapping.
Cited articles
Alvioli, M., Marchesini, I., Reichenbach, P., Rossi, M., Ardizzone, F., Fiorucci, F., and Guzzetti, F.: Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling, Geosci. Model Dev., 9, 3975–3991, https://doi.org/10.5194/gmd-9-3975-2016, 2016.
ARPA Piemonte: Eventi idrometeorologici dal 19 al 24 ottobre 2019. Rapporto evento, Agenzia Regionale per la Protezione Ambientale - Regione Piemonte, Torino, https://www.arpa.piemonte.it/pubblicazione/eventi-alluvionali-piemonte-evento-19-24-ottobre-2019 (last access: 16 December 2023), 2019.
ARPA Piemonte: https://www.arpa.piemonte.it, last access: 15 February 2024.
Bandis, S. C., Del Monaco, G., Margottini, C., Serafini, S., Trocciola, A., Dutto, F., and Mortara, G.: Landslide phenomena during the extreme meteorological event of 4–6 November 1994 in Piemonte Region, N. Italy, in: Proceedings of the 7th International Symposium on Landslides, Trondheim, Norway, 159–164, 1996.
Baum, R. L., Savage, W. Z., and Godt, J. W.: TRIGRS – A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0, U.S. Geol. Surv. Open-File Rep., 75, https://pubs.usgs.gov/of/2008/1159/ (last access: 31 October 2023), 2008.
Beguería, S.: Validation and Evaluation of Predictive Models in Hazard Assessment and Risk Management, Nat. Hazards, 37, 315–329, https://doi.org/10.1007/s11069-005-5182-6, 2006.
Bernardie, S., Vandromme, R., Mariotti, A., Houet, T., Grémont, M., Grandjean, G., Bouroullec, I., and Thiery, Y.: Estimation of Landslides Activities Evolution Due to Land–Use and Climate Change in a Pyrenean Valley, in: Advancing Culture of Living with Landslides, Springer International Publishing, Cham, 859–867, https://doi.org/10.1007/978-3-319-53498-5_98, 2017.
Bogaard, T. and Greco, R.: Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: proposing hydro-meteorological thresholds, Nat. Hazards Earth Syst. Sci., 18, 31–39, https://doi.org/10.5194/nhess-18-31-2018, 2018.
Bordoni, M., Vivaldi, V., Lucchelli, L., Ciabatta, L., Brocca, L., Galve, J. P., and Meisina, C.: Development of a data-driven model for spatial and temporal shallow landslide probability of occurrence at catchment scale, Landslides, 18, 1209–1229, https://doi.org/10.1007/s10346-020-01592-3, 2021.
Brenning, A.: Spatial prediction models for landslide hazards: review, comparison and evaluation, Nat. Hazards Earth Syst. Sci., 5, 853–862, https://doi.org/10.5194/nhess-5-853-2005, 2005.
Caine, N.: The Rainfall Intensity: Duration Control of Shallow Landslides and Debris Flows, Geogr. Ann. A, 62, 23–27, 1980.
Camera, C. A. S., Bajni, G., Corno, I., Raffa, M., Stevenazzi, S., and Apuani, T.: Introducing intense rainfall and snowmelt variables to implement a process-related non-stationary shallow landslide susceptibility analysis, Sci. Total Environ., 786, 147360, https://doi.org/10.1016/j.scitotenv.2021.147360, 2021.
Campbell, R. H.: Soil Slips, Debris Flows, and Rainstorms in the Santa Monica Mountains and Vicinity, Southern California, U.S. Geol. Surv. Prof. Pap. 851, 51 pp., https://pubs.usgs.gov/pp/0851/report.pdf (last access: 31 October 2023), 1975.
Cantarino, I., Carrion, M. A., Goerlich, F., and Martinez Ibañez, V.: A ROC analysis-based classification method for landslide susceptibility maps, Landslides, 16, 265–282, https://doi.org/10.1007/s10346-018-1063-4, 2019.
Carrara, A.: Multivariate models for landslide hazard evaluation, J. Int. Ass. Math. Geol., 15, 403–426, https://doi.org/10.1007/BF01031290, 1983.
Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., and Reichenbach, P.: GIS techniques and statistical models in evaluating landslide hazard, Earth Surf. Proc. Land., 16, 427–445, https://doi.org/10.1002/esp.3290160505, 1991.
Carrara, A., Crosta, G., and Frattini, P.: Comparing models of debris-flow susceptibility in the alpine environment, Geomorphology, 94, 353–378, https://doi.org/10.1016/j.geomorph.2006.10.033, 2008.
Coletti, G., Basso, D., Frixa, A., and Corselli, C.: Transported Rhodoliths Witness the lost carbonate factory: A case history from the miocene pietra da cantoni limestone (Nw Italy), Riv. Ital. Paleontol. S., 121, 345–368, https://doi.org/10.13130/2039-4942/6522, 2015.
Crosta, G.: Regionalization of rainfall thresholds: An aid to landslide hazard evaluation, Environ. Geol., 35, 131–145, https://doi.org/10.1007/s002540050300, 1998.
Crosta, G. B. and Frattini, P.: Distributed modelling of shallow landslides triggered by intense rainfall, Nat. Hazards Earth Syst. Sci., 3, 81–93, https://doi.org/10.5194/nhess-3-81-2003, 2003.
Crozier, M. J.: Prediction of rainfall-triggered landslides: A test of the antecedent water status model, Earth Surf. Proc. Land., 24, 825–833, 1999.
Cruden, D. M. and Varnes, D. J.: Landslide types and processes. Landslides: Investigation and Mitigation, Special Report 247, Transportation Research Board, Washington, 36–75, 1996.
Davis, J. and Goadrich, M.: The relationship between Precision-Recall and ROC curves, in: Proceedings of the 23rd international conference on Machine learning - ICML ’06. Association for Computing Machinery, New York, NY, USA, 233–240, https://doi.org/10.1145/1143844.1143874, 2006.
Drummond, C. and Holte, R. C.: Cost curves: An improved method for visualizing classifier performance, Mach. Learn., 65, 95–130, https://doi.org/10.1007/s10994-006-8199-5, 2006.
Fioravanti, G., Fraschetti, P., Lena, F., Perconti, W., and Emanuela, P. (ISPRA): I normali climatici 1991–2020 di temperatura e precipitazione in Italia, Stato dell'ambiente, 9, https://www.isprambiente.gov.it /files2022/pubblicazioni/stato-ambiente/i-normali-climatici-1991-2020-di-temperatura-e-precipitazione-in-italia_19082022.pdf (last access: 9 January 2024), 2022.
Flach, P. A. and Kull, M.: Precision-Recall-Gain curves: PR analysis done right, Adv. Neural Inf. Process. Syst., 2015 January, 838–846, 2015.
Frattini, P. and Crosta, G. B.: The role of material properties and landscape morphology on landslide size distributions, Earth Planet. Sc. Lett., 361, 310–319, https://doi.org/10.1016/j.epsl.2012.10.029, 2013.
Frattini, P., Crosta, G., and Sosio, R.: Approaches for defining thresholds and return periods for rainfall-triggered shallow landslides, Hydrol. Process., 23, 1444–1460, https://doi.org/10.1002/hyp.7269, 2009.
Frattini, P., Crosta, G., and Carrara, A.: Techniques for evaluating the performance of landslide susceptibility models, Eng. Geol., 111, 62–72, https://doi.org/10.1016/j.enggeo.2009.12.004, 2010.
Fredlund, D. G., Morgenstern, N. R., and Widger, R. A.: Shear Strength of Unsaturated Soils, Can. Geotech. J., 15, 313–321, https://doi.org/10.1139/t78-029, 1978.
Gilbert, G. K.: Finley's Tornado Predictions, Am. Meteorol. J., 1, 166–172, 1884.
Glade, T., Crozier, M., and Smith, P.: Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “Antecedent Daily Rainfall Model,” Pure Appl. Geophys., 157, 1059–1079, https://doi.org/10.1007/s000240050017, 2000.
Godt, J. W., Baum, R. L., and Chleborad, A. F.: Rainfall characteristics for shallow landsliding in Seattle, Washington, USA, Earth Surf. Proc. Land., 31, 97–110, https://doi.org/10.1002/esp.1237, 2006.
Goetz, J. N., Brenning, A., Petschko, H., and Leopold, P.: Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling, Comput. Geosci., 81, 1–11, https://doi.org/10.1016/j.cageo.2015.04.007, 2015.
Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P.: Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy, Geomorphology, 31, 181–216, https://doi.org/10.1016/S0169-555X(99)00078-1, 1999.
Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: Rainfall thresholds for the initiation of landslides in central and southern Europe, Meteorol. Atmos. Phys., 98, 239–267, https://doi.org/10.1007/s00703-007-0262-7, 2007.
Hanley, J. A. and McNeil, B. J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve, Radiology, 143, 29–36, https://doi.org/10.1148/radiology.143.1.7063747, 1982.
Heidke, P.: Berechnung Des Erfolges Und Der Güte Der Windstärkevorhersagen Im Sturmwarnungsdienst, Geogr. Ann., 8, 301–349, https://doi.org/10.1080/20014422.1926.11881138, 1926.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hosmer, D. W. and Lemeshow, S.: Applied Logistic Regression, John Wiley & Sons, Inc., Hoboken, NJ, USA, https://doi.org/10.1002/0471722146, 2000.
Huang, F., Cao, Z., Guo, J., Jiang, S. H., Li, S., and Guo, Z.: Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping, Catena, 191, 104580, https://doi.org/10.1016/j.catena.2020.104580, 2020.
Hungr, O.: A review of landslide hazard and risk assessment methodology, Landslides Eng. Slopes. Exp. Theory Pract., 1, 3–27, https://doi.org/10.1201/b21520-3, 2016.
Hürlimann, M., Guo, Z., Puig-Polo, C., and Medina, V.: Impacts of future climate and land cover changes on landslide susceptibility: regional scale modelling in the Val d'Aran region (Pyrenees, Spain), Landslides, 19, 99–118, https://doi.org/10.1007/s10346-021-01775-6, 2022.
Hwang, C.-L. and Yoon, K.: Multiple Attribute Decision Making: methods and applications a state-of-the-art survey, Springer Sci. Bus. Media, 186, https://doi.org/10.1007/978-3-642-48318-9, 1981.
INTERREG IIC: Descrizione dei principali eventi alluvionali che hanno interessato la regione Piemonte, Liguria e nella Spagna Nord Orientale, 90–94 pp., https://www.arpa.piemonte.it /pubblicazione/descrizione-dei-principali-eventi-alluvionali-che-hanno-interessato-regione-piemonte (last access: 25 March 2024), 1998.
ISPRA: Dissesto idrogeologico in Italia: pericolosità e indicatori di rischio, 183 pp., https://www.isprambiente.gov.it /it/pubblicazioni/rapporti/dissesto-idrogeologico-in-italia-pericolosita-e-indicatori-di-rischio-edizione-2021 (last access: 20 January 2024), 2021.
Iverson, R. M.: Landslide triggering by rain infiltration, Water Resour. Res., 36, 1897–1910, https://doi.org/10.1029/2000WR900090, 2000.
Jacobs, L., Kervyn, M., Reichenbach, P., Rossi, M., Marchesini, I., Alvioli, M., and Dewitte, O.: Regional susceptibility assessments with heterogeneous landslide information: Slope unit- vs. pixel-based approach, Geomorphology, 356, 107084, https://doi.org/10.1016/j.geomorph.2020.107084, 2020.
Jenks, G. F.: The data model concept in statistical mapping, Int. Yearb. Cartogr., 7, 186–190, 1967.
Jones, J. N., Boulton, S. J., Bennett, G. L., Stokes, M., and Whitworth, M. R. Z.: Temporal Variations in Landslide Distributions Following Extreme Events: Implications for Landslide Susceptibility Modeling, J. Geophys. Res.-Earth, 126, 1–26, https://doi.org/10.1029/2021JF006067, 2021.
Kirschbaum, D. and Stanley, T.: Satellite-Based Assessment of Rainfall-Triggered Landslide Hazard for Situational Awareness, Earth's Future, 6, 505–523, https://doi.org/10.1002/2017EF000715, 2018.
Knevels, R., Petschko, H., Proske, H., Leopold, P., Maraun, D., and Brenning, A.: Event-based landslide modeling in the styrian basin, Austria: Accounting for time-varying rainfall and land cover, Geosciences, 10, 1–27, https://doi.org/10.3390/geosciences10060217, 2020.
Licata, M., Buleo Tebar, V., Seitone, F., and Fubelli, G.: The Open Landslide Project (OLP), a New Inventory of Shallow Landslides for Susceptibility Models: The Autumn 2019 Extreme Rainfall Event in the Langhe-Monferrato Region (Northwestern Italy), Geosciences, 13, 289, https://doi.org/10.3390/geosciences13100289, 2023.
Lombardo, L. and Mai, P. M.: Presenting logistic regression-based landslide susceptibility results, Eng. Geol., 244, 14–24, https://doi.org/10.1016/j.enggeo.2018.07.019, 2018.
Lombardo, L., Opitz, T., Ardizzone, F., Guzzetti, F., and Huser, R.: Space-time landslide predictive modelling, Earth-Sci. Rev., 209, 103318, https://doi.org/10.1016/j.earscirev.2020.103318, 2020.
Lu, N. and Godt, J.: Infinite slope stability under steady unsaturated seepage conditions, Water Resour. Res., 44, 1–13, https://doi.org/10.1029/2008WR006976, 2008.
Luino, F.: The Flood and Landslide Event of November 4-6 1994 in Piedmont Region (Northwestern Italy): Causes and Related Effects in Tanaro Valley, Phys. Chem. Earth, Part A Solid Earth Geod, 24, 123–129, https://doi.org/10.1016/S1464-1895(99)00007-1, 1999.
Luino, F.: Sequence of instability processes triggered by heavy rainfall in the Northern Italy, Geomorphology, 66, 13–39, https://doi.org/10.1016/j.geomorph.2004.09.010, 2005.
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.: Landslide inventories and their statistical properties, Earth Surf. Proc. Land., 29, 687–711, https://doi.org/10.1002/esp.1064, 2004.
Mandarino, A., Luino, F., and Faccini, F.: Flood-induced ground effects and flood-water dynamics for hydro-geomorphic hazard assessment: the 21–22 October 2019 extreme flood along the lower Orba River (Alessandria, NW Italy), J. Maps, 17, 136–151, https://doi.org/10.1080/17445647.2020.1866702, 2021.
Maraun, D., Knevels, R., Mishra, A. N., Truhetz, H., Bevacqua, E., Proske, H., Zappa, G., Brenning, A., Petschko, H., Schaffer, A., Leopold, P., and Puxley, B. L.: A severe landslide event in the Alpine foreland under possible future climate and land-use changes, Commun. Earth Environ., 3, 1–11, https://doi.org/10.1038/s43247-022-00408-7, 2022.
Marc, O., Gosset, M., Saito, H., Uchida, T., and Malet, J. P.: Spatial Patterns of Storm-Induced Landslides and Their Relation to Rainfall Anomaly Maps, Geophys. Res. Lett., 46, 11167–11177, https://doi.org/10.1029/2019GL083173, 2019.
Marino, P., Peres, D. J., Cancelliere, A., Greco, R., and Bogaard, T. A.: Soil moisture information can improve shallow landslide forecasting using the hydrometeorological threshold approach, Landslides, 17, 2041–2054, https://doi.org/10.1007/s10346-020-01420-8, 2020.
Mason, P. J. and Rosenbaum, M. S.: Geohazard mapping for predicting landslides: An example from the Langhe Hills in Piemonte, NW Italy, Q. J. Eng. Geol. Hydroge., 35, 317–326, https://doi.org/10.1144/1470-9236/00047, 2002.
Micheletti, N., Lambiel, C., and Lane, S. N.: Investigating decadal-scale geomorphic dynamics in an alpine mountain setting, J. Geophys. Res. F Earth Surf., 120, 2155–2175, https://doi.org/10.1002/2015JF003656, 2015.
Montgomery, D. R. and Dietrich, W. E.: A physically based model for the topographic control on shallow landsliding, Water Resour. Res., 30, 1153–1171, https://doi.org/10.1029/93WR02979, 1994.
Montrasio, L., Schilirò, L., and Terrone, A.: Physical and numerical modelling of shallow landslides, Landslides, 13, 873–883, https://doi.org/10.1007/s10346-015-0642-x, 2016.
Moreno, M., Lombardo, L., Crespi, A., Zellner, P. J., Mair, V., Pittore, M., van Westen, C., and Steger, S.: Space-time data-driven modeling of precipitation-induced shallow landslides in South Tyrol, Italy, Sci. Total Environ., 912, 169166, https://doi.org/10.1016/j.scitotenv.2023.169166, 2024.
Muñoz Sabater, J.: ERA5-Land hourly data from 1950 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.e2161bac, 2019.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Nam, K., Kim, J., and Chae, B.: Exploring class imbalance with under-sampling, over-sampling, and hybrid sampling based on Mahalanobis distance for landslide susceptibility assessment: a case study of the 2018 Iburi earthquake induced landslides in Hokkaido, Japan, Geosci. J., 28, 71–94, https://doi.org/10.1007/s12303-023-0033-6, 2024.
Ozturk, U., Pittore, M., Behling, R., Roessner, S., Andreani, L., and Korup, O.: How robust are landslide susceptibility estimates?, Landslides, 18, 681–695, https://doi.org/10.1007/s10346-020-01485-5, 2021.
Peirce, C. S.: The numerical measure of the success of predictions, Science, 4, 453–454, https://doi.org/10.1126/science.ns-4.93.453-a, 1884.
Persichillo, M. G., Bordoni, M., and Meisina, C.: The role of land use changes in the distribution of shallow landslides, Sci. Total Environ., 574, 924–937, https://doi.org/10.1016/j.scitotenv.2016.09.125, 2017.
Petley, D.: Global patterns of loss of life from landslides, Geology, 40, 927–930, https://doi.org/10.1130/G33217.1, 2012.
Piana, F., Fioraso, G., Irace, A., Mosca, P., D'Atri, A., Barale, L., Falletti, P., Monegato, G., Morelli, M., Tallone, S., and Vigna, G. B.: Geology of Piemonte region (NW Italy, Alps–Apennines interference zone), J. Maps, 13, 395–405, https://doi.org/10.1080/17445647.2017.1316218, 2017.
Poggio, L., De Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty, Soil, 7, 217–240, https://doi.org/10.5194/soil-7-217-2021, 2021.
Provost, F. and Fawcett, T.: Robust classification for imprecise environments, Mach. Learn., 42, 203–231, https://doi.org/10.1023/A:1007601015854, 2001.
Provost, F., Fawcett, T., and Kohavi, R.: The case against accuracy estimation for comparing induction algorithms, Int. Conf. Mach. Learn., 445, https://dl.acm.org/doi/10.5555/645527.657469 (last access: 24 November 2023), 1998.
Raghavan, V., Bollmann, P., and Jung, G. S.: A Critical Investigation of Recall and Precision as Measures of Retrieval System Performance, ACM T. Inform. Syst., 7, 205–229, https://doi.org/10.1145/65943.65945, 1989.
Regione Piemonte: Geoportale Piemonte, https://www.geoportale.piemonte.it, last access: 4 March 2024.
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F.: A review of statistically-based landslide susceptibility models, Earth-Sci. Rev., 180, 60–91, https://doi.org/10.1016/j.earscirev.2018.03.001, 2018.
Saito, T. and Rehmsmeier, M.: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets, PLoS One, 10, 1–21, https://doi.org/10.1371/journal.pone.0118432, 2015.
Sala, G., Lanfranconi, C., Frattini, P., Rusconi, G., and Crosta, G. B.: Cost-sensitive rainfall thresholds for shallow landslides, Landslides, 18, 2979–2992, https://doi.org/10.1007/s10346-021-01707-4, 2021.
Samia, J., Temme, A., Bregt, A. K., Wallinga, J., Stuiver, J., Guzzetti, F., Ardizzone, F., and Rossi, M.: Implementing landslide path dependency in landslide susceptibility modelling, Landslides, 15, 2129–2144, https://doi.org/10.1007/s10346-018-1024-y, 2018.
Segoni, S., Tofani, V., Rosi, A., Catani, F., and Casagli, N.: Combination of rainfall thresholds and susceptibility maps for dynamic landslide hazard assessment at regional scale, Front. Earth Sci., 6, https://doi.org/10.3389/feart.2018.00085, 2018.
Šilhán, K.: Dendrogeomorphological analysis of landslides on the undercut river terrace bank (a case study in Czech Republic), Landslides, 19, 621–635, https://doi.org/10.1007/s10346-021-01833-z, 2022.
Smith, H. G., Spiekermann, R., Betts, H., and Neverman, A. J.: Comparing methods of landslide data acquisition and susceptibility modelling: Examples from New Zealand, Geomorphology, 381, 107660, https://doi.org/10.1016/j.geomorph.2021.107660, 2021.
Smith, H. G., Neverman, A. J., Betts, H., and Spiekermann, R.: The influence of spatial patterns in rainfall on shallow landslides, Geomorphology, 437, 108795, https://doi.org/10.1016/j.geomorph.2023.108795, 2023.
Steger, S., Brenning, A., Bell, R., and Glade, T.: The propagation of inventory-based positional errors into statistical landslide susceptibility models, Nat. Hazards Earth Syst. Sci., 16, 2729–2745, https://doi.org/10.5194/nhess-16-2729-2016, 2016.
Thomas, M. A., Mirus, B. B., and Collins, B. D.: Identifying Physics-Based Thresholds for Rainfall-Induced Landsliding, Geophys. Res. Lett., 45, 9651–9661, https://doi.org/10.1029/2018GL079662, 2018.
Tiranti, D., Nicolò, G., and Gaeta, A. R.: Shallow landslides predisposing and triggering factors in developing a regional early warning system, Landslides, 16, 235–251, https://doi.org/10.1007/s10346-018-1096-8, 2019.
Trigila, A. and Iadanza, C.: The national landslide inventory, landslide events, impacts and mitigation measures in Italy, in: Landslides and Engineered Slopes. Protecting Society through Improved Un- derstanding vol. 1, edited by: Eberhardt, E., Froese, C., Turner, A.K., and Leroueil, S., CRC Press, Taylor & Francis, Banff, Alberta, Canada, pp. 273–278, 2012.
Van Den Eeckhaut, M., Poesen, J., Govers, G., Verstraeten, G., and Demoulin, A.: Characteristics of the size distribution of recent and historical landslides in a populated hilly region, Earth Planet. Sc. Lett., 256, 588–603, https://doi.org/10.1016/j.epsl.2007.01.040, 2007.
van Westen, C. J., Castellanos, E., and Kuriakose, S. L.: Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview, Eng. Geol., 102, 112–131, https://doi.org/10.1016/j.enggeo.2008.03.010, 2008.
Varnes, D. J.: IAEG Commission on Landslides and other Mass-Movements: Landslide Hazard Zonation: A Review of Principles and Practice, The UNESCO Press, Paris, 63 pp., 1984.
Wu, W. and Sidle, R. C.: A distributed slope stability model for steep forested basins, Water Resour., 31, 2097–2110, 1995.
Yordanov, V. and Brovelli, M. A.: Comparing model performance metrics for landslide susceptibility mapping, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 1277–1284, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1277-2020, 2020.
Yule, G. U.: On the association of attributes in statistics, Philos. T. Roy. Soc. Lond. A, 194, 257–319, https://doi.org/10.1098/rsta.1900.0019, 1900.
Zhao, Z., He, Y., Yao, S., Yang, W., Wang, W., Zhang, L., and Sun, Q.: A comparative study of different neural network models for landslide susceptibility mapping, Adv. Space Res., 70, 383–401, https://doi.org/10.1016/j.asr.2022.04.055, 2022.
Short summary
Shallow landslides are mass movements of limited thickness, mainly triggered by extreme rainfalls, that can pose a serious risk to the population. This study uses statistical methods to analyse and simulate the relationship between shallow landslides and rainfalls, showing that in the studied area shallow landslides are modulated by rainfall but controlled by lithology. A new classification method considering the costs associated with a misclassification of the susceptibility is also proposed.
Shallow landslides are mass movements of limited thickness, mainly triggered by extreme...
Altmetrics
Final-revised paper
Preprint