Nat. Hazards Earth Syst. Sci., 25, 4405-4422, 2025
https://doi.org/10.5194/nhess-25-4405-2025

© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Shaping shallow landslide susceptibility as a function of

rainfall events

Micol Fumagalli, Alberto Previati, Paolo Frattini, and Giovanni B. Crosta

Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 4, 20126 Milano, Italy

Correspondence: Micol Fumagalli (m.fumagalli86 @campus.unimib.it)

Received: 29 July 2024 — Discussion started: 13 August 2024

Revised: 11 June 2025 — Accepted: 15 June 2025 — Published: 10 November 2025

Abstract. This paper tests a multivariate statistical model to
simulate rainfall-dependent susceptibility scenarios of shal-
low landslides. To this end, extreme rainfall events span-
ning from 1977 to 2021 in the Orba basin (a study area of
595 km? located in Piedmont, northern Italy) have been con-
sidered. First of all, the role of conditioning and triggering
factors on the spatial pattern of shallow landslides in areas
with complex geological conditions is analysed by compar-
ing their spatial distribution and their influence within logis-
tic regression models, with results showing that rainfall and
specific lithological and geomorphological conditions exert
the strongest control on the spatial pattern of landslides.

Different rainfall-based scenarios were then modelled us-
ing logistic regression models trained on different combi-
nations of past events and evaluated using an ensemble of
performance metrics. Models calibrated on multiple events
outperform the ones based on a single event, since they
are capable of compensating for local misleading effects
that can arise from the use of a single rainfall event. The
best-performing developed model considers all the landslide-
triggering rainfall scenarios and two non-triggering intense
rainfall events, with a score of 0.90 out of 1 on the multi-
criteria TOPSIS-based! performance index.

Finally, a new approach based on misclassification costs is
proposed to account for false negatives and false positives in
the predicted susceptibility maps.

Overall, this approach based on a multi-event calibration
and on a misclassification cost analysis shows promise in
producing rainfall-dependent shallow landslide susceptibil-
ity scenarios that could be used for hazard analyses and early
warning systems and could assist decision-makers in devel-
oping risk mitigation strategies.

ltechnique for order preference by similarity to ideal solution

1 Introduction

Shallow landslides are a widespread phenomenon that affects
many regions of the world (Petley, 2012). In Italy, according
to the last national report on landslides and floods, almost
8 % of the country is affected by landslides, of which 15 %
are classified as rapid flow and 6 % as shallow landslides (IS-
PRA, 2021). According to Cruden and Varnes (1996), these
are shallow landslides, mainly translational, with a thickness
ranging between 0.5 and 2 m (Bandis et al., 1996; Mason and
Rosenbaum, 2002). Shallow landslides are generally trig-
gered by rainfall events, which cause an increase in pore wa-
ter pressure or a loss of apparent cohesion generated by suc-
tion (Caine, 1980; Crosta and Frattini, 2003; Fredlund et al.,
1978; Iverson, 2000; Lu and Godt, 2008). Despite their lim-
ited initial volume, these landslides may be characterized by
a high density per unit area and can evolve into debris flows.
The high velocity and the difficulty of prediction due to the
almost complete lack of premonitory signs (Campbell, 1975;
Frattini et al., 2009; Montrasio et al., 2016) make these phe-
nomena seriously dangerous in terms of life and economic
losses (Trigila and Tadanza, 2012).

A common definition of landslide hazard is “the probabil-
ity of occurrence within a specific period of time and within a
given area of a potentially damaging phenomenon” (Varnes,
1984), requiring the quantification of the magnitude and the
spatial and temporal probability for an instability event to
occur. The variables that control landslide hazards are com-
monly distinguished into conditioning and triggering factors.
Conditioning factors are generally assumed to have no tem-
poral dependence and are responsible for “where” a land-
slide might occur, while triggering factors are event-related
and control “when” a landslide might occur (Crosta and Frat-
tini, 2003; Lombardo et al., 2020; Wu and Sidle, 1995), al-
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though their spatial properties (e.g. distribution of intensity
or cumulative rainfall during a rain event) play a key role in
determining the location of landslides.

The spatial likelihood of shallow landslide occurrence
is addressed through landslide susceptibility models, based
on either physically based or machine-learning techniques.
Physically based techniques for shallow landslides often
combine the infinite-slope model with hydrogeological mod-
els, which require many different input data; for this reason,
they are more frequently applied at the site scale (Baum et
al., 2008; Montgomery and Dietrich, 1994).

Machine-learning methods search for functional relation-
ships between the conditioning factors and the distribution of
landslides, obtained from inventories of past events (Carrara,
1983; Goetz et al., 2015; Huang et al., 2020; Reichenbach
et al., 2018; van Westen et al., 2008). Susceptibility mod-
els are usually considered time independent, meaning that
the likelihood of landslides occurrence does not vary in time
(Jones et al., 2021; Lombardo et al., 2020). However, many
authors demonstrated that this assumption is often violated
on both long (hundreds or thousands of years) and short (tens
of years) timescales, especially in view of climate changes
(Hungr, 2016; Samia et al., 2018). The “when” problem has
typically been addressed by using rainfall thresholds or phys-
ically based models. Rainfall thresholds describe the rainfall
intensity, duration, or cumulative event precipitation that may
trigger landslides for a particular area (Caine, 1980; Crosta,
1998; Guzzetti et al., 2007). This approach has usually disre-
garded soil features and morphometric conditioning factors,
such as the geotechnical features of the involved materials,
until recent times, when hydrogeological effects started to be
included in the analyses, e.g. through the consideration of the
soil water content prior to the triggering event (Bogaard and
Greco, 2018; Marino et al., 2020). Some authors started test-
ing approaches to address both the “where” and the “when”
questions in the context of early warning systems. For ex-
ample, Kirschbaum and Stanley (2018) used a fuzzy over-
lay model to combine static explanatory variables into a sus-
ceptibility map. This information was then incorporated into
a heuristic decision tree model together with dynamic vari-
ables such as antecedent precipitation, giving a model ca-
pable of indicating potential landslide activity in near real-
time. Segoni et al. (2018b) combined rainfall thresholds and
susceptibility maps into a hazard matrix, while Bordoni et
al. (2021) integrated rainfall thresholds and antecedent soil
humidity with a susceptibility model in order to forecast the
spatial and temporal probability occurrence of shallow land-
slides. Camera et al. (2021) included intense rainfall and
snowmelt in a landslide susceptibility model trained over
multiple landslide inventories and different meteorological
conditions, making it potentially more robust to investigate
the effects of climate changes. Knevels et al. (2020) and Ma-
raun et al. (2022) included 5 d cumulated rainfall and max-
imum 3h rainfall intensity to model landslides associated
with an extreme rainfall event, and then they applied their
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findings to an event storyline approach to analyse the fu-
ture landslide occurrence probability under climate changes.
Moreno et al. (2024) integrated static and time-dependent
controlling factors into a generalized additive mixed model
(GAMM) to forecast shallow landslides in space and time,
showing that both short-term (2 d) and medium-term (14 d)
cumulative precipitation increases the model capabilities.

Yet, the integration of static and time-varying factors into
machine-learning models still remains challenging, but it
could become a powerful instrument to better understand the
connection between a variation in the time-dependent con-
trolling factors and landslide triggering, thus helping at im-
proving landslide prediction in a changing climate.

An important issue for the application of susceptibility
models is the evaluation of their performance. For models
that predict binary stable and unstable slopes, it is necessary
to choose a cut-off value below which the predicted suscep-
tibility values are treated as 0 and above which the values are
treated as 1 (Begueria, 2006; Brenning, 2005; Frattini et al.,
2010; Goetz et al., 2015; Guzzetti et al., 1999). This results
in a contingency matrix quantifying the total number of cor-
rectly and incorrectly classified units. From this matrix, it is
possible to assess the performance of the model by using sev-
eral performance statistics, such as the accuracy (i.e. the ratio
between the correctly classified samples and the total number
of samples), the precision (i.e. the ratio between the true pos-
itive samples and all the positively classified samples, mean-
ing the sum of the true positives and the false positives), the
true positive rate (TPR) (i.e. the ratio between the true posi-
tive and all the positives, meaning the sum of the true posi-
tives and the false negatives), the false positive rate FPR (i.e.
the ratio between the false positives and all the negatives),
the threat score (Gilbert, 1884), Pierce’s skill score (true skill
statistic; Peirce, 1884), Heidke’s skill score (Cohen’s kappa;
Heidke, 1926), and the odd ratio skill score (Yule’s Q; Yule,
1900).

However, the choice of the cut-off value is a complex
problem; therefore, the performance is frequently evaluated
by using cut-off-independent methods, such as the receiver
operating characteristic (ROC) curves (Frattini et al., 2010;
Hosmer and Lemeshow, 2000; Provost and Fawcett, 2001) or
the precision—recall (PR) curves (Davis and Goadrich, 2006;
Raghavan et al., 1989; Saito and Rehmsmeier, 2015). The
ROC curve represents the FPR and TPR obtained for dif-
ferent cut-offs. The area under the curve (AUROC) can be
used to quantify the overall quality of the model (Hanley
and McNeil, 1982). However, ROC curves can overestimate
the performance of a model when the distribution of the in-
put classes is highly skewed. For this reason, the precision—
recall (PR) curves have also been used (Nam et al., 2024;
Yordanov and Brovelli, 2020; Zhao et al., 2022), which plot
the precision (i.e. the proportion of true positives among the
positive predictions) against the TPR. However, unlike the
ROC curve, the value under the PR curve is not directly
interpretable for model evaluation, especially because of a
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non-universal baseline performance, which depends on the
class distribution, and a non-linear interpolation of precision
values. Nevertheless, PR analysis can be adapted to be used
similarly to the ROC analysis by using precision—recall-gain
curves (PRG), which make use of the F—gain score, a lin-
earized version of the F; score, to properly take baselines
into account (Flach and Kull, 2015).

One important consequence of the choice of the cut-off
value is the generation of false and missed alarms, mean-
ing the situations in which the model predicts a landslide in
a specific area or time but no landslide actually occurs or
the case in which a landslide takes place but the model fails
to predict it. False and missed alarms come with associated
costs. For example, false alarms may lead to unnecessary
evacuations or resource allocation, and they can reduce trust
in the model capabilities, while missed alarms result in un-
preparedness and potentially severe consequences, including
property damage, loss of life, or economic impacts. There-
fore, the performance of the model can be evaluated by as-
sessing the expected misclassification costs through the cost
curves (Drummond and Holte, 2006; Frattini et al., 2010),
with an approach that allows for the choice of the cut-off
value that minimizes the expected costs (Sala et al., 2021).

A multivariate statistical analysis for the Piedmont area of
the Orba basin (northern Italy) has been developed in this
paper, considering rainfall scenarios spanning from 1977 to
2021, to investigate the correlation between landslide distri-
bution and the spatial pattern of conditioning and triggering
factors. Different logistic regression models were trained for
different landslides and rainfall scenarios, and their perfor-
mance was evaluated through an ensemble of performance
metrics, leading to an optimal choice of the best model for
scenario-based problems or early warning.

This work allows us to address the following research
questions:

— To what extent the pattern of shallow landslides is con-
trolled by the characteristics of the rainfall event in areas
with complex geological conditions?

— How can rainfall be used within a statistical model
to produce instability scenarios for different rainfall
events?

— Which is the best strategy to train a statistical model
based on an ensemble of rainfall events?

— Which is the most significant classification scheme to
produce a susceptibility map for early warning pur-
poses?

The novelty of this work lies in the definition of a crit-
ical selection strategy of the optimal ensemble of rainfall
events to produce a susceptibility map that may be helpful for
scenario-based problems and early warning purposes. More-
over, a new methodology is proposed for the classification
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of the regression results, used for the realization of the final
resulting maps.

2 Materials and methods
2.1 Study area

The Orba basin is located between the Langhe and Alto Mon-
ferrato Hills of Piedmont region, north-western Italy. This
area has been affected by several high-magnitude floods and
severe slope instabilities during the last century, caused by in-
tense rainfall events (Mandarino et al., 2021). The study area
has an extension of 595km?2, and it is situated between 80
and 1170 m a.s.l. The main river of the basin, the Orba River,
flows northward from the Ligurian Apennines to the conflu-
ence with the Bormida River, a right tributary of the Po River.
The study area overlaps magmatic and metamorphic litho-
types in the southern part — mainly peridotites, serpentinites
and serpentine-schists, meta-gabbros, and meta-sediments
belonging to the Voltri Massif and the Sestri-Voltaggio Zone
(Piana et al., 2017) — while in the central part of the area the
sedimentary sequence of the Tertiary Piedmont Basin (TPB)
outcrops. The TPB evolved from the Late Eocene to the Late
Miocene over the inner part of the Alpine wedge (Coletti
et al., 2015) and is mainly represented in the area by con-
glomerates, sandstones, and marls. The northern sector of
the basin presents Quaternary fluvial deposits belonging to
the Alessandria—Tortona floodplain. The morphology of the
area is strongly controlled by the TPB sedimentary succes-
sion: where the strata are harder, the landscape presents hilly
reliefs with an asymmetric profile resulting from the mono-
clinal bedding of marly-silty and sandy-arenaceous alterna-
tions (Luino, 1999), which are part of a monoclinal struc-
ture striking WNW-ESE that imposes a dipping of approx-
imately 30° (Luino, 1999; Mason and Rosenbaum, 2002),
while lowered areas modelled by fluvial erosion are present
where the lithologies are more erodible. When the dipping of
the strata becomes gentler, the morphology becomes more
uniform and characterized by a dense hydrographic net-
work. The mean annual temperature is 13°, and the aver-
age annual precipitation ranges from around 600 mm yr~!
in the northern part to 1600mmyr~! in the southern
part, with autumn as the rainiest season (Fioravanti et al.,
2022; Luino, 2005). Land use is primarily forest (45 %),
with crops and meadows (24 %) near the confluence with
the Po River (Land Cover Piemonte, https://geoportale.igr.
piemonte.it/cms/progetti/land-cover-piemonte, last access:
21 October 2023).

2.2 Data
2.2.1 Rainfall events and landslide inventories

The inventories related to three different landslide events
that occurred in 1977, 2014, and 2019 were used for the
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Figure 1. Location of the Orba basin, with the spatial distribution
of shallow landslides observed in three different events and with the
main lithologies.

subsequent analyses. Data relative to the events of 1977
and 2014 are available online (SIFRAP, Sistema Informativo
sulle FRane in Piemonte, handled by Regional Environmen-
tal Protection Agency of Piemonte — ARPA Piemonte) and
were compiled through the analysis of Google Earth images,
national and regional orthophotos, published event maps, and
field reconnaissance, while the most recent event was directly
provided for this project by ARPA Piemonte (unpublished
data). The 2014 and 2019 inventories include polygons of
each single shallow landslide, while the 1977 inventory rep-
resents clusters of shallow landslides as polygons.

The first shallow landslide event was triggered by heavy
rainfall at the beginning of October 1977. Between 6 and
7 October, more than 400 mm of rain fell in less than 24 h,
causing flooding, bank and riverbed erosion, debris flows,
and soil slips INTERREG IIC, 1998). The second shallow
landslide event was triggered in October 2014 with more than
420 mm of rain in less than 12 h, as recorded at the Gavi me-
teorological station on 13 October, for which the mean an-
nual total rainfall is 1000 mm (calculated for the 1991-2020
time interval, ARPA Piemonte). The third shallow landslide
event occurred in late October 2019. In the afternoon and
evening of 21 October, more than 400 mm of rain (Gavi sta-
tion) fell in less than 12 h, resulting in a very high-magnitude
flood and widespread shallow landslides (ARPA Piemonte,
2019).

In addition to these three landslide-triggering rainfall
events, two intense precipitation events (2016 and 2021)
that were not associated to landslides were selected in or-
der to test the capabilities of the models to discriminate be-
tween triggering and non-triggering rainfall characteristics.
The 2016 event hit the Piedmont region with strong and per-
sistent rainfalls between 21 and 25 November, and it trig-

Nat. Hazards Earth Syst. Sci., 25, 4405-4422, 2025

M. Fumagalli et al.: Shaping shallow landslide susceptibility

Table 1. Statistical parameters describing the landslide events in the
study area.

Event Number  Density Total Mean
[%] landslide landslide

area area

[km?] [m?]

6-7 October 1977 366 1.31 7.82 21373
9-13 October 2014 66 0.004 0.023 353
19-22 October 2019 2088 0.26 1.57 124

gered almost 1000 landslides, none of which were in the
Orba basin. Indeed, the peak of the cumulative precipitation
was localized more southward compared to the ones previ-
ously described, with up to 400 mm of rain in the southern
edge of the Orba basin. The other event happened from 3 to
5 October 2021. The Ligurian-Piedmont watershed was the
most affected area, with a peak of 472 mm of rain in 12h
recorded in the south-western part of the area. The total pre-
cipitation in the Orba basin was up to 750 mm in the south-
western edge of the basin. The daily maximum rainfall in-
tensities and the yearly cumulative rainfall values for all the
considered events are reported in Fig. 2.

For all the inventories, a non-cumulative logarithmic
binned landslide size probability density distribution was de-
veloped:

1 aN
Niot 0A°

p(A)= (1)
where 0N in the number of landslides with an area between
A and A+ 0A, and Ny is the total number of landslides
within a study area (Malamud et al., 2004). Following Frat-
tini and Crosta (2013), a Pareto distribution was fitted to the
probability density above a minimum size cut-off (Fig. 3):
p(A)=ac®A %" ¢>0, a>0, Aelc, 00). )
Using the maximum likelihood estimation, the distribution
parameters were estimated, obtaining a good fitting for land-
slides larger than 500 m?, with the best fitting results for land-
slides greater than 1000 m?. The scaling exponents « vary be-
tween 1.5 and 2.6, values that are higher than most of those
reported in the literature but still in the range (Van Den Eeck-
haut et al., 2007).

2.2.2 Landslide conditioning and triggering factors

The conditioning factors used in the following analyses in-
clude seven morphometric parameters, lithology, soil grain
size distribution, and land use (Fig. S1 in the Supplement).
The morphometric parameters were extracted using ArcGIS
Pro 3.1.0 © from a 5m resolution digital terrain model
(DTM) acquired using a uniform methodology (lidar) at
Level 4 standard, with an elevation accuracy of +0.30m
(£0.60m in areas of lower precision, corresponding to
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Figure 2. Maximum daily rainfall intensity and landslide distribution during the considered events, reconstructed by interpolation of values
measured by the meteorological stations on the ground, that led to landslide triggering in the Orba basin. Graphs report the daily and
cumulative rainfall for the year in which the shallow landslides were triggered. Dashed lines represent the mean annual rainfall for the basin

of interest (ARPA Piemonte).

wooded and densely urbanized areas), provided by Piedmont
region. The morphometric factors are slope angle, northern-
ness, easternness, profile curvature, planar curvature, total
curvature, and flow accumulation. Lithological information
was obtained from the geological map of the Piemonte re-
gion, at a scale of 1:250000 (Piana et al., 2017). The units
have been reclassified by aggregating geo-stratigraphic units
with comparable lithological and litho-technical characteris-
tics (Table S1 in the Supplement), resulting in 16 lithological
classes (Fig. 1: gravels and sands, limestones, gypsum, marls,
marls and sands, sands and gravels, sandstone breccias, sand-
stones and conglomerates, sandstones and marls, sandstones
and siltites, serpentinites, slates, basalts, calcschists, gabbros
and peridotites, and prasinites).

Information relative to the soils grain size distribution was
retrieved from the SoilGrids maps (Poggio et al., 2021), re-
porting soil properties for the entire globe with a resolution
of 250 m. SoilGrids models were obtained through the appli-
cation of machine learning to soil data collected worldwide.

The land use was obtained from the 10 m resolution Land
Cover Piemonte map, which integrates information collected
between 2018 and 2022 (https://geoportale.igr.piemonte.
it/cms/progetti/land-cover-piemonte, last access: 21 Octo-
ber 2023). 12 different land-use classes were used, namely
arable land, areas with sparse/absent vegetation, artificial
non-agricultural green areas, heterogeneous agricultural ar-
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eas, inland waters, mining areas, permanent crops, perma-
nent lawns, road network, shrubby/herbaceous areas, urban-
ized and productive areas, and woods. Besides the predispos-
ing factors, several rainfall parameters potentially responsi-
ble for the shallow landslides triggering were also included
into the analysis. These parameters were obtained by inter-
polating daily rainfall data collected at 39 and 51 gauging
stations for the 1977 and 2014/2019 rainfall events, respec-
tively, with a natural neighbour technique, at a spatial reso-
lution of Sm. In particular, the maximum daily rainfall in-
tensity (mmd~—!, Fig. 2) and the antecedent cumulative rain-
fall (mm, Fig. S2) over 10, 30, 60, and 90d (Smith et al.,
2023) as a proxy for soil water content prior to the event
(Guzzetti et al., 2007), which can increase the likelihood of
failure (Bogaard and Greco, 2018; Thomas et al., 2018), were
extracted for each event. Maximum daily rainfall intensities
were normalized by the daily rainfall with a return period of
10 years, provided by ARPA Piemonte with a grid resolution
of 250 m, while the total and antecedent rainfall values were
normalized by the mean annual precipitation (1991-2020)
within the study area (Fig. S3). Data normalization was per-
formed because previous studies (Marc et al., 2019; Smith et
al., 2023) found that the spatial pattern of shallow landslides
is more correlated with rainfall anomalies rather than with
rainfall absolute values.
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the main text, the 1977 landslide inventory shows a different distri-
bution, shifted to the right, because of the different chosen mapping
criteria. Power-law fitting with the maximum likelihood estimator
is reported (8 = —a — 1).

A correlation analysis between these rainfall variables re-
vealed a strong linear correlation between the maximum rain-
fall intensity and the total rainfall of the event — probably
due to the coarse temporal aggregation used to estimate the
maximum intensities. A strong correlation was also found
between the antecedent cumulative values over different ag-
gregation time windows. For the subsequent regression anal-
yses, an a priori selection was made to extract the two most
influencing rainfall variables: the maximum daily rainfall in-
tensity as an intra-event descriptor and the 90 d cumulative
rainfall for the antecedent condition. The latter was selected
by testing the correlation between the cumulative rainfall
values and the soil humidity obtained from the ERA5-Land
dataset (Mufioz Sabater, 2019; Hersbach et al., 2020; Mufoz-
Sabater et al., 2021), from which the highest correlation was
found when using a time window of 90d (Fig. S4).

2.3 Slope unit delineation

The application of statistical models to landslide susceptibil-
ity zoning requires the partition of the study area in terrain
units, such as unique condition units, slope units, grid cells,
or others (Carrara et al., 1991, 2008). Among these, slope
units were chosen for areal partitioning within this study. A
slope unit is defined as a morphological terrain unit delimited
by drainage and divide lines (Carrara et al., 1991; Guzzetti et
al., 1999), corresponding to what could be defined as a sin-
gle slope, a combination of adjacent slopes, or a small catch-
ment from a geomorphological and a hydrological point of
view (Alvioli et al., 2016). Slope units were selected since
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they provide several advantages, such as (i) the reproducibil-
ity of the spatial partitioning; (ii) the possibility to use con-
tinuous values for the categorical variables, where the con-
tinuous values are calculated as the areal percentage of the
slope units that are covered by a particular categorical class
and thus can vary between 0% and 100 % (Carrara et al.,
1991); and (iii) an efficient handling of mapping uncertain-
ties, thanks to the generalization of the predisposing factors
falling within them (Jacobs et al., 2020; Steger et al., 2016).
Their delineation is based on the identification of drainage
and divide lines and was done automatically by using the
r.slopeunits algorithm (Alvioli et al., 2016). This iterative al-
gorithm requires as input data the minimum circular variance
for each unit, representing the allowed variability of orienta-
tion for each grid cell belonging to the same unit, and the
minimum area for each slope unit.

2.4 Preliminary exploratory statistical analysis

To understand which variables exert the strongest control on
the landslide distribution and if this control remains constant
through time, the distributions of the mean values of each
covariate for the slope units affected by shallow landslides
were compared with the same distributions for the whole
study area, as well as for the other inventories. The similarity
among the inventories for each covariate (i.e. the null hypoth-
esis) is rejected if the p value of Dunn’s test is smaller than
0.05.

To further investigate the role of antecedent and triggering
precipitation, the relationship between landslide density (i.e.
total landslide area over the total slope units area) and precip-
itation classes (i.e. normalized maximum rainfall intensity,
normalized cumulative rainfall, and normalized antecedent
cumulative rainfall) was analysed through Spearman’s rank
order correlation coefficient. Given the strong lithological
control, the analysis was conducted for the entire study area
and separately for the most unstable lithological units.

2.5 Rainfall-based susceptibility analysis

Binary logistic regression was chosen for the susceptibil-
ity analysis because of its widespread and validated use
and because it provides the importance of each condition-
ing variable in terms of standardized regression coefficients
in a straightforward manner (Carrara, 1983; Micheletti et al.,
2015; Reichenbach et al., 2018).

Logistic regression describes the relationship between a
binary outcome (stable or unstable unit) and a set of inde-
pendent variables (Hosmer and Lemeshow, 2000). The prob-
ability p of a sample to belong to a certain group is given
by

In = By+ B X1+ BXo+B3X34+...4+BuXm, 3)

where B; represents the logistic coefficients, estimated from
the data, that quantify the contribution of each variable X;
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to the final outcome. Logistic regression assumes that a lin-
ear relationship exists between the logit transformation of
the binary outcome and each variable selected by the model
through a forward stepwise method, with a variable being in-
cluded in the model if the probability of its score statistics
is smaller than an entry value of 0.05 and being removed if
the probability is greater than a removal value of 0.10. Before
running the models, variables showing a strongly skewed dis-
tribution were normalized using a log-transformation (Car-
rara et al., 2008), and all the static variables were then stan-
dardized using a z-score normalization (mean equal to 0 and
standard deviation equal to 1), in order to make their es-
timated regression coefficients comparable (Lombardo and
Mai, 2018).

Five susceptibility models were developed. Models m77,
ml4, and m19 were trained on a single landslide event
(i.e. 1977, 2014, and 2019, respectively). Model m771419
was trained by merging all the landslide events, and finally
model m7714161921 was trained by merging different rain-
fall events with or without landslides. Each dataset was di-
vided into training (3/4) and validation (1/4) subsets, the
former being used to build the models and the latter to eval-
uate their predictive performance. Each model was evalu-
ated against itself and against all the other landslide events
by using cross-validation. Model evaluation was performed
with the following strategy. First of all, two common cut-
off-independent methods were applied (ROC and precision—
recall-gain (PRG) curves) to obtain their area under the curve
values (hereafter referred to as AUROC and AUPRG values).
Then, the optimal cut-off obtained by the ROC analysis was
used to derive the optimal contingency matrix, from which
the accuracy, precision, TPR, and FPR were calculated.

Finally, the two values under the ROC and PRG curves
and the four performance metrics calculated from the con-
tingency matrix were summed up with a multiple attribute
decision-making procedure, performed with the technique
for order preference by similarity to ideal solution (TOPSIS;
Hwang and Yoon, 1981) to individuate the best model. For
each model, 50 logistic regression analyses were run with
different training and validation datasets, randomly extracted
from the original database. This procedure lead to the calcu-
lation of 50 different values of the coefficient associated with
each controlling variable and to the generation of 50 different
susceptibility maps, thus allowing us to statistically analyse
the distribution of the susceptibility values, the regression co-
efficients, and the performance metrics.

To avoid an overabundance of obviously stable units (e.g.
flat areas), which would give a biased estimate of the per-
formance, only nontrivial units with slopes more compatible
with shallow landslides triggering (> 20° and < than 40°)
were selected.

The economic consequences are one of the main issues
in early warning; these economic costs can be significantly
different in the case of false or missing alarms. This prob-
lem is usually not considered in susceptibility studies, where
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the classification of susceptibility into classes (e.g. very low,
low, medium, high, and very high) is based on some arbitrary
choice of the modeller (Cantarino et al., 2019).

For this reason, a new practical approach to classify
the susceptibility values was defined, based on the cost—
curves approach. Similarly to other methods, such as “natural
breaks” (Jenks, 1967), this procedure takes into account the
underlying data instead of using standard classes, with the
advantage that it can be calibrated on a specific cost analysis.

Specifically, the cut-off corresponding to the minimum
normalized expected cost was used as the centre of the third
class (medium susceptibility) and defined in this work as the
half-susceptibility threshold (HST). The class limits are de-
fined based on a geometric progression from 0 to 1, centred
on HST.

Since the misclassification costs can vary significantly
within the study area and since their quantification require
extremely detailed analyses, in the current work the a pri-
ori probabilities of having and not having landslides were
kept equal, while three scenarios of relative costs were con-
sidered (Scenario 1 with ¢ (—|+) : ¢ (+|—) = 0.5 : 0.5, Sce-
nario 2 with ¢(—|+) : c¢(+|—) = 0.8 : 0.2, and Scenario 3
with ¢ (—|+) : ¢ (+]—) = 0.2 : 0.8, where ¢ (—|+) is the cost
of false negatives and where ¢ (+|—) is the cost of false pos-
itives).

3 Results
3.1 Slope units delineation

By using a minimum area of 20 000 m?> and a maximum cir-
cular variance of 0.1, the study area was partitioned into
10 528 slope units (Fig. 4), with an average area of 56 555 m?
and a maximum area of 1 868299 m2. Slope units were clas-
sified as unstable if occupied by at least one landslide. This
resulted in 627 (5.95 %), 50 (0.47 %), and 869 (8.25 %) un-
stable slope units for the 1977, 2014, and 2019 events, re-
spectively.

3.2 Preliminary exploratory statistical analysis

Figure 5 represents the percentage of variables within the dif-
ferent groups of controlling factors for which the similarity
hypothesis between the variable distributions in the unsta-
ble slope units for the different inventories can be rejected
(see Fig. S5 for all the distributions). Lithological variables
show the lowest dissimilarity between the different invento-
ries, followed by land use. On the other hand, the rainfall
variables are always dissimilar among the inventories. This
suggests that landslides may be triggered by different rainfall
patterns but within certain specific lithological and land-use
classes.

To further investigate the control exerted by rainfall on
the triggering of shallow landslides, the correlation between
landslide distribution and values of maximum rainfall inten-
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Figure 5. Percentage of statistically dissimilar variables within each
group of controlling factors, according to Dunn’s test with a signifi-
cance level of 0.05. Numbers below the name of the groups refer to
the total number of variables considered within that group.

sity and 90d antecedent cumulative rainfall was analysed.
This investigation was carried out by defining intervals of
rainfall values and calculating the spatial density of land-
slides within each rainfall interval area. The three landslide
events show significant differences, confirming the previous
results. Considering the whole study area, landslide density is
clearly positively correlated with maximum rainfall intensity.
For the same maximum rainfall intensity values (Fig. 6a), the
landslide density is offset for the three inventories, suggest-
ing a different sensitivity of landslides to rainfall (e.g. land-
slide density for 400 mm is 4.36 x 10~* for the 2014 event
and 4.65 x 1072 for 2019). This could be explained by the
different levels of antecedent rainfall (Fig. 6b): the higher
the antecedent cumulative rainfall, the higher the sensitivity.
This relationship is also recognizable by visual comparison
of the event rainfall intensity maps with respect to the an-
tecedent cumulative rainfall maps (Figs. 2 and S2).

The same analysis was conducted for the most unstable
lithological units, namely marls (around 30 % of the total
landslides number for each event), sandstones and siltstones
(almost 50 % of landslide in each event), sandstone breccias
(7 % of landslides in 1977 and 2019, 0 % in 2014), and sand-
stones and marls (4 % in 1977 and 2019, 14 % in 2014). The
results did not show clear trends, probably due to the low
number of landslides in each rainfall class (Fig. S6). This is
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Figure 6. Scatterplots representing landslide density in each rainfall
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cumulative rainfall) for the entire study area. Spearman’s rank or-
der correlation coefficients between landslide density and rainfall
classes are reported in each plot. Underlined values are statistically
correlated at the 0.05 level.

more evident for sandstone breccias, as this lithology is re-
stricted to a relatively small sector in the western part of the
study area.

For the 1977 event, Fig. 6a shows that landslides started to
occur for maximum rainfall intensities greater than 100 mm
in 24 h. This result agrees with the intensity—duration (ID)
threshold curves proposed for the area (Tiranti et al., 2019).
A few landslides in 2019 were triggered at even lower rainfall
values, very close to the catchment divide where local topog-
raphy could have exerted a major control. The high density is
also related to the small catchment area pertaining to the low
rainfall interval. On the other hand, during the 2014 event,
a rainfall intensity of 250 mm in 24 h was necessary to cause
instabilities. This may be explained by a relatively low cumu-
lative antecedent rainfall (below 300 mm) with respect to the
other events, inducing low initial soil moisture conditions.

3.3 Rainfall based susceptibility maps

Figure 7 shows the mean coefficient and the inclusion rate
of the 50 runs of the logistic regression models for each sin-
gle variable. Slope gradient is the most important parame-
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ter for all models (except m14), with always positive coef-
ficients and a high inclusion rate. For the other morphome-
tric parameters, northernness and flow accumulation show a
high inclusion rate and relatively high coefficients (except for
m14). The negative sign of the northernness coefficient indi-
cates the south-facing slope units as more unstable. Among
the lithological descriptors, “gravels and sands”, “sandstones
and siltites”, and “marls” show the highest inclusion rates
and coefficient values. On the other hand, basalts, limestones,
and slates are never included in the models. Land use does
not exert an important control. Among the descriptors of soil
granulometry, the contents in coarse fragments and sand are
selected with a high inclusion rate and a negative median co-
efficient, with the exception of m14, while clay content is
chosen with a high inclusion rate and a positive median co-
efficient.

Eventually, rainfall variables play an important but com-
plex role in susceptibility. Maximum daily intensity is very
important for m14, m771419, and m7714161921, with posi-
tive coefficients and a high inclusion rate. Surprisingly, maxi-
mum rainfall intensity is not included in m19 and takes nega-
tive values in m77. The antecedent cumulative rainfall is im-
portant for slope instability in models m77, m14, m771419,
and m7714161921, while model m19 shows the lowest mean
coefficient for this variable.

The intra-event maximum rainfall intensity is also a rele-
vant variable but with a more complex influence. This vari-
able is very important for model m14, with a strong destabi-
lizing effect, but it is not included in model m19 and assumes
a negative coefficient in m77.

Model m14 shows a good performance when evaluated
over its validation dataset, with a mean AUROC value of
0.97 (highest mean AUROC value among all the tested mod-
els), but it fails in predicting or hindcasting other landslide
events, as indicated by an interquartile range of AUROC val-
ues between 0.62 and 0.74 (Fig. S7), a low accuracy, and a
high FPR. Model m77 shows a high mean AUROC but a low
AUPRG, especially when trying to predict 2014 landslides,
meaning that the model output becomes less precise when
ignoring the true negatives. On average, model m19 shows
good prediction capabilities, especially in terms of AUPRG.
Models trained over multiple events show the best perfor-
mance and an associated reduction in the variability of the
final results. The mean AUROC value increases, as does the
mean AUPRG. The inclusion of intense rainfall events that
did not lead to the triggering of slope instabilities results in
small improvements in the general performance, especially
for the mean accuracy and FPR.

According to the TOPSIS classifier (Fig. 8),
m7714161921 is the model with the highest relative
closeness degree to the ideal solution (score of 0.9), obtained
giving the same weight for the evaluation of all the scores
(0.16 for all the metrics).
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3.4 Model representation

For each model, five rainfall events were used to produce the
rainfall-based susceptibility maps (Fig. 9), obtaining differ-
ent maps for each model as a function of the event-specific
rainfall values. From a simple visual inspection, comparing
susceptibility classes and landslide distribution, it is clear
that models m14 and m19 are not able to correctly model
landslide susceptibility. As already seen in Fig. 7, the high
coefficient of rainfall intensity in m14 makes susceptibility
excessively dependent on this variable, so the resulting unsta-
ble units simply reflect its distribution. On the contrary, the
exclusion of rainfall intensity and the low coefficients of an-
tecedent rainfall in m19 make the susceptibility maps almost
constant for different events. In addition, the model tends to
overestimate unstable areas. Model m77 shows a better per-
formance but still suffers from the low coefficient of max-
imum rainfall intensity, making this model also quite con-
stant between different events, thus also predicting unstable
areas for the 2016 and 2021 events. Models m771419 and
m7714161921 significantly outperform the others, as they
are able to classify the central part of the study area as un-
stable only for heavy rainfall events. However, they tend to
underestimate the percentage of unstable or very unstable
slope units during the 1977, 2014, and 2019 events, with less
than 4 % of the slope units classified as moderately, highly,
or very highly unstable. On the other hand, they correctly
classify all the slope units as stable when considering rain-
fall events that were not associated with landslides (p16 and
p21). Model m7714161921 also shows a slightly better abil-
ity to handle false positives when simulating non-triggering
rainfall events, as can be seen in the last row of Fig. 7 for the
prediction of m14, m16, and m21, especially in the western
part of the study area.

In general, the maps in Fig. 9 classified by using a rather
standard partitioning of the susceptibility values into five
classes (0-0.2, 0.2-0.45, 0.45-0.55, 0.55-0.8, 0.8—1) show
an uneven distribution of slope units in the different classes,
giving the impression of either overestimation or underes-
timation. This problem was addressed with the new clas-
sification method based on misclassification costs, which
was applied to m7714161921 (ranked as the best-performing
model). For each of the three considered scenarios, the opti-
mal cut-off threshold and the relative geometric progression
were derived, considering different misclassification cost ra-
tios (Table 2). The class boundaries derived from the geomet-
ric progression were then used to reclassify the susceptibility
values to produce optimized maps (Fig. 10). The optimal cut-
off threshold decreases as the relative cost of false negatives
decreases, thus reducing the number of slope units classified
as unstable.
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Table 2. Threshold values for m7714161921 for each of the proposed scenarios of relative costs. HST is the half-susceptibility threshold
corresponding to the value that minimizes the normalized expected cost for each cost scenario. The considered classes correspond to very

low (VL), low (L), medium (M), high (H), and very high (VH).

Cost scenarios HST VL L M H VH

c(—|+):c(+]-)=05:0.5 0.034 0.005 0.018 0.068 0.261 1.000
c(—|+):c(+]-)=08:0.2 0.010 0.018 0.068 0261 1.000 0.005
c(—|+):c(+]-)=02:0.8 0.104 0.066 0.164 0405 1.000 0.027

4 Discussion

4.1 Landslide distribution analysis and prediction

This paper investigated the relationship between several spa-
tially distributed variables (i.e. possible triggering factors)
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and the occurrence of shallow landslides though a logistic
regression-based susceptibility analysis.

At a first visual inspection, the spatial distribution of the
shallow landslides is fairly constant in all the available in-
ventories, suggesting that shallow landslides in this area are
modulated by rainfall but controlled by other static parame-
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Figure 8. AUROC, accuracy, precision, true positive rate (TPR), and false positive rate (FPR) obtained using the threshold that minimizes
the expected costs, calculated for each model assuming equal costs. For each model, the scores of the evaluation obtained with the TOPSIS

classifier are also reported.

ters. In particular, landslides tend to occur in slope units with
similar geomorphology and lithology (Fig. 5).

More specifically, besides the slope gradient, lithology ap-
pears to be the most important variable that controls landslide
susceptibility (Fig. 7). Among all, the most prone lithologies
in all the inventories are marls, sandstones, and siltites, sim-
ilarly to the results of Luino (1999) and Licata et al. (2023).
The high importance given to gravels and sands, a lithology
commonly found in alluvial flat areas, can be explained with
the instability of fluvial terraces (éilhén, 2022). Moreover,
the lithology controls the grain size of the soil cover and,
thus, the hydrological processes in the unsaturated zone. The
sedimentary sequence in the central part of the area, over-
laid by soils with a high clay content, is another important
destabilizing factor in the model because of the poor drain-
ing capacity of clays. More interestingly, the southern meta-
morphic basement is commonly covered by soils rich in sand
and coarse fragments, which have a strong stabilizing effect,
probably correlated with a higher drainage capacity and fric-
tion angle.

Surprisingly, the role of land use does not appear to be rel-
evant. In addition, the role of lithology may be strong enough
to mask the land-use effect.

Looking at the variables related to rainfall dynamics, the
cumulative antecedent rainfall is the most relevant in all re-
gression models. In fact, it has been considered a proxy for
the soil water content before the event, which for various au-
thors it is pivotal for modelling shallow landslides (Bogaard
and Greco, 2018; Marino et al., 2020). The intra-event max-
imum rainfall intensity is also a relevant variable, but with a
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more complex influence. Being calculated with a 24 h aggre-
gation time, this variable can be intended as a general de-
scriptor of the entire rainfall event, representative of both
the rainfall intensity and the daily cumulative value. Using
a smaller aggregation time could help to differentiate the ef-
fects of these two descriptors, which was impossible for the
event of 1977, as outlined in Sect. 4.2.

These parameters are also important to explain the spatial
distribution of the landslide density. In particular, the anal-
ysis of the relationships between landslide density, the nor-
malized maximum rainfall intensity over 24 h, and the nor-
malized values of the antecedent cumulative rainfall suggest
that landslide density appears to be controlled by the maxi-
mum rainfall intensity. This agrees with the mechanical ex-
planation of shallow landslide triggering, controlled by soil
saturation, leading to an increase in pore pressure and a loss
of soil suction (Fredlund et al., 1978). In addition, the an-
tecedent condition shows a double role of setting a threshold
required for landslide initiation (e.g. Crozier, 1999; Glade et
al., 2000; Godt et al., 2006; Marino et al., 2020b) and offset-
ting the relationship between landslide density and rainfall
intensity.

Several basin-scale studies suggest that to quantify the
shallow landslide susceptibility the use of multi-temporal in-
ventories leads to better results (Reichenbach et al., 2018),
while others affirm that this is not always associated with a
model performance improvement (Ozturk et al., 2021; Smith
et al., 2021). Results show that, for the Orba basin, mod-
els trained over a single landslide event are not capable of
catching the real processes underlying the instability phe-
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Figure 9. Landslide susceptibility maps for the Orba basin. Columns refer to different training models, while rows refer to different predicted

or hindcasted events.

nomena, despite the high landslide density and the good per-
formance when using the validation dataset. Thus, they are
unable to predict landslide events associated with different
rainfall characteristics. In particular, m14, being the smaller
landslide inventory and more limited in the extend of the af-
fected area, shows the best performance when tested against

Nat. Hazards Earth Syst. Sci., 25, 4405-4422, 2025

itself (Figs. 8 and S7) and the worst performance when used
to model other events, producing maps with an exaggerated
landslide susceptibility in areas with high precipitation. The
inclusion of multiple events helps in stabilizing the effect ex-
erted by the different controlling variables, thus providing
more reliable prediction/hindcast susceptibility maps.
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Figure 10. Instability maps relative to the best-performing model (m7714161921). Each row refers to a different relative cost scenario, where
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cut-off threshold and the relative geometric progression.

The evaluation of the performance of regression models is
always challenging, especially when using an input dataset
with a skewed distribution (e.g. Provost et al., 1998; Davis
and Goadrich, 2006; Drummond and Holte, 2006). AUROC,
which is the most used evaluation method in the literature
(Reichenbach et al., 2018), suffers from an overly optimistic
evaluation while misclassifying the samples that belong to
the underrepresented class. This is the case for model m77
when predicting the 2014 event. On the other hand, AUPRG
shows high values when model m77 predicts the 2019 event,
even if large parts of the area affected by landslides are pre-
dicted as stable. The other indices are cut-off dependent, and
they do not show any capabilities to discriminate among the
different models. For these reasons, the multi-criteria TOP-
SIS model was used to consider the contribution of all the
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indices. Based on the TOPSIS evaluation, the multi-temporal
models outperform the single-event models, confirming what
was discussed above. In particular, the model with the high-
est prediction capabilities is m7714161921, suggesting that
the inclusion of non-triggering rainfall events helps in defin-
ing the rainfall threshold to trigger instabilities in different
parts of the study area.

For the representation of the results, the classification
scheme typically adopted in the literature does not account
for misclassification costs (Cantarino et al., 2019), meaning
that the costs associated with false and missed alarms are im-
plicitly assumed equal. However, since the misclassifications
costs are often not equal, the total misclassification cost can
be reduced by playing on the degree of conservativeness of
the models in order to reduce the false negative or false pos-
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itive rates, thus increasing or decreasing what is classified as
unstable. This required a new classification scheme to adjust
the thresholds used for susceptibility classification according
to the selected proportion of misclassification costs.

Scenario 2, where the costs of false negatives are higher,
is the most conservative, because the classification is forced
towards instability to keep the false negative rate low. On the
contrary, scenario 3, where the costs of false positives are
higher, shows the highest percentage of stable slope units.
Scenario 1 considers equal costs for false positives and false
negatives, and it produces intermediate results. The strong
differences between these scenarios suggest that the use of
cost curves for the landslide susceptibility model could be a
valuable tool in the final stages of a susceptibility analysis,
when slope units need to be classified. This approach allows
for different classification thresholds based on cost combi-
nations, enabling the evaluation of their consequences. Costs
may include direct costs like damage to infrastructure and
loss of life and indirect costs like traffic disruptions and lost
productivity (Sala et al., 2021). While this work uses differ-
ent cost ratio scenarios to demonstrate the approach’s poten-
tial, more detailed analyses could provide precise cost quan-
tifications, considering that costs may vary across different
parts of the study area.

4.2 Challenges, uncertainties, and limitations

It is necessary to underline possible uncertainties and as-
sumptions regarding the input datasets and the modelling
strategies so that the limitations of our findings are made
clear. Two main limitations can potentially affect the results
of these analyses: the consideration of land use and land
cover as a static variable and the use of an old landslide in-
ventory.

First, land use and land cover can vary greatly over time.
Considering this variable as static is mainly due to a lack of
information, since the only other dataset provided by ARPA
Piemonte dates to 2010, and the analysis of satellite images,
besides being beyond the purpose of this study, was not pos-
sible for the 1977 event. An analysis of the land-use change
between two available datasets (2010 and 2021) within the
Orba basin revealed that permanent crops decreased by 6 %
and meadows by almost 2 %, while the areas characterized
by shrub and herbaceous vegetation increased by 4 % and the
woods by almost 4 %. However, these changes can be consid-
ered negligible in the analyses, given the very low influence
of the land use variables in the logistic regression. This is
in contrast with the conclusions of many other studies (e.g.
Bernardie et al., 2017; Persichillo et al., 2017; Hiirlimann et
al., 2022), suggesting that this relationship could be further
analysed in future studies.

The second limitation is posed by the inclusion of an older
event (1977) with higher uncertainty of both rainfall pattern
and landslide distribution. Data from the ARPA Piemonte
and ARPA Liguria weather stations were used to analyse
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the rainfall pattern. However, only 36 stations were active
in 1977, 26 % less than in 2014 and 2019, and most of them
are located outside the region of interest (Fig. 2). This un-
certainty in the rainfall pattern could affect the modelling,
especially in the central part of the basin. In addition, data
for 1977 were only available with a daily time step, mak-
ing it impossible to use multiple different aggregation times.
The landslide inventory of the 1977 event represents land-
slides as areas affected by diffuse shallow landslides rather
than individual polygons. This affects the landslide distribu-
tion and density analysis. However, the choice to use slope
units for analysis mitigated this difference in the invento-
ries. Finally, as mentioned above, the use of this landslide
event precluded the use of satellite products; therefore, some
factors that could improve susceptibility analyses, such as
satellite-based antecedent soil moisture, could not be incor-
porated into the model.

5 Conclusions

This study demonstrates the feasibility of using logistic re-
gression to model the effects of extreme rainfall events on
the stability of a complex study area, such as the Orba basin
in the Piedmont region of Italy. In this area, the spatial distri-
bution of shallow landslides reflects the distribution of lithol-
ogy and geomorphology, thus showing a similar pattern for
different rainfall scenarios.

In such conditions, the development of a rainfall-
dependent model capable of simulating different suscepti-
bility scenarios is more challenging and requires a careful
calibration of the model with representative and significant
rainfall events over a multi-temporal dataset. In fact, the use
of single events may be problematic. For example, a rain-
fall event that is spatially concentrated in a small area with
specific geological characteristics (such as in 2019 for the
study area) could overestimate the role of such characteris-
tics despite the rainfall, producing biased scenarios. On the
contrary, a model trained on an extreme localized event span-
ning different geological conditions (such as the 2014 event)
may overestimate the role of rainfall at the expense of geol-
ogy. Finally, a rainfall event evenly distributed over the area
(such as in 1977) would produce a model that underestimates
the role of rainfall in controlling the landslide pattern.

To avoid such effects, an ensemble of rainfall events is
preferable to better unravel the effects of the triggering vari-
ables and also to compensate for local misleading effects that
may arise from the use of a single rainfall event. The use
of rainfall events that did not trigger landslides may also be
helpful for such compensation. The proposed strategy for se-
lecting the best ensemble of rainfall events was based on the
maximization of the AUROC, AUPRG, accuracy, and preci-
sion, as well as the minimization of the expected misclassifi-
cation costs.
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Eventually, misclassification costs were adopted as a cri-
terion to define the susceptibility classes for the practical use
of the resulting maps; this highlights the need to give impor-
tance to the classification process, which should be tailored
to the needs of the end users and for the purpose of the final
products.
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