
Nat. Hazards Earth Syst. Sci., 25, 4375–4403, 2025
https://doi.org/10.5194/nhess-25-4375-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Machine learning for automated avalanche terrain exposure
scale (ATES) classification
Kalin Markov1,5, Andreas Huber2,6, Momchil Panayotov3,4,5, Christoph Hesselbach2, Paula Spannring2,
Jan-Thomas Fischer2, and Michaela Teich2

1National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Sofia, Bulgaria
2Austrian Research Centre for Forests (BFW), Department of Natural Hazards, Innsbruck, Tyrol, Austria
3University of Forestry, Sofia, Bulgaria
4Bulgarian Extreme and FreeSkiing Association (BEFSA), Sofia, Bulgaria
5Bulgarian Avalanche Association, Sofia, Bulgaria
6University of Innsbruck, Unit of Hydraulic Engineering, Innsbruck, Tyrol, Austria

Correspondence: Kalin Markov (kmarkov@geophys.bas.bg)

Received: 7 May 2025 – Discussion started: 2 June 2025
Revised: 28 August 2025 – Accepted: 12 September 2025 – Published: 7 November 2025

Abstract. Avalanche risk management is essential for back-
country safety. The Avalanche Terrain Exposure Scale
(ATES) classifies mountain terrain based on its potential ex-
posure to avalanche hazards and supports mountain visitors
in their terrain assessment. Initially, ATES maps were gener-
ated manually, a costly and time-consuming process. Auto-
mated ATES model chains (AutoATES) have been developed
to address these limitations, but existing approaches require
careful parametrisation when applied to novel areas.

This study applies machine learning methods, specifically
Random Forests, for automated ATES classification by re-
placing expert-driven AutoATES classification trees with a
data-driven approach. Using a labelled training dataset from
the Pirin Mountains, Bulgaria, we trained and evaluated three
Random Forest models to assess their potential in classify-
ing avalanche terrain. We analysed the influence of various
input features, including slope, potential release areas, and
percent canopy cover, on classification performance. Our re-
sults indicate that Random Forests offer a robust and scalable
method for ATES mapping and that incorporating additional
input features can improve classification performance. The
accuracies for our Random Forest models on a held-out test
set were 79.31%, 82.32%, and 80.42%, demonstrating their
potential for automated avalanche terrain classification and
supporting safer backcountry decision-making.

1 Introduction

Globally, snow avalanches cause an estimated 250 fatalities
each year (Acharya et al., 2023; Schweizer et al., 2015), with
more than one third of annual fatalities occurring on aver-
age in the European Alps (Techel et al., 2016). The amount
of non-fatal incidents significantly exceeds these numbers.
A large proportion of fatal avalanche accidents involves
people recreating in the mountains, particularly skiers and
snowboarders, often triggering the avalanches themselves
(Schweizer and Lüschg, 2001; Techel and Zweifel, 2013;
Engeset et al., 2018). These numbers clearly highlight the
importance of supporting recreationists’ decision-making in
avalanche terrain by raising awareness, enhancing education,
and providing information on avalanche terrain and current
conditions (Toft et al., 2024).

In Bulgaria, backcountry skiing and snowboarding have
seen a notable increase in popularity in recent years. Un-
fortunately, this increase has been accompanied by a grow-
ing number of avalanche-related incidents (Panayotov et al.,
2021). Despite these developments, there is still limited in-
formation available to the public regarding current snow-
pack stability and avalanche danger or the spatial distribu-
tion of avalanche-prone terrain. Unlike in most Alpine coun-
tries no government-supported avalanche forecast exists. The
only available forecast is provided by a non-governmental
organization (Bulgarian Avalanche Association), and is lim-
ited to the Bansko Ski Resort area (Panayotov et al., 2024b).
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As a result, backcountry recreationists must rely primarily
on their own judgment when evaluating current avalanche
danger and navigating potential avalanche terrain. Therefore,
there is a pressing need for clear and accessible information
to enhance public awareness of avalanche-prone terrain and
current snowpack stability, especially aimed at backcountry
users with limited avalanche education and experience in ter-
rain assessment and management (Panayotov et al., 2021).
Similar gaps in publicly available avalanche information ex-
ist across many other mountain regions in the Balkan Penin-
sula and worldwide.

A simple and effective method for mapping avalanche-
prone terrain and communicating it to backcountry users is
the Avalanche Terrain Exposure Scale (ATES). Originally in-
troduced by Statham et al. (2006) as a visitor management
tool for national parks in Canada, ATES was developed to as-
sess and convey the inherent avalanche risk of snow-covered
mountainous terrain. Unlike avalanche forecasts, which pro-
vide dynamic assessments of current snowpack stability and
avalanche danger, ATES offers a static classification that re-
flects the terrain’s inherent avalanche hazard potential, inde-
pendent of current snow or weather conditions. The initial
version categorised terrain into three classes – simple, chal-
lenging, and complex (Statham et al., 2006). A later revision
expanded the system to five classes, adding an extreme cat-
egory and a designation for non-avalanche terrain (Statham
and Campbell, 2025).

The ATES framework has been applied to map linear ter-
rain routes (Parks Canada Agency, 2017) as well as to cre-
ate comprehensive spatial maps. The first of these were de-
veloped by expert-based manual delineation. Examples in-
clude the mapping of more than 8000km2 of avalanche ter-
rain in western Canada (Campbell and Gould, 2013) or the
production of ATES maps for a part of the Central Pyre-
nees (Gavaldã et al., 2013). In Bulgaria, geospatial technolo-
gies were first employed for avalanche terrain hazard map-
ping by Markov and Ivanov (2021), while the country’s first
ATES maps were also produced through expert assessment
and manual GIS-based classification of an area near Bansko
Ski Resort (Panayotov et al., 2021).

In recent years, significant efforts have been dedicated to
developing automated procedures for generating ATES maps
(e.g. AutoATES, Larsen et al., 2020) or similar avalanche
terrain classification approaches (Schmudlach and Köhler,
2016; Harvey et al., 2018, 2024). The first iteration of
AutoATES was introduced in Norway by Larsen et al.
(2020), outlining a structured methodology consisting of
three key steps: (1) identifying potential avalanche release ar-
eas (PRAs), (2) modelling their potential runouts, and (3) in-
tegrating this information into a final ATES map using a de-
terministic, decision tree-based classification scheme. The
approach thus combines general physical understanding of
the underlying processes with empirically-motivated models
of avalanche release and runout, complemented by region-
specific expert knowledge. A major limitation of the initial

version was that it did not account for the influence of for-
est cover on potential avalanche hazard. Schumacher et al.
(2022) demonstrated that incorporating forest data can sub-
stantially enhance the accuracy of ATES classification com-
pared to approaches that omit this information.

To address this shortcoming and improve the general clas-
sification procedure, AutoATES 2.0 was developed by Toft
et al. (2024), incorporating forest cover data to account for
its protective effect against avalanches. AutoATES version
2.0 made use of ATES 2.0 (Statham and Campbell, 2025),
which adds the extreme and non-avalanche terrain classes.
Additionally, this version leveraged the open-source software
Flow-Py (D’Amboise et al., 2022) to enhance avalanche in-
tensity and runout modelling. AutoATES 2.0 has since been
applied to different mountainous regions worldwide. For in-
stance, von Avis et al. (2023) employed AutoATES to map
avalanche terrain in the continental United States, while Hu-
ber et al. (2023) used a modified version to assess avalanche
exposure in the Austrian Alps (AutoATES Austria).

The first use of automated ATES mapping in Bulgaria was
carried out by Markov and Panayotov (2024), who based
their work on the AutoATES 2.0 workflow. Subsequently, the
methodology outlined in AutoATES Austria was applied to
generate updated ATES maps for three test regions. While
this approach proved effective in open alpine environments
above the treeline, it faced challenges in accurately delin-
eating avalanche terrain within forested areas, necessitating
modifications of the expert-driven ATES classification tree
and improvements to the input data, such as the creation
of new algorithms to more precisely estimate forest per-
cent canopy cover (Panayotov et al., 2024b). Furthermore,
AutoATES relies on numerous thresholds and parameters,
which must be carefully chosen and adjusted to local condi-
tions. Identifying the optimal set of input features and thresh-
olds for the classification is highly dependent on the specific
characteristics of the terrain. As a result, expert knowledge
is required to fine-tune all aspects of AutoATES, includ-
ing PRA identification, runout approximation, and the final
expert-driven ATES classification tree (Hesselbach, 2023). A
method for optimising parameters in the AutoATES classifi-
cation step by reverse engineering human ATES maps was
recently proposed by Sykes et al. (2024), highlighting the
importance of refining threshold values for local conditions.

Applying the AutoATES procedure to novel mountain ar-
eas requires in-depth understanding of the AutoATES model
chain itself as well as intimate knowledge of the mountain-
ous terrain being analyzed. This process can be challenging
and time-consuming, as it demands a deep understanding of
avalanche dynamics and the intricate dependencies between
input parameters. Given these challenges, an ideal approach
would be to create an automated ATES mapping procedure
that integrates expert knowledge on local terrain and moun-
tain characteristics, without having to rely heavily on man-
ual parameter tuning and threshold adjustments in the Au-
toATES procedure.
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Machine learning (ML) presents a promising method to
address these challenges. ML techniques have been widely
employed across various domains to harness computational
power and enhance human decision-making (Pugliese et al.,
2021; Sarker, 2021). Applications range from pattern recog-
nition, image and speech processing, and medical diagnos-
tics to predicting the likelihood of natural disasters and other
complex events (Ahsan et al., 2024; Dankan Gowda et al.,
2024; Venkadesh et al., 2024; Pandey et al., 2025).

A specialised subset of ML, known as supervised learning,
uses a labelled training dataset – expert-annotated examples
– from which algorithms learn the relationships and interac-
tions among different input features (Nasteski, 2017). This
approach has proven particularly effective in classification
tasks, where the goal is to assign data points to predefined
categories (Saraswat, 2022; Amin et al., 2024). Since ATES
mapping inherently falls into this category, ML-based classi-
fiers present a promising alternative to traditional rule-based
approaches.

Several categories of classification algorithms exist that
leverage labelled training data, including Naïve Bayes (NB),
Random Forest (RF), and Neural Networks (NN) (Ul Hassan
et al., 2018; Yolanda et al., 2023). Among these, RF meth-
ods have been successfully applied to a wide range of classi-
fication problems, including in the field of avalanche hazard
assessment (Cetinkaya and Kocaman, 2023; Viallon-Galinier
et al., 2023), due to their ability to process diverse input fea-
tures and provide feature importance rankings (Jaiswal and
Samikannu, 2017). RF models can directly utilise raw, con-
tinuous input values, eliminating the need for expert-driven,
rule-based manual classification and enabling the model to
capture more complex patterns and interactions within the
data (Salman et al., 2024). These capabilities are particularly
valuable for ATES mapping, as they allow researchers to de-
termine which factors most strongly influence terrain clas-
sification. However, while RF offers advantages in scalabil-
ity and automation, its potential limitations must also be ac-
knowledged. As a data-driven, statistical method, it depends
strongly on the data used for model training and application,
which may reduce the ability of human experts to influence
and interpret model results.

To address the drawbacks of previous AutoATES ap-
proaches and to evaluate the utility of RF for automated
ATES mapping, we applied the RF algorithm in the final clas-
sification step of the AutoATES model chain. Our research
addressed three key questions:

1. Can the RF algorithm effectively perform the final clas-
sification required for automated ATES mapping, gener-
ating maps with terrain categorised into ATES classes?

2. Can RF models serve as a tool for assessing the rele-
vance and utility of different input features in automated
avalanche terrain classification?

3. How can we systematically evaluate the performance of
automated ATES classification using different RF mod-
els?

These research questions served as the basis for our
methodological design and shaped the structure of our study
into three main parts.

In the first part of our study, we replaced the expert-driven
ATES classification tree, which relies on predefined rules and
thresholds, with an RF-based classifier trained on a manually
labelled dataset created by a local expert.

In the second part, we assessed the significance of differ-
ent input features. By systematically introducing additional
features, we analysed their impact on RF model performance
and evaluated their suitability for ATES classification.

Finally, we conducted a comprehensive evaluation of the
RF models. Standard performance metrics were computed on
a held-out test set, ensuring robust validation. This evaluation
provided an estimate of how the models would generalise to
unseen terrain.

2 Data and methods

2.1 Study area

Our study was centered on the Pirin Mountain region in Bul-
garia. Pirin, situated in southwestern Bulgaria, is the coun-
try’s second-highest mountain range, with its highest peak,
Vihren, rising to 2914ma.s.l. The northern part of the range
contains over 50 peaks exceeding 2500ma.s.l. and is charac-
terised by a rugged alpine landscape featuring steep, promi-
nent peaks, sharp ridges, and deep glacially-carved valleys
dotted with numerous lakes (Pirin National Park, 2022).

The study area covered three adjacent valleys in north-
ern Pirin – Bunderitsa, Demyanitsa, and Bezbog – spanning
approximately 77km2. These valleys are popular backcoun-
try ski-touring destinations. Elevations within this area range
from the highest point at Vihren Peak (2914ma.s.l.) to the
lowest at 1462ma.s.l. The valleys are characterised by con-
siderable elevation changes, with some sections exhibiting
vertical drops of up to 1000m. While the lower portions
of the study area are predominantly forested, elevations be-
tween 2200–2500ma.s.l. are often densely covered by dwarf
mountain pine (Pinus mugo). The highest elevations primar-
ily consist of rocky terrain, characterised by extensive rock
bands and cliff faces. The study area encompasses avalanche
terrain of varying severity. While lower-angled, forested lo-
cations in the Demyanitsa and Bunderitsa Valleys and around
Bansko Ski Resort offer opportunities to avoid avalanche ex-
posure, accessing most major peaks, and even some huts and
shelters, requires traversing potential avalanche terrain.

The northwestern section of the study area includes the re-
gion around Bansko Ski Resort and the Bunderitsa Valley.
This is the area where all training data polygons were manu-
ally delineated (see Sect. 2.3). The trained models were then
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run on the entire study area, which includes the Demyanitsa
and Bezbog valleys to the east.

Figure 1 provides an overview of the study area and its lo-
cation on the Balkan peninsula and also indicates the location
of the training area.

2.2 General input data

The essential input data for generating ATES maps include
a digital terrain model (DTM) and at least one type of forest
data, which can be chosen from several available options. In
AutoATES 2.0, Toft et al. (2024) introduced three possible
forest data types that can be used – percent canopy cover
(PCC), stem density, and basal area.

For the majority of the study area, we used a 5m resolution
DTM provided by Pirin National Park for the purposes of this
study (Pirin National Park, 2022). Additionally, for a smaller
section of the Bunderitsa Valley, a 2m DTM provided by
Geopolymorphic Cloud, a private geospatial data provider,
was utilised. The digital terrain models (DTMs) were derived
from historical military topographic maps of Bulgaria. These
maps were produced using geodetic surveys and manual car-
tographic techniques, with a strong reliance on field obser-
vations. Consequently, the resulting DTMs may have limited
accuracy in certain locations, particularly in densely forested
or rugged areas where direct observations were challenging,
and smaller terrain features may have been generalised or
omitted. The DTM from Geopolymorphic Cloud was gen-
erated by digitising 1 : 5000 topographic maps, whereas the
DTM from Pirin National Park was based on smaller-scale
original maps. The two datasets were merged using open-
source GIS software (QGIS) and resampled to a 10 m reso-
lution. A 10m DTM resolution has been utilised in a num-
ber of AutoATES case studies (Larsen et al., 2020; Huber
et al., 2023) and coincides with the resolution of the avail-
able forest data in our study region. Additional processing of
the DTM consisted of a script-based correction of elevations
inside lake polygons to ensure even lake surfaces.

Forest structure data in Bulgaria is scarce, and the dataset
available from Pirin National Park lacks sufficient detail for
this study’s purposes. Therefore, we utilised the satellite-
based open-source Copernicus tree cover density product
with 10m resolution (Copernicus, 2020). This dataset assigns
a percentage value to each pixel that corresponds to varying
degrees of forest density. To maintain consistency with ter-
minology used in AutoATES 2.0 (Toft et al., 2024), we re-
ferred to this layer as percent canopy cover (PCC). While
this dataset has known limitations, such as an inability to de-
tect small forest openings and occasional misclassification of
dwarf mountain pine as forest (Panayotov et al., 2024b), its
open accessibility makes it a useful candidate for evaluating
the potential of low-cost, large-scale mapping approaches.
All datasets have been transformed to a common coordinate
system (EPSG:32635, WGS 84/UTM zone 35N).

2.3 Training data

Since RF is a supervised ML algorithm (Nasteski, 2017), it
requires a training dataset to learn the complex patterns and
dependencies between input features and the corresponding
response variable (i.e. the ATES classes). The training dataset
needs to contain manually labelled ATES regions, where the
assigned ATES classes are treated as the ground truth from
which the RF classifier learns. Ensuring a diverse training
set is critical, as it must represent a variety of possible terrain
features associated with each ATES class. A well-balanced
and comprehensive dataset enhances the algorithm’s ability
to learn the defining characteristics of the different classes
(Gong et al., 2023). Additionally, the accuracy of the spatial
boundaries in the training dataset is crucial. Poorly defined
polygon boundaries, such as one polygon extending into a
region belonging to a different ATES class, can introduce
ambiguity into the model, reducing its ability to generalise
to unseen data. Another key factor is class balance within the
training dataset. While RF is robust to class imbalance, main-
taining a relatively balanced number of samples per class
generally improves model performance (Japkowicz, 2001).

In this study, the training data was delineated in cooper-
ation with a local expert for an area covering the Bunder-
itsa Valley and a small portion of the Demyanitsa Valley near
Bansko Ski Resort (see Fig. 1) and was based on ATES class
definitions following Statham and Campbell (2025) and Toft
et al. (2024). We used the simple, challenging, complex, and
extreme terrain classes. Statham and Campbell (2025) also
introduced class 0 – non-avalanche terrain – as an optional
fifth ATES class describing terrain where avalanches do not
occur. In this study we do not use this class due to specifics
of our study area and concerns regarding the delineation of
completely avalanche-safe zones using automated methods
without prior human verification. Instead we implicitly in-
clude class 0 – non-avalanche terrain – within our definition
of class 1 – simple terrain. This approach aligns with the
statement of Statham and Campbell (2025) that delineation
of non-avalanche terrain requires a high level of confidence
and has been treated similarly in recent applications of Au-
toATES (Sykes et al., 2024; Toft et al., 2024).

The remainder of the Demyanitsa valley and the Bezbog
region were entirely excluded during the training set devel-
opment. The decision to use only a subset of the study area
for training was motivated by the objective of evaluating the
models’ abilities to generalise beyond the region they were
trained on.

The delineation of training data polygons was based on
local expertise and records of well-known and observed
avalanche release areas and runouts in the region. The map-
ping process was additionally informed by slope maps,
results of dendrogeomorphologic studies (Tsvetanov and
Panayotov, 2024), and local-scale avalanche simulations
conducted with RAMMS (Panayotov et al., 2024a). The
training set was designed to ensure diverse representation of
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Figure 1. Study area located in the Pirin Mountains, Bulgaria south of Bansko. The western part of the study area covering the Bunderitsa
valley, parts of the Demyanitsa valley and parts of Bansko Ski Resort has been used for model training. The study area also comprises parts
of the rest of the Demyanitsa Valley and the Bezbog area, on which the models have not been trained. The light green shading presents an
approximation of the areas covered by forests. The upper boundary of these areas corresponds to the treeline level. The map utilises the
following sources. (a) © OpenStreetMap contributors 2025. Distributed under the Open Data Commons Open Database license (ODbL)
v1.0. FAB-DEM (https://doi.org/10.5523/bris.s5hqmjcdj8yo2ibzi9b4ew3sn). Distributed under a Non-Commercial Government Licence for
public sector information. (b) and (c) Natural Earth. Free vector and raster map data at https://www.naturalearthdata.com/ (last access: 26
March 2025).

terrain features associated with each ATES class and consists
of manually delineated polygons, each assigned to one of the
four ATES classes. For the majority of the training data, the
borders of individual polygons do not represent the bound-
aries of ATES classes, but rather reflect areas that were iden-
tified as belonging to a specific class with high confidence.
An exception is directly neighbouring polygons, where the
border lines between adjacent polygons were also mapped
with high confidence and represent class boundaries. The dif-
ferent shapes and sizes of the individual polygons correspond
to the characteristics of associated terrain features. Areas of
simple terrain are generally represented by larger, rounded
features, while training polygons for challenging and com-
plex terrain are more elongated and confined, reflecting the
shapes of corresponding avalanche release and transit zones.
Extreme class polygons are generally the smallest and most

precisely defined, as they correspond to single rock faces,
cliff bands, and generally very steep terrain. They were also
refined using a slope map. Using smaller, clearly defined
polygons for training facilitated labelling of regions with
high confidence, ensuring accurate classification. In contrast,
we found that manually drawing a continuous ATES map for
the entire study area is significantly more challenging and
may introduce generalisation errors, making it more difficult
for the classifier to learn effectively.

Efforts were also made to achieve class balance as much
as possible across the simple, challenging, and complex cate-
gories. However, the extreme class was underrepresented due
to the more limited availability of extreme terrain in the study
area. While the training dataset was carefully constructed, we
acknowledge that relying solely on the assessment of a sin-
gle avalanche expert, rather than a larger group due to limited
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Table 1. Distribution of ATES classes in the training set and test set.
Numbers correspond to the number of 10m×10m pixels, multipli-
cation with 102 yields area in m2. The relative share of each class
in % is provided in brackets.

ATES class training set test set total

Simple 4441 (34.1) 4503 (34.6) 8944 (34.3)
Challenging 3633 (27.9) 3573 (27.4) 7206 (27.7)
Complex 3809 (29.2) 3841 (29.5) 7650 (29.4)
Extreme 1142 (8.8) 1108 (8.5) 2250 (8.6)

Total 13025 (100) 13025 (100) 26050 (100)

resources, may introduce some degree of bias. Figure 2 illus-
trates the training data polygons used in this study, as well as
the used PCC data for the same region.

The training polygons were subsequently converted to a
10m raster dataset and aligned with the other raster input
features described in Sects. 2.2 and 2.4. The dataset was then
randomly split into a 50/50 train–test partition, with one half
used for model training and the other reserved as a hold-
out test set to evaluate performance and generalisation (see
Sect. 2.5). Table 1 presents the total number of pixels for
each ATES class and the approximate 50/50 split between
training and test sets. Figure A3 displays the distributions of
some of the most important input features across each of the
four ATES classes in the training dataset.

2.4 AutoATES model chain

The basic AutoATES model chain (e.g. Larsen et al., 2020;
Huber et al., 2023; Panayotov et al., 2024b; Sykes et al.,
2024; Toft et al., 2024) is based on open-source components
developed by different research groups. It has been designed
to work with limited input data requirements (DTM, for-
est layer), and involves three main steps. These steps com-
prise (1) the identification of potential avalanche release ar-
eas (PRAs), (2) the delineation of potential avalanche runouts
originating from the PRAs, and (3) a final classification and
mapping step, which has been referred to as the “AutoATES
classifier” in previous studies (Sykes et al., 2024; Toft et al.,
2024). This study focused on the application of supervised
ML methods, specifically RF models, in the final AutoATES
classification step in place of the previously proposed deter-
ministic, expert-based set of thresholds and rules (Fig. 3).
The next sections provide an overview of the setup and pa-
rameterisation that have been used in the PRA and avalanche
runout modelling steps in this study, and briefly discuss the
”classic” decision tree-based AutoATES classifier, before
Sect. 2.5 introduces the modifications to the classifier inves-
tigated in this study.

2.4.1 Modelling of potential avalanche release areas
(PRAs)

The PRA model used in this study followed the approach
outlined by Toft et al. (2024) and Sykes et al. (2024). The
original PRA model proposed by Veitinger et al. (2016a) has
been modified by Sharp (2018), Schumacher et al. (2022)
and Toft et al. (2024) to include forest information and oper-
ate on input data with coarser resolution (≈ 10 m as opposed
to 2 m used by Veitinger et al., 2016a). The model maps a set
of input layers (slope, wind shelter, PCC) to fuzzy member-
ship values µ using three-parameter bell-shaped membership
functions with varying parametrisations (Eq. 1).

µ(x)=
1

1+
(
x−c
a

)2b (1)

The fuzzy membership values of the three layers are then
combined with a ”fuzzy AND” operator (Werners, 1988) to
a continuous PRA membership value PRAcont ∈ [0, . . .,1],
which indicates PRA likelihood (Eq. 2).

PRAcont = γ × min
1<i≤n

(µi(x))+
(1− γ )

∑n
1µi(x)

n

with :
γ = 1− min

1<i≤n
(µi(x)), x ∈X, γ ∈ [0, 1] (2)

We used a DTM and the Copernicus PCC layer, both at
10m resolution, as inputs for the PRA model. To parametrise
the bell-shaped membership functions, we adopted values for
slope, wind shelter, and PCC from Toft et al. (2024), with a
slight modification to the Cauchy membership function for
slope. To maintain comparability with previous applications
of AutoATES in the study area (Panayotov et al., 2024b),
we assigned membership values of 0 to areas with slopes <
28° or> 60°. This approach aligns with previously proposed
methods for PRA delineation (Veitinger et al., 2016b; Bühler
et al., 2013, 2018), but differs slightly from the procedure
reported by Toft et al. (2024), which assigns low, but non-
zero membership values in these areas.

To convert the continuous PRA membership values
PRAcont ∈ [0, . . .,1] into a binary PRA layer PRAbin ∈ [0|1],
we applied a threshold value of 0.3. This binarisation is re-
quired for the subsequent runout modelling step. The thresh-
old was selected based on experience from previous stud-
ies (Hesselbach, 2023; Huber et al., 2023; Panayotov et al.,
2024b), site inspections, and local expert knowledge. Fig-
ure A1a and b present the results of the PRA modelling step
(PRAcont, PRAbin) for the terrain surrounding Todorka Peak,
which is easily accessible from the top chairlift of Bansko
Ski Resort.
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Figure 2. (a) Training data based on local expert assessment of ATES classes for the training area, covering the Bunderitsa Valley and parts
of the Demyanitsa Valley. (b) Copernicus percent canopy cover (PCC) layer for the training region.

Figure 3. Main components of the AutoATES model chain (represented by rounded rectangles) and model’s input, intermediate, and output
layers (depicted as diamond shapes). Parts of the model chain that are shared with the approach of Toft et al. (2024) are highlighted with
dashed outlines. The introduction of RF techniques in the AutoATES classifier, as investigated in this study, is indicated by a green outline.

2.4.2 Modelling of avalanche runout and intensities
with com4FlowPy

AutoATES utilises the empirical, raster-based model Flow-
Py (D’Amboise et al., 2022) for calculations of avalanche
runouts and intensities from the binary PRAs identified in
the previous step (Sykes et al., 2024; Toft et al., 2024). Flow-
Py has been integrated into the Open Avalanche Framework
AvaFrame (Oesterle et al., 2025) in 2024 and is now available
as AvaFrame module com4FlowPy (Huber et al., 2024). In
this study we utilised com4FlowPy with its forest-friction
option enabled (D’Amboise et al., 2021; Huber et al., 2024).
The forest-friction functionality is used to account for in-
creased energy dissipation in forested areas by increasing
the basal friction on forested cells in the model domain. The
basal friction increase on forested cells is modulated by a

lumped forest structure index (FSI) and modelled avalanche
intensities zδ (D’Amboise et al., 2021; Huber et al., 2024).
The FSI layer used in this study was obtained by linearly
scaling the Copernicus PCC layer (Fig. 2b) to the inter-
val [0, . . .,1], where 0 represents no forest and 1 represents
dense forest canopy cover. The model parameters used for
com4FlowPy are listed in Table 2. Initial values of α, zδlim,
exp and Rstop were based on previous studies (Hesselbach,
2023; Huber et al., 2023; Panayotov et al., 2024b). Further
parameter refinement to local conditions was informed by
empirical relationships proposed by Bakkehøi et al. (1983)
and McClung and Gauer (2018), as well as comparative sim-
ulations with a physically-based model (Tonnel et al., 2023)
for selected avalanche tracks. The parametrisation of the
forest-friction function was informed by a limited sensitivity
study (Huber et al., 2024). Although a rigorous evaluation of
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the modelled avalanche runouts was beyond the scope of this
study, good agreement was found between the model results,
local records of historical avalanches, and dendrochronolog-
ical investigations in the Bunderitsa area (Panayotov and
Tsvetanov, 2024; Tsvetanov and Panayotov, 2024) using the
proposed parameters.
Com4FlowPy computes several model outputs in the

form of raster layers (D’Amboise et al., 2022), which can
be used to characterise avalanche intensities, proximity to re-
lease areas, and overhead exposure (Sykes et al., 2024). Re-
cent studies have used different combinations of output lay-
ers from com4FlowPy in applications of AutoATES (Schu-
macher et al., 2022; Sykes et al., 2024; Toft et al., 2024). In
this study, we focused on the maximum modelled energy line
height zδmax, the maximum modelled local travel angle (γ ),
cell counts, and the sum of modelled fluxes (

∑
routFlux) (see

Fig. A1c–f). The zδmax output layer can be interpreted in terms
of potential avalanche intensities and more intuitively be con-
verted to maximum potential avalanche velocities by vmax =

(2g zδmax)
1
2 (Körner, 1980). The maximum local travel an-

gle (γ ) provides a measure of the proximity of a potential
runout location to the nearest PRA, taking into account both
the distance and the average gradient of the avalanche path
connecting the two locations (D’Amboise et al., 2022). The
cell counts layer describes the number of PRA cells poten-
tially affecting a location, while the

∑
routFlux layer sums

the modelled flux that is routed through a cell (D’Amboise
et al., 2022). Both layers provide an estimate of potential
overhead hazard, with high values typically characterising
gullies and/or overlapping avalanche paths (Fig. A1e and f).
While the cell counts output focuses on the sizes of overhead
PRAs,

∑
routFlux provides a more nuanced output, high-

lighting terrain traps such as gullies and deposit zones.

2.4.3 AutoATES classifier

The final step in the AutoATES model chain – the AutoATES
classifier – combines layers derived from preceding stages of
the model chain (PRAs, runout and intensity outputs, slope,
and forest information) into ordinal ATES ratings. Although
the specific configuration of input layers employed by the
AutoATES classifier varies slightly across different versions
of AutoATES (Larsen et al., 2020; Schumacher et al., 2022;
Toft et al., 2024) and its local applications (von Avis et al.,
2023; Huber et al., 2023; Panayotov et al., 2024b), the under-
lying classification methodology has remained largely con-
sistent since the release of AutoATES v1.0 (Larsen et al.,
2020).

In summary, existing AutoATES classifiers are based on a
deterministic framework that applies expert-defined thresh-
olds and rules to derive ATES ratings from a set of input
layers. This rule-based approach offers the advantage of be-
ing transparent and interpretable from a human perspective,
and also mirrors the general structure of both the original
and updated ATES technical models suggested for manual

ATES mapping (Statham et al., 2006; Statham and Camp-
bell, 2025).

However, to eliminate the need for parameter optimisa-
tion (Sykes et al., 2024) or rule modification (Panayotov
et al., 2024b) when applying AutoATES to new regions, this
study tested an alternative classification approach based on
RF models.

2.5 Random Forests

2.5.1 Basic principles

RF is a supervised ML algorithm based on ensemble learn-
ing, designed for both classification and regression tasks
(Breiman, 2001). In the context of ATES class prediction, the
model operates on a per-pixel basis, assigning each pixel one
of four possible terrain classes: simple, challenging, complex,
or extreme. The algorithm constructs multiple decision trees
during training, linking input features that describe the char-
acteristics of each pixel to its manually labelled ATES class.
Each individual tree generates a class prediction, and for a
new, unseen data point, the RF aggregates predictions from
all trees, assigning the most frequent class as the final out-
put. This ensemble approach reduces overfitting compared to
a single decision tree, enhancing model robustness and gen-
eralisation performance (Breiman, 2001).

Each tree in the RF is trained using either a bootstrap sam-
ple (random sampling from the training dataset with replace-
ment) or the entire dataset, as controlled by the bootstrap pa-
rameter. During tree construction, the algorithm determines
the optimal split at each node by selecting a feature and a
threshold that minimises impurity, commonly measured us-
ing Gini impurity and information gain (Prasetiyowati et al.,
2021). Impurity measures quantify the degree of class het-
erogeneity within a dataset. A node containing only samples
from a single ATES class has zero impurity, whereas a node
with an evenly distributed mix of classes exhibits higher im-
purity. The goal of decision tree construction within the RF
is to iteratively partition the data so that the resulting subsets
(leaf nodes) are as pure as possible. This process is guided
by information gain, which quantifies the reduction in impu-
rity achieved by a particular split. At each decision node, the
algorithm evaluates a subset of input features (determined by
the max_features parameter) and identifies the feature and
threshold that maximise information gain. The search space
for threshold values is usually restricted to midpoints be-
tween unique observed values within the selected feature,
ensuring computational feasibility while optimising for split
quality (Salman et al., 2024).

The RF algorithm has several hyperparameters that con-
trol the training process. While in-depth optimisation of hy-
perparameters is beyond of the scope of this study, a basic
evaluation on how tuning a few key parameters affects model
performance was conducted (see Sect. 2.5.2).
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Table 2. Parameters used for modelling of avalanche runouts and intensities with com4FlowPy.

Parameters: α zδlim exp Rstop 1
α, for
max 1

α, for
min vlim

for

used value: 26° 185 m (≈ 60ms−1) 8 3× 10−4 21° 0° 45 ms−1

2.5.2 Application of RF for ATES mapping

Following the procedure outlined in Sect. 2.4, a series of
raster layers were generated in the PRA and avalanche mod-
elling steps. Together with the general input data layers
(Sect. 2.2), these layers served as input features for three dif-
ferent RF models investigated in this study – RF1, RF2, and
RF3.

For all models, both the training labels and the input fea-
tures were stored in georeferenced TIFF files with iden-
tical dimensions and pixel resolutions. Each input feature
was represented as a separate raster band within the input
feature files. The implementation was realised in Python
3.9.21 (Python Software Foundation, 2024), leveraging li-
braries such as GDAL and NumPy for data processing, while
scikit-learn (Pedregosa et al., 2011) was used to define and
train the RF classifiers.

The scikit-learn library provides extensive control over the
model’s hyperparameters, enabling their optimisation to en-
hance generalisation and predictive performance. Hyperpa-
rameter tuning is a widely researched topic, with numerous
studies dedicated to optimising model configurations (Ra-
madhan et al., 2017; Probst et al., 2019; Siji George and
Sumathi, 2020; Contreras et al., 2021; Wang et al., 2021;
Bischl et al., 2023; Rimal et al., 2024). However, previous re-
search has also demonstrated that the default hyperparameter
settings of the RF algorithm generally yield strong predictive
performance (Probst et al., 2019). In this study, we adopted
the approach of Contreras et al. (2021), using their predefined
parameter grid with minor modifications. We also added the
bootstrap parameter to the hyperparameter search together
with max_samples. If bootstrap is set to false, the entire train-
ing dataset is used to build each tree. If it is set to true, then
max_samples (as a fraction from all samples) training points
are selected at random, with replacement, from the full train-
ing set. Finally, we also introduced the class_weight parame-
ter, which can help training when classes are imbalanced, as
was the case with the extreme class in our training set. The
parameters max_depth, max_leaf_nodes, min_samples_leaf,
and min_samples_split together control how much the trees
grow, preventing overfitting to the training dataset and ensur-
ing the model generalises better to new data.

The complete hyperparameter grid, along with a brief de-
scription of each parameter, is presented in Table 3. All un-
specified parameters remain at their default values. Given
computational constraints, we opted for a random search
strategy rather than an exhaustive grid search, which would
otherwise result in an infeasible number of combinations.

Specifically, we sampled 10000 hyperparameter combina-
tions at random from the defined grid.

To evaluate model performance, the training dataset was
randomly partitioned into training (50%) and test (50%) sets,
ensuring that the test set remained entirely separate from
the training process. Although a 50/50 train-test split is less
common than ratios such as 70/30 or 80/20, it has nev-
ertheless been reported in previous studies (Joseph, 2022;
Afendras and Markatou, 2019). Given the sufficiently large
sample size in our case, we decided to allocate a relatively
larger portion of labelled pixels to the test set to obtain robust
estimates of model performance and generalisation capabil-
ity while reducing computational requirements for model
training.

Additionally, we employed k-fold cross-validation with
k = 3 (Varoquaux and Colliot, 2023), wherein the training
set was further subdivided into three equal partitions (folds).
Each fold alternates between training and validation, with
two folds used for training while the third serves as the vali-
dation set. This process is repeated across all fold combina-
tions, allowing the model to select the hyperparameter con-
figuration that maximises accuracy on the validation folds.
The best combination of hyperparameter values found per
model is also displayed in Table 3.

Feature selection plays a crucial role in model develop-
ment, as the accuracy of an RF classifier relies heavily on
the relevance of input features (Rogers and Gunn, 2006). Ini-
tially, we adopted a feature set as proposed by Huber et al.
(2023) that was also utilised in a previous AutoATES appli-
cation in Bulgaria (Panayotov et al., 2024b). The feature set
consisted of slope, PCC, a binary-thresholded PRA (PRAbin)
layer, and the maximum modelled local travel angle (γ ). The
goal at this stage was to address the first research question
– whether an RF model can effectively replace manually de-
signed classification trees. This first model trained on these
four features is referred to as RF Model 1 (RF1).

Next, we investigated whether RF can provide additional
insights into feature importance and whether incorporating
more input features enhances performance. Since the al-
gorithm records the features used at each decision node,
feature importance can be calculated to reveal which fea-
tures most influence ATES classification. The first modi-
fication involved replacing the binary PRA layer with its
continuous counterpart (PRAcont) to leverage the full range
of information it provides, rather than reducing it to cate-
gories prematurely. We then investigated whether additional
com4FlowPy outputs could enhance classification. A limi-
tation of RF1, which mirrors AutoATES Austria’s inputs, is
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Table 3. Hyperparameter setup for training the RF models (RF1–3).

Hyperparameter Values tested Description Best values per model

[val1, val2, . . . ] and/or [min–max, interval] RF1 RF2 RF3

max_depth [5–70, 5] max depth of each tree 10 45 70
max_features [None, sqrt, log2], [0.1–1, 0.1] features considered per split 0.8 0.8 log2
max_leaf_nodes [5–50, 5] max terminal nodes per tree 50 50 50
max_samples [0.1–1, 0.1] fraction of samples to use per tree 0.7 0.9 1.0
min_samples_leaf [1, 5, 10, 15, 20] min samples required per leaf node 1 1 5
min_samples_split [2], [5–40, 5] min samples needed to further split node 5 2 20
n_estimators [10–100, 10], [200–1000, 100] number of trees in the forest 100 60 800
bootstrap [True, False] whether to sample with replacement True True True
class_weight [None, balanced_subsample] adjusts class imbalance None None None

Decimal values or functions should be interpreted as that fraction of the total number. For example, for the max_features hyperparameter, sqrt means try the square root of
the total number of features as the value, while 0.1 means try 10 % of the total number of features. None means that there is no limit or a parameter is not used.

its lack of consideration of overhead exposure or avalanche
intensity (Huber et al., 2023), which were utilised in other
studies by incorporating additional com4FlowPy output
layers in the final AutoATES classification step (Sykes et al.,
2024; Toft et al., 2024).

In our approach, after replacing PRAbin with its contin-
uous counterpart, we incrementally introduced cell counts,
zδmax, and the sum of modelled routing fluxes (

∑
routFlux),

training a new model for each using the same parameter
grid as shown in Table 3. This incremental addition of fea-
tures aimed to assess the impact of each individual feature
on the overall classification performance. After incorporating
all additional features, we constructed a seven-feature model,
referred to as RF Model 2 (RF2). We refrained from includ-
ing additional features beyond these to maintain comparabil-
ity with existing AutoATES approaches and minimise multi-
collinearity among input features, which can reduce the inter-
pretability of model results. Based on the feature importance
rankings of model RF2, we identified the four most influen-
tial features –

∑
routFlux, slope, local travel angle (γ ), and

PRAcont – and used them to train a final model, RF Model 3
(RF3). A summary of the features used and their descriptions
is presented in Table 4.

After training the three models, we applied them to clas-
sify the pixels in the test set and evaluated their performance
using a range of metrics, as detailed in Sect. 2.6. We also
applied the models to the entire study area, including the
Bunderitsa, Demyanitsa, and Bezbog valleys, to qualitatively
assess their generalisation and performance across different
regions.

The RF algorithm also produces an additional output that
reflects the confidence of its predictions. For each data point,
the model generates four probability values, each indicating
the likelihood of belonging to a specific ATES class. The
class with the highest probability is selected as the final pre-
diction. Higher confidence is achieved when a larger propor-
tion of decision trees in the forest agree on the same class
(Bhattacharyya, 2011). We generated rasters that visualise

the model’s confidence in the predicted ATES classes across
the entire study area. Additionally, we analysed the distribu-
tion of predictive confidence for each model and examined
how it varies across different ATES classes.

It is essential to emphasise that all random processes in-
volved in model training, such as the train-test split, model
initialisation, and random selection from the hyperparameter
grid, were consistently performed using a fixed seed. Using
the same seed ensures that, despite the randomness of these
steps, they produce identical results each time they are exe-
cuted (Dutta et al., 2022). As a result, the train-test split re-
mained unchanged across all three models (RF1, RF2, RF3),
and the same set of hyperparameter combinations was ex-
plored. Keeping these factors constant enabled a more reli-
able comparison between models, ensuring that any observed
differences were attributable to variations in the input fea-
tures rather than differences in training data or hyperparam-
eter selection.

2.5.3 Complementary analyses

While we strived for a balance of ATES classes in construct-
ing the training dataset, we found that the ratio of forested
(PCC> 0) to non-forested (PCC= 0) pixels was unevenly
distributed (6415 : 19635 (24.6 %–75.4 %)). This ratio re-
flects both the distribution of forested and non-forested areas
in the training region (see Fig. 2) and the general tendency for
more severe avalanche terrain to occur outside forested areas.
To assess the potential impact of this imbalance, particularly
on reported feature importances, we constructed a balanced
training subset containing an equal number of forested and
non-forested pixels. While all original 6415 forested training
pixels were retained, the same number of non-forested pixels
was randomly sampled from the original 19635 non-forested
pixels. We then trained an additional RF model (referred to as
model RF1 balanced), with features identical to RF1, on this
modified training dataset to investigate how the reported fea-
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Table 4. Description of input features and the corresponding models (RF1–3) in which each feature was used. More detailed information on
each feature is provided in Sects. 2.2 and 2.4.

Feature Description Used in models

slope local slope gradient computed from the DTM after Horn (1981), using
the gdal library

RF1 RF2 RF3

PCC percent canopy cover obtained from the Copernicus dataset RF1 RF2

PRAcont potential release areas (PRA) without thresholding, PRA ∈ [0,1],
retaining continuous values

RF2 RF3

PRAbin PRA thresholded at 0.3 and converted to a binary classification (0 or 1) RF1

γ local travel angle, used to describe avalanche runout behaviour,
computed using com4FlowPy

RF1 RF2 RF3

cell counts number of release cells affecting each raster cell in the model domain,
computed using com4FlowPy

RF2

zδmax maximum modelled avalanche intensity per cell, derived from
com4FlowPy simulations

RF2

∑
routFlux sum of all routed flux values, representing the cumulative effect of

potential avalanche paths, computed using com4FlowPy
RF2 RF3

ture importances for the balanced training dataset compared
to those obtained using the full dataset (see Sect. 2.3).

2.6 Methods used for performance evaluation

To assess model performance, we computed several evalua-
tion metrics on the test set, including accuracy and the per-
class precision, recall, and F1 score (Rainio et al., 2024). Es-
timation based on a held-out test set has been shown to of-
fer reliable estimates of model generalisation performance in
previous studies (Varoquaux and Colliot, 2023).

The most fundamental metric is accuracy. It is defined as
the proportion of correctly classified predictions out of all
pixels in the test set (Eq. 3):

Accuracy=
Number of correct predictions
Total number of predictions

(3)

While accuracy is useful, it does not provide insight into
how well the model performs for each individual class, es-
pecially in imbalanced datasets, as was the case with the
extreme terrain class. Therefore, we also computed preci-
sion, recall, and F1-score, using binary confusion matrices
for each class containing the numbers of True Positive (TP),
True Negative (TN), False Positive (FP), and False Negative
(FN) predictions.

Precision is defined as the proportion of instances pre-
dicted to belong to a class that are actually members of that
class – in other words predicted correctly. It is calculated as:

Precision=
True Positives (TP)

True Positives (TP)+False Positives (FP)
(4)

Recall is defined as the proportion of instances that actu-
ally belong to a certain class and are correctly predicted as

belonging to that class. It is calculated by:

Recall=
True Positives (TP)

True Positives (TP)+False Negatives (FN)
(5)

The F1 score is the harmonic mean of precision and recall,
providing a balanced measure of model performance. It is
calculated by:

F1= 2×
Precision×Recall
Precision+Recall

(6)

In addition to the per-class skill-scores, we also computed
the weighted mean of each metric by weighting the per-class
metrics according to the proportion of each class in the test
set. The raw numbers used for calculating the evaluation met-
rics were also visualised in a multi-class confusion matrix.
The full confusion matrix allows for a more detailed inter-
pretation of model predictions compared to the test set. For
example, distinctions between instances where model predic-
tions differ from the true labels of the test data by only one
ordinal class and more severe instances of misclassification
can be made (Rainio et al., 2024).

Another common method to evaluate model performance
for classification tasks are plots of the precision-recall curve
and evaluation of the associated areas under the curve (AUC).
The precision-recall curve visually represents the trade-off
between precision and recall as the decision threshold is
varied. The decision threshold defines the probability above
which an instance is classified as belonging to a particular
class. For example, if the threshold is set to 0.5 and the max-
imum predicted probability for a class is 0.4, the instance
will not be assigned that class, as its probability does not ex-
ceed the threshold. Precision and recall are both influenced
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by the threshold. As the threshold decreases, recall tends to
increase while precision may decrease, and vice versa. The
curve is useful for evaluating model performance, especially
in the case of imbalanced classes, with a larger area under the
curve indicating better overall accuracy (Rainio et al., 2024).
In this study, we produced class-wise precision-recall curves
for all three trained models and calculated the corresponding
AUCs. The precision-recall curve was chosen over the com-
monly used receiver-operator curve (ROC), which plots the
true positive against the false positive rate, due to its more
robust performance in the presence of class imbalances.

In addition to the quantitative methods used to evaluate the
models’ performances on the test set, we conducted a quali-
tative assessment of model predictions across the entire study
area and compared them with the results of a previous local
adaptation of AutoATES in the study area (Panayotov et al.,
2024b). These qualitative comparisons also emphasised re-
gions outside the training area, thereby providing initial in-
sights into the models’ generalisation capabilities.

3 Results

3.1 Quantitative evaluation against test set

Table 5 presents the full multi-class confusion matrices for
each model, comparing the model predictions against the
held-out test set. The area overlap between the predicted
and the actual ATES classes for each class and each model
is provided. Since each pixel represents an area of 100m2,
the number of overlapping pixels can be calculated by divid-
ing the area value by 100. The diagonal of the matrix, high-
lighted by bold numbers, represents correct classifications,
while misclassifications below the diagonal correspond to
underclassification errors (lower ATES class predicted than
actual one), and those above it indicate overclassification er-
rors (higher ATES class predicted than actual one). Model
RF1 has 1669 overclassified pixels out of the total 13025 in
the test set (12.81%) and 1026 underclassified pixels (7.9%).
Model RF2 has 1242 overclassified pixels (9.54%) and 1061
underclassified pixels (8.15%). Model RF3 has 1497 over-
classified pixels (11.49%) and 1053 underclassified pixels
(8.08%). For each model, none of the simple class pixels in
the test set were misclassified as extreme, and only three ex-
treme class pixels were incorrectly predicted as simple, rep-
resenting a very small proportion of the total misclassifica-
tions. Additionally, the confusion matrices show that nearly
all classification errors involve a misclassification by only
a single class level. The confusion matrix presents the raw
class counts, which were used as the basis for deriving the
subsequent evaluation metrics.

The overall accuracies for each model are 79.31% for
RF1, 82.32% for RF2, and 80.42% for RF3. These results in-
dicate that model RF2 achieves the highest overall accuracy,

Table 5. Multi-class confusion matrices for models RF1, RF2, and
RF3. Absolute values for area overlap are provided in m2, division
by 100 yields number of pixels/predictions. Values in bold along the
diagonals correspond to correct predictions; values below and above
the diagnoals show under and overclassifications respectively.

Predicted ATES Class

Simple Challenging Complex Extreme

Actual ATES Class

RF1

Simple [m2] 404 600 43 400 2300 0
[%] 89.85 9.64 0.51 0
Challenging [m2] 41 800 225 400 86 600 3500
[%] 11.7 63.08 24.24 0.98
Complex [m2] 1700 45 600 305 700 31 100
[%] 0.44 11.87 79.59 8.1
Extreme [m2] 300 100 13 100 97 300
[%] 0.27 0.09 11.82 87.72

RF2

Simple [m2] 412 400 36 700 1200 0
[%] 91.58 8.15 0.27 0
Challenging [m2] 43 600 253 500 56 900 3300
[%] 12.2 70.95 15.92 0.92
Complex [m2] 1500 44 200 312 300 26 100
[%] 0.39 11.51 81.31 6.8
Extreme [m2] 300 100 16 400 94 000
[%] 0.27 0.09 14.8 84.84

RF3

Simple [m2] 407 600 41 000 1700 0
[%] 90.52 9.11 0.38 0
Challenging [m2] 44 900 231 300 77 700 3400
[%] 12.57 64.74 21.75 0.95
Complex [m2] 1500 41 500 315 200 25 900
[%] 0.39 10.8 82.06 6.74
Extreme [m2] 300 0 17 100 93 400
[%] 0.27 0 15.43 84.3

followed closely by model RF3, which performs slightly bet-
ter than model RF1 in terms of correct predictions.

Figure 4 displays the additional class-wise evaluation met-
rics for all models, calculated against the test set. Notably,
for all three models, the precision, recall, and F1-scores for
the simple terrain class are higher than for the other ATES
classes, averaging around 90%. The calculated metrics for
the challenging class are consistently the lowest across all
three models, while the metrics for the complex and extreme
classes generally fall between those of the simple and chal-
lenging classes. Furthermore, for model RF1, the extreme
class exhibits a high recall of 87.8% on the test set, with
similar recall values of around 85% observed for the other
models.

These general trends are also reflected in the precision-
recall curves displayed in Fig. 5. In terms of this evaluation
method, all three models exhibit the highest predictive capac-
ities for the simple ATES class, while the challenging class
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Figure 4. Per-class skill-scores for the three RF models: RF1 (left), RF2 (middle), and RF3 (right), based on the test set. Total scores for
the F1 score, precision and recall metrics are calculated as the weighted mean of class-specific scores. Tot.: total, Simp.: simple, Chal.:
challenging, Comp.: complex, Extr.: extreme.

consistently scores the lowest in computed AUC values. Pre-
dictive capacities for the remaining two ATES classes fall be-
tween the simple and challenging classes, with overall AUC
values being highest for model RF2, followed by RF3 and
RF1. Similar to the other utilised evaluation metrics, the vari-
ance between ATES classes is generally more pronounced
than the differences between the three trained models.

3.2 Predictive confidence

Figure A2 shows maps of the predicted ATES classes for all
three RF models (panels a–c) along with the prediction prob-
abilities (panels d–f) for the entire study area. General pat-
terns for both the ATES class predictions and the associated
prediction probabilities appear to follow similar trends across
all three RF models, with higher predictive confidence gen-
erally associated with the simple ATES class.

A closer look is provided in Fig. 6, which zooms in on
an area of the study region surrounding Todorka Peak and
the top chairlifts of Bansko Ski Resort. Figure 6a shows
the raw 4-class predictions of the RF2 model, while Fig. 6b
additionally depicts the model’s prediction probabilities for
each ATES class, represented by intra-class colour shading.
Darker colours indicate higher prediction confidence. In this
example, generally high prediction confidence is associated
with areas identified as simple terrain, but other trends can
also be observed. Notably, there is a general pattern of higher
predictive confidence at the center of individual terrain fea-
tures associated with a specific ATES class, while predictive
confidence tends to decrease near the boundaries between
classes.

An alternative visualisation of the distributions of predic-
tion probabilities for each ATES class across all three mod-
els is provided in Fig. 7. While this perspective confirms the
general trends observed in the previously mentioned maps, it
also reveals more nuanced variations in prediction probabili-
ties between the three models. All three models clearly show
the highest predictive confidence for simple terrain, with gen-
erally lower confidence for challenging terrain. Also, the

confidence for the challenging class is slightly lower on av-
erage for models RF2 and RF3 as compared to model RF1.
However, models RF2 and RF3, in particular, exhibit rela-
tively high confidence in predicting large proportions of com-
plex terrain. Notably, the bimodal distributions of prediction
probabilities for complex terrain in model RF1 and extreme
terrain in model RF2 are characteristics that do not become
apparent from the general evaluation metrics (Sect. 3.1) or
the visual inspection of maps (Figs. 6 and A2).

3.3 Feature importance analysis

As outlined in the introduction, a defining feature of RFs
is their ability to provide information on the relative impor-
tances of input features, alongside the model predictions and
associated probabilities described in the previous sections.
Figure 8 visualises the relative feature importances for each
of the three trained models. Terrain inclination (slope) has
been used as an input feature in all three RF models and con-
sistently ranks among the top two in terms of feature impor-
tance. Similarly, the second input feature used in all models,
local travel angle (γ ), also ranks within the top three most
important input features for all models, indicating that this in-
formation plays a significant role in model decision-making.
The

∑
routFlux output from com4FlowPy has only been

included in models RF2 and RF3, but is considered the most
important input feature for both models, albeit with a slight
margin. At the opposite end of the spectrum, the PCC infor-
mation consistently ranks last for feature importance among
the models it has been used in. Also, the modelled avalanche
intensities zδmax appear to have relatively minor importance
for RF2.

The results of the complementary study conducted on
the modified training dataset containing an equal share of
forested and non-forested pixels (see Sect. 2.5.3) are pre-
sented in Table A2 alongside the feature importances re-
ported for model RF1, which was trained on the full train-
ing dataset. Notably, for the balanced training dataset (model
RF1 balanced), the reported feature importance for PCC re-
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Figure 5. Precision-recall curves for each RF model (RF1–3), shown per class, and the corresponding areas under the curve (AUC).

Figure 6. (a) Detail of ATES class predictions using model RF2 for the area around Todorka Peak and Bunderitsa Valley. The steep west and
north-east faces of Todorka are accurately classified as the complex and extreme ATES classes. (b) Example for additional visualisation of
model prediction probabilities for RF2 in the same area. Model confidence is represented using colour shadings, with darker shades indicating
higher prediction probabilities: high confidence ≥ 0.75, medium confidence 0.5–0.75, low confidence ≤ 0.5.

mains comparatively low (0.089) and does not differ signif-
icantly from that for RF1 (0.074). Feature importances for
the three other features are also very similar, and the relative
ordering of features remains identical.

3.4 Comparison with field assessments and a
deterministic AutoATES approach

In order to assess the general ability of the trained RF models
to generalise to previously unseen terrain, we qualitatively
compared model predictions for areas outside the training re-
gion with local terrain assessments at selected locations.

Figure 9 shows two examples comparing the ATES class
predictions from the best-performing model, RF2, with pho-
tographs of actual winter terrain around Bezbog and Gazei
Peaks. Annotated arrows highlight the corresponding ter-
rain features between photographs and the ATES predictions
overlaid on satellite imagery. In both examples, model pre-
dictions align well with on-site assessments of the avalanche
terrain characteristics. The prominent terrain features visi-
ble in the photographs are also accurately recognised by the
model. For instance, in the Bezbog Peak region, the broad,
relatively flat ridge (indicated by arrow 2), which represents
the standard winter ascent route, is correctly identified as
simple terrain. Similarly, in the Gazei Peak area, prominent
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Figure 7. Distributions of prediction probabilities for each ATES class and RF model across the entire study area. (a) RF 1 (b) RF2 (c) RF3.
The means and medians of each distributions are indicated by the square and circle symbols respectively. The distributions for each ATES
class in the panels are ordered from top to bottom as extreme, complex, challenging, and simple.

Figure 8. Relative feature importances for models RF1, RF2, and
RF3, highlighting the contribution of each input feature to the
model’s decision-making process.

cliff bands (arrows 2 and 4) are correctly classified as ex-
treme terrain in the ATES map. This visual comparison high-

lights the model’s effectiveness in classifying avalanche ter-
rain characteristics in previously unseen regions.

Results of the comparison between a deterministic Au-
toATES model previously applied in the study region (Panay-
otov et al., 2024b) and our best performing model, RF2,
are presented in Fig. A4 and Table A1. Visual side-by-side
comparison for regions below (Fig. A4 left) and above the
treeline (Fig. A4 right) shows that above-treeline results are
very similar for both models, whereas more pronounced dif-
ferences appear in sparsely forested areas below the tree-
line. More specifically, the deterministic model tends to pre-
dict lower ATES classes (simple and challenging) in steep,
sparsely forested areas highlighted in the figure, while RF2
predicts complex and challenging terrain more consistent
with on-site conditions, a pattern also observed in other loca-
tions. Despite these local differences, the predicted distribu-
tion of ATES classes across the entire study region follows a
similar pattern for both models (see Table A1). While overall
predictions of RF2 appear slightly more conservative, consis-
tent with the qualitative visual comparison, the proportions of
terrain assigned to each ATES class differ by a maximum of
2 %–3 %.
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Figure 9. Exemplary extract of the ATES map from model RF2 for two separate areas outside the training region – Gazei Peak and Bezbog
Peak – along with photographs of the winter terrain. The base imagery over which the ATES maps are overlaid is sourced from ©Google
Earth. The annotated arrows highlight the corresponding terrain features between the photographs and the ATES predictions.

4 Discussion

4.1 Potential of RF classifiers in AutoATES model
chains

Our results demonstrate that RF models can effectively per-
form the final classification task in automated ATES model
chains, using the same input features as deterministic, expert-
based classification methods (Panayotov et al., 2024b). This
holds true even in data-sparse regions such as our study area,
where high-resolution forest cover data are unavailable. In
our study, we used open-access 10m resolution PCC data
from Copernicus for avalanche PRA, runout, and intensity
modelling, as well as as an input to the final classifica-
tion step. These data proved sufficient for RF1 to achieve
an accuracy level of 79.31%, which is comparable to ac-
curacies reported by Sykes et al. (2024). In that study, the
standard AutoATES 2.0 framework (Toft et al., 2024), opti-
mised through fine-tuned parameters, was evaluated against
expert-generated maps in two Canadian study areas, achiev-
ing classification accuracies of 74.5% and 84.4%. It is im-
portant to note, however, that Sykes et al. (2024) assessed
AutoATES 2.0 performance against continuous, manually
generated maps covering the entire study regions, whereas

our evaluation is based on a set of randomly sampled test
pixels derived from expert-labelled polygons.

As shown in Fig. 4, RF1 performs best in distinguish-
ing the simple and extreme ATES classes, while exhibiting
greater difficulty in classifying the challenging and complex
classes. The high recall for the extreme class indicates that a
substantial proportion of pixels genuinely belonging to this
class were correctly identified. This is particularly important
in the context of avalanche risk mitigation, where failing to
detect high-risk areas can have serious consequences. The
precision for the extreme class is somewhat lower (73.8%),
meaning that 73.8% of the pixels predicted as extreme ter-
rain by the model were indeed labelled as such in the test
dataset. For this ATES class, achieving high recall is more
critical than maximising precision, as the primary objective
is to ensure that hazardous terrain is not overlooked.

This pattern is consistent with previous research (Span-
nring, 2024; Sykes et al., 2024), which similarly reports that
AutoATES model chains face the greatest classification chal-
lenges with the challenging and complex classes. This result
is not unexpected, as the simple and extreme classes repre-
sent opposite ends of the classification spectrum, with well-
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defined characteristics that make them more easily distin-
guishable.

The precision-recall curve for model RF1, presented in
Fig. 5, further confirms the model’s effectiveness in the
ATES classification task. The average area under the curve
(AUC= 0.84) is much closer to a perfect classifier (AUC=
1.0) than a random one (AUC= 0.5). The simple class ex-
hibits the most favourable trade-off between precision and re-
call, reinforcing the consistency of our findings across multi-
ple evaluation metrics that the simple terrain class is the most
successfully classified. This suggests that, across all decision
thresholds, the model maintains a high level of accuracy for
the simple class, preserving both precision and recall. The
model also demonstrates strong performance for the complex
and extreme classes, whereas for the challenging class there
is a more pronounced decline in the precision-recall curve.
This drop indicates that as the decision threshold increases
– requiring a higher confidence level for a prediction – the
model’s precision and recall for this class deteriorate more
rapidly.

These results are consistent with expectations, as the chal-
lenging class encompasses a wide range of terrain types,
from short, moderately steep slopes to very steep forested
areas and even flat terrain within avalanche runout zones.
Given this variability, misclassification with the complex or
simple terrain classes is more likely, leading to lower pre-
cision and recall scores at higher decision thresholds (i.e.
the right side of the precision-recall curve). This pattern is
further reflected in the decreased precision, recall, and F1
scores for the challenging class in Fig. 4. A further factor
contributing to the consistently lower performance metrics
for the challenging class may be related to limitations in the
underlying input data, particularly the PCC layer. In some ar-
eas, small gaps, narrow gullies, and avalanche tracks within
forested terrain may not be accurately captured by the PCC
layer (Panayotov et al., 2024b), leading to erroneous assign-
ments of the simple class in challenging terrain. The com-
parison of results from model RF2 with a deterministic Au-
toATES model previously applied to the study region (Panay-
otov et al., 2024b, see Fig. A4), however, indicates that this
effect is less pronounced in the RF model. This suggests that,
provided the training data captures such cases, the classifier
can learn to correctly identify these areas despite input data
limitations. Nevertheless, to rigorously test these hypotheses,
more extensive studies using higher-resolution and higher-
quality forest structure data are required.

Another key finding is that the incorporation of additional
input features (model RF2) enhances ATES classification
performance. ML models, such as RFs, excel at integrating
diverse sources of information, leveraging each input feature
to some extent to improve classification accuracy. A particu-
lar strength of RF is its ability to select the most informative
feature at each decision split, ensuring that irrelevant features
do not negatively influence the model (Breiman, 2001). Con-

sequently, expanding the feature set logically contributes to
improved classification outcomes.

Model RF2 achieves an overall accuracy improvement
of around 3% compared to model RF1. Figure 4 reveals
improvements in precision, recall, and F1 score for model
RF2 across all classes except extreme terrain, where per-
formance remains largely unchanged. The most notable im-
provement is observed in the challenging class. The recall
for the challenging class increases from 63.08% in RF1 to
70.95% in model RF2. Additionally, the average area under
the precision-recall curve (Fig. 5) increases (in the case of
the challenging class – from 0.76 to 0.82), and the curve
for the challenging class exhibits a slower decline com-
pared to model RF1. These findings indicate that incorporat-
ing additional features significantly benefits classification us-
ing RF models, particularly for the challenging class. Chal-
lenging terrain frequently includes flat areas susceptible to
avalanches originating from higher elevations. Thus, intro-
ducing features such as cell counts and

∑
routFlux, which

quantify overhead hazard and flow thickness-dependent ter-
rain trap potential, proves advantageous in refining classifi-
cation accuracy. This observation aligns with discoveries in
recent studies, which also included overhead exposure in Au-
toATES to improve classification (Sykes et al., 2024; Toft
et al., 2024).

As described in Sect. 3.1, Table 5 shows that across all
three models, the majority of misclassifications are overclas-
sifications. This type of error is preferable in potential haz-
ard classification problems such as ATES, where it is safer to
overestimate rather than underestimate risk. Additionally, the
confusion matrices indicate that nearly all misclassifications
differ by only a single class level, suggesting that the mod-
els are generally making reasonable and conservative predic-
tions.

While classification errors exceeding a single ATES class
occurred in less than 1% of model predictions for each ATES
class across all three models, these severe prediction errors
warrant special attention in the context of tools used for risk
management. Upon closer examination, the majority of these
errors could be attributed to a combination of DTM qual-
ity and minor generalisation issues in the delineated training
polygons. Specifically, some polygons in the original ATES
training data contained minor inaccuracies in their bound-
aries, particularly in shaded areas with abrupt transitions be-
tween steep gullies and adjacent mellow or forested terrain.
In these cases, human-drawn boundaries could be offset by
a few meters, leading to apparent misclassifications that re-
flect small cartographic inaccuracies in the reference dataset
rather than true model errors. In other cases, severe misclas-
sifications were attributed to DTM limitations at sharp ridges
and cliff edges, where the expert-drawn map accurately rep-
resented terrain conditions, but the model misclassified pix-
els along narrow ridge tops or adjacent to vertical cliffs.
Moreover, pixels misclassified by more than one ATES class
predominantly occur as isolated pixels rather than contiguous
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patches and would therefore likely be removed in subsequent
post-processing and generalisation steps (Sykes et al., 2024;
Toft et al., 2024), which were not considered in this study.

Our qualitative expert evaluation (Fig. 9) also confirms
that the RF2 model generalises effectively to regions not in-
cluded in the training data, suggesting that RFs could likely
be applied to similar mountainous terrain in other regions and
achieve reasonable results.

4.1.1 Comparison with the deterministic AutoATES
approach

The comparison between the local adaptation of Au-
toATES to Bulgaria (Panayotov et al., 2024b) and our best-
performing model, RF2 (Fig. A4 and Table A1), shows that
both models produce similar results across the study area.
The overall percentages of terrain assigned to individual
ATES classes differ by no more than 2 %–3 %, with the RF
model tending, on average, toward slightly more conserva-
tive predictions. These findings support our reasoning that
an RF approach represents a promising alternative to deter-
ministic AutoATES classifiers. Figure A4 also illustrates that
both models perform very similarly in alpine regions above
the treeline, whereas predictions show greater variability in
areas below the treeline. In particular, in sparsely forested
areas such as the west-facing slopes of the Demyanitsa val-
ley upstream of the Demyanitsa hut (Fig. A4 left), the most
pronounced differences between the two models can be ob-
served. As previously discussed, these differences may partly
reflect characteristics of the underlying input data. However,
threshold choices in the deterministic AutoATES classifier
(cf. Panayotov et al., 2024b) and the specific training dataset
used for the RF models are also potential contributing fac-
tors.

4.2 Additional benefits of RFs

4.2.1 Feature importances

One key benefit of the RF algorithm is that it allows for the
assessment of feature importances after the model has been
trained – a capability unavailable in the traditional, expert-
based AutoATES approach. As illustrated in Fig. 8, PCC
exhibits relatively low feature importance in both RF1 and
RF2, ranking last among all features for both models. Like-
wise, model RF3, which does not use PCC as an input fea-
ture, slightly outperforms RF1 and achieves accuracies com-
parable to the best-performing model, RF2. This is likely
because PCC is already incorporated in the PRA calcula-
tion and com4FlowPy avalanche runout and intensity mod-
elling, so its contribution to the final ATES classification step
for RF1 and RF2 is less pronounced. The relatively low fea-
ture importance of PCC in the final ATES classification is
also unlikely to be linked to the imbalance between forested
and non-forested pixels. The RF model trained on a balanced

training set (50% forest, 50% non-forest, Sect. 2.5.3) sim-
ilarly shows low PCC importance. Related studies also re-
port low PCC importance in RF models using PCC derived
from alternative, potentially higher-quality sources such as
RapidEye imagery (Markov and Panayotov, 2024; Markov
et al., 2024, 2025). Conversely, PCC has been found to exert
a strong influence on earlier steps of the model chain, includ-
ing PRA calculation and avalanche runout modeling. Con-
sequently, we reason that its information is largely encap-
sulated in the intermediate outputs of the AutoATES model
chain, which serve as predictors in the final classification and
dominate the inference process, reducing PCC’s relative con-
tribution at this stage.

The feature importance analysis also reveals that incor-
porating new features, such as

∑
routFlux, can enhance

RF model performance. In addition to improving classifi-
cation accuracy in model RF2,

∑
routFlux emerges as the

most important feature in that model, followed closely by
slope. This is not unexpected, as the

∑
routFlux output of

com4FlowPy combines information about the size of over-
head PRAs with potential flow and deposit thickness of mod-
elled avalanches. As such this finding is in alignment with re-
cent studies that also suggested including input features char-
acterising overhead hazard in the AutoATES classifier (Sykes
et al., 2024; Toft et al., 2024).

Slope, widely recognised as one of the most critical
factors in avalanche formation and modelling, consistently
emerged as a dominant feature across all models. While the
use of slope maps to refine parts of the training data (see
Sect. 2.3) may have introduced a certain degree of bias, its
pronounced importance remains justified given its central
role in avalanche processes and terrain classification. Simi-
larly, travel angle (γ ), which indicates the proximity to PRAs
and the average track inclination at different terrain points,
has been included in all previous AutoATES versions and ap-
plications (e.g. Larsen et al., 2020; Schumacher et al., 2022;
Huber et al., 2023; Toft et al., 2024), and remains a highly rel-
evant predictor, as confirmed by its feature importance rank-
ing.

Moreover, during the process of iteratively expanding the
feature set, as described in Sect. 2.5.2, the first step was
to construct a model using the same input features as RF1,
but replacing the binary PRA (PRAbin) with its continuous
counterpart (PRAcont). In this model, the PRA’s feature im-
portance increased from 0.11 in binary form (RF1) to 0.21
in continuous form, highlighting another advantage of ML
techniques such as RF, which can leverage continuous in-
put features to their full potential. By allowing the classifier
to learn optimal thresholds from data, rather than relying on
predefined classification criteria, these methods can enhance
predictive efficiency and model flexibility.
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4.2.2 Practical advantages of RFs for avalanche terrain
mapping

It is also worth highlighting the demonstrated flexibility in
training data format. Our results show that a continuous
ATES map is not a prerequisite for effective model train-
ing. Instead, RF models can be successfully trained using
isolated, expert-labelled polygons, as demonstrated in this
study. This approach facilitates the labelling of small, con-
fined regions belonging to a single ATES class with high
confidence, whereas drawing continuous ATES maps is often
more challenging, particularly when delineating boundaries
between ATES classes, which is a task that can be a diffi-
cult even for experienced mappers. Therefore, this methodol-
ogy significantly reduces the burden on domain experts when
constructing training datasets and reinforces the practicality
and accessibility of RF-based approaches for avalanche ter-
rain classification.

4.2.3 Confidence in predictions

Another valuable output of the RF classifiers is the confi-
dence associated with their predictions for each class, as
shown in Fig. 7. Across all three models, the highest con-
fidence is consistently observed for the simple class, which
is expected given that simple terrain is generally the easiest
to distinguish.

Notably, the average confidence levels for the challeng-
ing class decrease slightly in models RF2 and RF3 compared
to RF1. This suggests that these models are better calibrated
and realistic, as they do not assign high confidence indiscrim-
inately when predicting the challenging class. The observed
behaviour may stem from the inclusion of additional features
in RF2 and more informative features in RF3, enabling the
models to better capture the complexity of certain cases and
appropriately temper their prediction confidence. In contrast,
RF1 exhibits higher average confidence for this class, but its
lower precision, recall, and F1 scores indicate that this confi-
dence may be misleading – indicating a degree of overconfi-
dence. However, model RF2 also predicts a larger number of
pixels with very high confidence for the challenging class, as
indicated by the extended right-hand tail in Fig. 7b.

As shown in Fig. 7, the confidence distribution for the
complex class in model RF1 exhibits two peaks, with a lower
one around 0.6. In model RF2, this secondary peak disap-
pears, and the median shifts to a higher value, close to 0.8.
This shift suggests that adding more features increases the
model’s average confidence in its predictions for the complex
class.

The confidence map for model RF2 shown in Fig. 6 reveals
high-certainty predictions for simple terrain in flat areas sit-
uated far from potential avalanche runout zones – such as
within the ski resort – where terrain characteristics are well-
defined. Similarly, the steep western face of Todorka peak is
predominantly classified as complex terrain with high confi-

dence, while the runout zones below are identified as chal-
lenging terrain with similarly strong confidence. In contrast,
classification certainty is lower in the transition zones be-
tween ATES classes, particularly between challenging and
simple terrain, which is expected, as defining the precise
boundaries between ATES classes is inherently challenging.
In these regions, feature values are likely less distinctly as-
sociated with a single ATES class and instead fall between
classes, leading to reduced classifier confidence. It is also
possible that the training data format, consisting of small,
isolated polygons rather than a continuous ATES map, con-
tributed to the lower confidence in transitional regions, since
the models had relatively few samples from these regions to
learn from.

Higher uncertainty is also evident in forested regions, par-
ticularly east of Bunderitsa Hut and west of the ski lift, where
the model predominantly predicts challenging terrain with
moderate confidence. Small patches of simple terrain with
low confidence appear within the forest, indicating classifica-
tion uncertainty in these areas. This is consistent with results
from previous applications of AutoATES in the same region,
where the delineation of ATES classes in the same spots has
been particularly challenging due to the inherent limitations
of the available forest layers, as well as challenges associ-
ated with parametrisation of the PCC contribution to the Au-
toATES classifier (Panayotov et al., 2024b).

In contrast to the purely deterministic output provided
by classical AutoATES classifiers, the prediction confidence
provided by the RF classifier allows for a more detailed in-
terpretation of model predictions. For example, confidence
scores produced by the RF models alongside the model pre-
dictions could be utilised in the process of manual qual-
ity control and fine-tuning of automatically produced ATES
maps. As such, they can provide a more nuanced perspec-
tive on model predictions and aid in identifying areas that
warrant special attention before final map publication (areas
with low predictive confidence). This post-processing step is
essential for the production of high-quality maps, as it en-
ables targeted verification and refinement in areas where de-
tailed local knowledge or expert input is available. Although
the RF models achieve relatively high accuracy (averaging
around 80 %), manual intervention remains necessary to en-
sure reliability of the maps in all locations. Moreover, infor-
mation on the prediction confidence could serve as a basis for
a more explicit visualisation and communication of uncer-
tainties associated with discrete class borders, as previously
suggested in the fuzzy ATES data model proposed by Sharp
et al. (2023).

4.3 Limitations and potential for improvement

In this study, we systematically evaluated the performance
of automated ATES classification using different RF mod-
els, based on a held-out test set and multiple evaluation met-
rics. While overall accuracy provides a general measure of
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model performance, class-specific metrics – such as preci-
sion, recall, and F1 score – offer deeper insight into per-class
behaviour, helping to identify areas for future improvement.
Although these methods of evaluation successfully approx-
imate model generalisation to unseen areas, several limita-
tions must be acknowledged.

One major limitation is that RF models were evaluated
exclusively on a held-out test set. While this approach is
widely accepted in ML for assessing generalisation perfor-
mance to unseen terrain (Varoquaux and Colliot, 2023), the
test set only includes pixels from within the training region.
We did not formally assess model performance using quan-
titative metrics outside the training region. Instead, for the
entire study area, we conducted initial evaluations through
visual comparisons and qualitative validation (see Fig. 9).

As with any supervised learning approach, the RF classi-
fier is highly dependent on the quality and construction of the
training dataset, including subjective decisions made by the
experts annotating it. This is particularly relevant when the
training data is created by a single expert, as was the case in
our study. Substantial modification to the training data could
significantly influence both the classification outcomes and
the resulting feature importance rankings.

Although mountainous terrain tends to share broad charac-
teristics globally, our training data was limited to a specific
region of the Pirin Mountains. The presented models have
not been evaluated in regions with different environmental
characteristics and data availability. However, the generalis-
ability of the models is very likely influenced by these fac-
tors. For instance, in regions where forest PCC data is un-
available, substituting alternative forest structure informa-
tion, such as stem density or basal area, would not yield
meaningful results. Likewise, the resolution and source of
the utilised DTMs can affect both the final ATES classifica-
tion and earlier steps of the AutoATES model chain. Spe-
cific methodological details, such as the slope thresholds
used in the PRA modelling step, may also require adjust-
ment to account for regional characteristics and data avail-
ability. In maritime snow climates or areas with frequent per-
sistent weak layers or slush-flow activity, slope thresholds
of 28° and 60° may not represent optimal lower and upper
limits for PRA delineation. The decision of whether to ap-
ply hard upper and lower slope limits in PRA modelling (cf.
Bühler et al., 2013, 2018; Veitinger et al., 2016b) or to omit
them (cf. Toft et al., 2024) should likewise depend on the
origin, quality, and resolution of the input DTM, as well as
on site-specific characteristics. Consequently, the trained RF
models presented in this study are expected to perform best
in regions with comparable topographic and climatic condi-
tions and input data availabilty, and will require adaptation
for areas with different settings. Testing the models in such
regions could provide additional insights into their generalis-
ability and adaptation requirements. Furthermore, a system-
atic comparison of locally trained vs. universally trained RF

models across multiple study areas could help to clarify the
advantages and trade-offs of each approach.

Another limitation is that the RF classifier operates on
a per-pixel basis. While this is consistent with previously
proposed AutoATES classifiers, it does not account for spa-
tial autocorrelation effects. Incorporating information from
a local neighbourhood window or region for predictions at
a given location could further improve classification perfor-
mance and produce smoother, more coherent results. One
approach that leverages this spatial context and could be
explored in future work is a convolutional neural network
(CNN), which applies a sliding window mechanism across
the input data.

Differences in mapping scales between human- and
machine-generated ATES maps also present a challenge
(Sykes et al., 2024; Toft et al., 2024). Human cartographers
tend to generalise terrain features, resulting in smoother,
more abstract representations that omit finer-scale slope vari-
ations. In contrast, pixel-based classifiers, such as RF or
traditional AutoATES models, generally operate at a finer
spatial resolution, capturing small-scale terrain features in
greater detail. For practical applications ATES maps typ-
ically require a level of cartographic generalisation and
smoothing to enhance readability and reduce noise. In this
study we did not analyse post-processing techniques such as
those proposed by Larsen et al. (2020) or Toft et al. (2024).
However, additional cartographic generalisation could help
bridge the gap between machine-generated classifications
and human-drawn maps, improving harmonisation between
the two approaches.

The ability of RF models to learn from small, isolated
polygons, drawn only where the expert is highly confident
in the correct ATES classification, is a major advantage
(see Sect. 4.2.2). Nevertheless, future work could investi-
gate training models on a continuously delineated dataset and
comparing the outcomes with those of this study. Although
more challenging to construct, a carefully mapped continu-
ous training dataset may enhance ATES classification, par-
ticularly in transitional zones between classes. By exposing
RF models to a larger number of examples from such areas,
their ability to capture boundary patterns might be improved.
This would also help clarify whether the lower confidence
observed in transitional areas is a result of the training data
format or the inherent complexity of predicting such zones.

Further improvements could be achieved by expanding be-
yond the seven features used in model RF2 and incorporating
additional variables, such as further com4FlowPy outputs
or other input features from PRA calculations (e.g. rugged-
ness and wind shelter). ML models are well suited to exploit
complex relationships among a broad set of predictors, even
when individual features contribute only marginally, which
may enhance classification accuracy.

Finally, in this study we chose to omit the non-avalanche
terrain class and merge it with the simple class. This decision
is justified by the distinct topographic characteristics of non-
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avalanche terrain, which make it relatively straightforward
for the RF classifiers to identify as simple. In contrast, mis-
classifying simple terrain as non-avalanche terrain is both
more likely to occur and potentially more consequential, as
it could lead to underestimating avalanche exposure. Nev-
ertheless, future research could explore the development of
a five-class AutoATES model capable of distinguishing all
ATES categories, including non-avalanche terrain.

5 Conclusions and outlook

This study demonstrates that the RF algorithm can be suc-
cessfully applied in the final classification step of recently
proposed AutoATES model chains. RF techniques present
a promising alternative to previously developed AutoATES
classifiers, which rely on deterministic thresholds and rules
that require adaptation when applied to new regions. The
overall classification accuracies achieved in our study are
comparable to those reported for more traditional AutoATES
approaches. Moreover, the RF-based approach proved effec-
tive in our data-scarce region, suggesting potentially broad
applicability in mountain regions worldwide. Beyond its
demonstrated effectiveness for the investigated classification
task, the RF algorithm also offers additional methodological
advantages.

One of the key benefits of RF models is their ability to pro-
vide feature importances rankings, which enhance the under-
standing of the relative influence of different input features
in automated ATES mapping. Consistent with existing Au-
toATES algorithms, the feature importance rankings found
in our study confirm that slope and local travel angle (γ ) are
particularly important in determining ATES classes. More-
over, our results indicate that including additional features re-
lated to overhead exposure and potential terrain traps can fur-
ther improve classification accuracy. Our findings also sug-
gest that the role of forest layers, such as PCC, merits further
investigation in future AutoATES applications.

Another advantage of the RF methodology is its ability to
provide prediction confidence levels. This information can
support human interpreters during manual quality control
and in making revisions to map products prior to their release
to end users. Moreover, prediction confidence may contribute
to ATES data models and map representations that aim to
communicate mapping uncertainties more explicitly.

While this study offers promising initial insights into the
use of RF techniques for automated avalanche terrain classi-
fication, some limitations must be acknowledged. These in-
clude the geographically restricted training and study area,
the exclusive focus on RF modelling, and the limited assess-
ment of model generalisation and smoothing techniques. Ad-
dressing these aspects through more comprehensive inves-
tigations will be important for future research. Specifically,
expanding the training dataset to include additional regions,
making it continuously cover the terrain, and testing alterna-

tive ML techniques – such as Support Vector Machines, Gra-
dient Boosting, or Neural Networks – on an even wider range
of input features may lead to more generalisable results. Ul-
timately, future research should not only focus on improving
the final ATES classifier but also address earlier steps in the
AutoATES model chain, including input data quality, PRA
calculations, and avalanche runout modelling.

In conclusion, this study establishes an important foun-
dation for a novel approach to automated ATES classifica-
tion. With further refinement and optimisation, the proposed
methodology has the potential to facilitate more accessible
and accurate ATES classification across diverse mountain re-
gions.
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Appendix A:

Figure A1. Outputs of the PRA model (a, b) and avalanche runout modelling with com4FlowPy (c–f). (a) Continuous PRAs PRAcont,
(b) binary PRAs PRAbin obtained with a threshold of 0.3, (c) maximum modelled energy line height zδmax, (d) maximum local travel angle
(γ ), (e) cell counts, and (f) sum of routing flux (

∑
routFlux).
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Figure A2. ATES maps produced by the investigated RF models for the entire study area: (a) RF1, (b) RF2, and (c) RF3. Additionally,
prediction probabilities output by the models for the ATES class prediciton: (d) RF1, (e) RF2, and (f) RF3.

https://doi.org/10.5194/nhess-25-4375-2025 Nat. Hazards Earth Syst. Sci., 25, 4375–4403, 2025



4398 K. Markov et al.: Machine learning for automated avalanche terrain exposure scale classification

Figure A3. Distributions of input feature values for pixels in the training data, grouped by ATES class. PCC stands for percent canopy
cover, while PRA represents the potential release areas as a continuous raster, where 0 denotes no possibility of avalanche release, and 1
corresponds to a very high likelihood of release.
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Figure A4. Exemplary extract of the ATES map from model RF2
and the previous local adaptation of AutoATES in the study area
(Panayotov et al., 2024b) for two separate areas – a sparsely forested
region in Demyanitsa valley and the northern face of Bunderishki
Chukar peak, part of the Bunderitsa valley, along with photographs
of the winter terrain. The numbers highlight the corresponding ter-
rain features between the photographs and the ATES predictions.

Table A1. Distribution of ATES classes for the entire study region
for the model RF2 and for the previous local adaptation of Au-
toATES in the study area (Panayotov et al., 2024b). The numbers
represent the areas classified as each class in km2. The relative share
of each class as a percent of the total area in % is provided in brack-
ets.

ATES class Model RF2 AutoATES local adaptation

Simple 32.82 (42.78) 33.711 (43.94)
Challenging 24.181 (31.52) 26.146 (34.08)
Complex 17.852 (23.27) 15.103 (19.69)
Extreme 1.868 (2.43) 1.762 (2.3)

Total 76.722 (100) 76.722 (100)

Table A2. Feature importances for the RF1 model (trained on the
original training dataset) and the model trained on the balanced for-
est vs. non-forest dataset (RF1 balanced).

Feature RF1 RF1 Balanced

Slope 0.38 0.35
PCC 0.074 0.089
PRAbin 0.11 0.112
γ 0.436 0.449

Code availability. All Python code and trained model
files can be found in our online Git repository:
https://doi.org/10.5281/zenodo.15310357 (Markov, 2025).
For future work, the GitHub repository: https://github.com/
kalinmarkov95/machine-learning-auto-ates/tree/main (last access:
31 March 2025) will be maintained (Markov, 2025). Please refer to
the repository for updates and potential additional data uploads.

Data availability. The digital terrain model (DTM) of the study re-
gion was obtained from Pirin National Park and the private geospa-
tial data provider Geopolyomorphic Cloud specifically for this
study. It is not available for public use and is not included in the Git
repository. If you would like to access the DTM, please contact the
corresponding author, Kalin Markov (kmarkov@geophys.bas.bg),
or the data providers directly (contact for Geopolymorphic Cloud:
office@geopolymorphic-cloud.org; contact for Pirin National Park:
dnp@pirin.bg).
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