Articles | Volume 25, issue 11
https://doi.org/10.5194/nhess-25-4375-2025
https://doi.org/10.5194/nhess-25-4375-2025
Research article
 | 
07 Nov 2025
Research article |  | 07 Nov 2025

Machine learning for automated avalanche terrain exposure scale (ATES) classification

Kalin Markov, Andreas Huber, Momchil Panayotov, Christoph Hesselbach, Paula Spannring, Jan-Thomas Fischer, and Michaela Teich

Related authors

Particle and front tracking in experimental and computational avalanche dynamics
Michael Neuhauser, Anselm Köhler, Anna Wirbel, Felix Oesterle, Wolfgang Fellin, Johannes Gerstmayr, Falko Dressler, and Jan-Thomas Fischer
Nat. Hazards Earth Syst. Sci., 25, 4185–4202, https://doi.org/10.5194/nhess-25-4185-2025,https://doi.org/10.5194/nhess-25-4185-2025, 2025
Short summary
AvaFrame com1DFA (v1.3): a thickness-integrated computational avalanche module – theory, numerics, and testing
Matthias Tonnel, Anna Wirbel, Felix Oesterle, and Jan-Thomas Fischer
Geosci. Model Dev., 16, 7013–7035, https://doi.org/10.5194/gmd-16-7013-2023,https://doi.org/10.5194/gmd-16-7013-2023, 2023
Short summary
Flow-Py v1.0: a customizable, open-source simulation tool to estimate runout and intensity of gravitational mass flows
Christopher J. L. D'Amboise, Michael Neuhauser, Michaela Teich, Andreas Huber, Andreas Kofler, Frank Perzl, Reinhard Fromm, Karl Kleemayr, and Jan-Thomas Fischer
Geosci. Model Dev., 15, 2423–2439, https://doi.org/10.5194/gmd-15-2423-2022,https://doi.org/10.5194/gmd-15-2423-2022, 2022
Short summary

Cited articles

Acharya, A., Steiner, J. F., Walizada, K. M., Ali, S., Zakir, Z. H., Caiserman, A., and Watanabe, T.: Review article: Snow and ice avalanches in high mountain Asia – scientific, local and indigenous knowledge, Nat. Hazards Earth Syst. Sci., 23, 2569–2592, https://doi.org/10.5194/nhess-23-2569-2023, 2023. a
Afendras, G. and Markatou, M.: Optimality of training/test size and resampling effectiveness in cross-validation, Journal of Statistical Planning and Inference, 199, https://doi.org/10.1016/j.jspi.2018.07.005, 2019. a
Ahsan, M., Khan, A., Khan, K. R., Sinha, B. B., and Sharma, A.: Advancements in medical diagnosis and treatment through machine learning: a review, Expert Syst., 41, e13499, https://doi.org/10.1111/exsy.13499, 2024. a
Amin, G., Imtiaz, I., Haroon, E., Saqib, N. U., Shahzad, M. I., and Nazeer, M.: Assessment of machine learning algorithms for land cover classification in a complex mountainous landscape, Journal of Geovisualization and Spatial Analysis, 8, 34, https://doi.org/10.1007/s41651-024-00195-z, 2024. a
Bakkehøi, S., Domaas, U., and Lied, K.: Calculation of snow avalanche runout distance, Ann. Glaciol., 4, 24–29, https://doi.org/10.3189/S0260305500005188, 1983. a
Download
Short summary
With growing demand for decision support in recreational and professional use of avalanche terrain, we applied machine learning for automated Avalanche Terrain Exposure Scale (AutoATES) mapping in Bulgaria. A Random Forest model, trained on expert-labelled data from the Pirin Mountains, accurately classifies avalanche terrain and reduces reliance on manual expert mapping, offering an effective and scalable solution for large-scale regional AutoATES applications.
Share
Altmetrics
Final-revised paper
Preprint