Articles | Volume 25, issue 10
https://doi.org/10.5194/nhess-25-3897-2025
https://doi.org/10.5194/nhess-25-3897-2025
Brief communication
 | 
09 Oct 2025
Brief communication |  | 09 Oct 2025

Brief communication: Depth-averaging of 3D depth-resolved MPM simulation results of geophysical flows for GIS visualization

Hervé Vicari, Michael Lukas Kyburz, and Johan Gaume

Related authors

Simulation of cold-powder snow avalanches considering daily snowpack and weather situations
Julia Glaus, Katreen Wikstrom Jones, Perry Bartelt, Marc Christen, Lukas Stoffel, Johan Gaume, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 2399–2419, https://doi.org/10.5194/nhess-25-2399-2025,https://doi.org/10.5194/nhess-25-2399-2025, 2025
Short summary
Supershear crack propagation in snow slab avalanche release: new insights from numerical simulations and field measurements
Grégoire Bobillier, Bertil Trottet, Bastian Bergfeld, Ron Simenhois, Alec van Herwijnen, Jürg Schweizer, and Johan Gaume
Nat. Hazards Earth Syst. Sci., 25, 2215–2223, https://doi.org/10.5194/nhess-25-2215-2025,https://doi.org/10.5194/nhess-25-2215-2025, 2025
Short summary
The (story-) line between numerical simulations for hazard assessment, visual communication, and risk perception
Alessandro Cicoira, Daniel Tobler, Rachel Riner, Lars Blatny, Michael Lukas Kyburz, and Johan Gaume
Abstr. Int. Cartogr. Assoc., 9, 4, https://doi.org/10.5194/ica-abs-9-4-2025,https://doi.org/10.5194/ica-abs-9-4-2025, 2025
Brief communication: Monitoring impending slope failure with very high-resolution spaceborne synthetic aperture radar
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024,https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary
Detrainment and braking of snow avalanches interacting with forests
Louis Védrine, Xingyue Li, and Johan Gaume
Nat. Hazards Earth Syst. Sci., 22, 1015–1028, https://doi.org/10.5194/nhess-22-1015-2022,https://doi.org/10.5194/nhess-22-1015-2022, 2022
Short summary

Cited articles

Bartelt, P., Bühler, Y., Christen, M., Deubelbeiss, Y., Salz, M., Schneider, M., and Schumacher, L.: RAMMS::AVALANCHE User Manual, WSL, 2017, Version 1.7.0., 1–116, https://ramms.ch/wp-content/uploads/RAMMS_AVAL_Manual.pdf (last access: 8 October 2025), 2017. a
Christen, M., Kowalski, J., and Bartelt, P.: RAMMS : Numerical Simulation of Dense Snow Avalanches in Three- Dimensional Terrain, Cold Regions Science and Technology, 63, 1–14, https://doi.org/10.1016/j.coldregions.2010.04.005, 2010. a
Cicoira, A., Blatny, L., Li, X., Trottet, B., and Gaume, J.: Towards a Predictive Multi-Phase Model for Alpine Mass Movements and Process Cascades, Engineering Geology, 310, 106866, https://doi.org/10.1016/j.enggeo.2022.106866, 2022. a, b, c, d, e
Denlinger, R. P. and Iverson, R. M.: Granular Avalanches across Irregular Three-Dimensional Terrain: 1. Theory and Computation, Journal of Geophysical Research: Earth Surface, 109, https://doi.org/10.1029/2003JF000085, 2004. a
Eglit, M., Yakubenko, A., and Zayko, J.: A Review of Russian Snow Avalanche Models–From Analytical Solutions to Novel 3D Models, Geosciences, 10, 77, https://doi.org/10.3390/geosciences10020077, 2020. a
Download
Short summary
Advanced 3D numerical models can simulate alpine mass movements at the slope scale, but their use in natural hazard mapping remains challenging. We present a tool that converts 3D simulation results into 2D maps, making them more accessible and useful for hazard assessment and mitigation. Applied to an ice avalanche simulated with the Material Point Method, it reveals key features such as slope-normal velocities and flow detachment from terrain, which are often overlooked in simpler models.
Share
Altmetrics
Final-revised paper
Preprint